Table 6.
Provides the overall performance measures for the models generated using biological, chemical, and phenotypic features and the combination of the two and three levels of features on non-redundant testing dataset using under sampling of majority class
Type of feature | RF | SMO | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
ACC | Precision | Recall | F-score | AUC | PRC | ACC | Precision | Recall | F-score | AUC | PRC | |
Biological | 93.90 | 0.88 | 0.91 | 0.89 | 0.46 | 0.94 | 92.15 | 0.88 | 0.91 | 0.89 | 0.45 | 0.94 |
Chemical | 93.32 | 0.85 | 0.88 | 0.87 | 0.48 | 0.94 | 93.69 | 0.85 | 0.89 | 0.87 | 0.44 | 0.93 |
Phenotypic | 93.65 | 0.85 | 0.88 | 0.87 | 0.44 | 0.93 | 93.85 | 0.85 | 0.89 | 0.87 | 0.44 | 0.93 |
Biological + chemical | 93.07 | 0.85 | 0.88 | 0.86 | 0.46 | 0.94 | 93.72 | 0.85 | 0.89 | 0.87 | 0.44 | 0.93 |
Biological + phenotypic | 93.51 | 0.85 | 0.88 | 0.87 | 0.43 | 0.93 | 93.82 | 0.85 | 0.89 | 0.87 | 0.44 | 0.93 |
Chemical + phenotypic | 93.43 | 0.85 | 0.88 | 0.87 | 0.45 | 0.94 | 93.83 | 0.85 | 0.89 | 0.87 | 0.44 | 0.93 |
Biological + chemical + phenotypic | 93.06 | 0.85 | 0.88 | 0.86 | 0.47 | 0.94 | 93.61 | 0.85 | 0.89 | 0.87 | 0.44 | 0.93 |