Skip to main content
. 2019 May 22;17:171. doi: 10.1186/s12967-019-1918-z

Table 6.

Provides the overall performance measures for the models generated using biological, chemical, and phenotypic features and the combination of the two and three levels of features on non-redundant testing dataset using under sampling of majority class

Type of feature RF SMO
ACC Precision Recall F-score AUC PRC ACC Precision Recall F-score AUC PRC
Biological 93.90 0.88 0.91 0.89 0.46 0.94 92.15 0.88 0.91 0.89 0.45 0.94
Chemical 93.32 0.85 0.88 0.87 0.48 0.94 93.69 0.85 0.89 0.87 0.44 0.93
Phenotypic 93.65 0.85 0.88 0.87 0.44 0.93 93.85 0.85 0.89 0.87 0.44 0.93
Biological + chemical 93.07 0.85 0.88 0.86 0.46 0.94 93.72 0.85 0.89 0.87 0.44 0.93
Biological + phenotypic 93.51 0.85 0.88 0.87 0.43 0.93 93.82 0.85 0.89 0.87 0.44 0.93
Chemical + phenotypic 93.43 0.85 0.88 0.87 0.45 0.94 93.83 0.85 0.89 0.87 0.44 0.93
Biological + chemical + phenotypic 93.06 0.85 0.88 0.86 0.47 0.94 93.61 0.85 0.89 0.87 0.44 0.93