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Abstract

Biophysical models designed to predict the growth and response of tumors to treatment have the 

potential to become a valuable tool for clinicians in care of cancer patients. Specifically, 

individualized tumor forecasts could be used to predict response or resistance early in the course 

of treatment, thereby providing an opportunity for treatment selection or adaption. This chapter 

discusses an experimental and modeling framework in which noninvasive imaging data is used to 

initialize and parameterize a subject-specific model of tumor growth. This modeling approach is 

applied to an analysis of murine models of glioma growth.
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1 Introduction

Biophysical models of tumor growth and treatment response have the potential to 

fundamentally change the clinical care for cancer patients by providing clinicians with 

accurate and precise patient-specific predictive models. Through the use of noninvasive 

imaging data, these biophysical models can be parameterized by the unique characteristics 

of an individual’s tumor to provide a “forecast” of future tumor growth and treatment 

response [1]. We [2–6] and others [7–11] have begun investigating the development of 

patient-specific mathematical models of cancer. In this work, we provide a detailed guide to 

the implementation of a mechanically coupled reaction-diffusion model [4, 6, 12] applied to 

glioma growth in rats.

The standard reaction-diffusion equation, Eq. 1, is commonly used to model glioma growth 

[5, 7] and describes the spatial-temporal evolution of tumor cell number due to the random 

movement of tumor cells (diffusion, first term on the right-hand side) and the proliferation of 

cells (reaction, second term on the right-hand side):

∂N(x, y, z, t)
∂t = ∇ ⋅ (D(x, y, z)∇N(x, y, z, t)) + k(x, y, z)N(x, y, z, t) 1 − N(x, y, z, t)

θ , (1)

where N(x, y, z, t) is the number of tumor cells at the threedimensional position (x, y, z) and 

time t, D(x, y, z) is the tumor cell diffusion coefficient, k(x, y, z) is the net tumor cell 

proliferation, and θ is the tumor cell carrying capacity. One important limitation of the 
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standard reaction-diffusion equation is that tumor growth is only restricted by the boundaries 

of the simulation domain (i.e., the skull for gliomas). In reality, as the tumor expands it 

interacts with the healthy brain tissue causing increased mechanical stress and the 

displacement of surrounding tissue, a phenomena termed the “mass effect” [13] and 

observed in several types of brain tumors [14]. The increased stress experienced by the 

tumor can impede further growth as demonstrated in the seminal work by Helmlinger et al. 

[15]. In Helmlinger et al.’s [15] contribution multi-cellular spheroids were grown in agar gel 

concentrations ranging from 0% to 1%. Increasing the agar concentration resulted in 

inhibited expansion of the spheroid as the substrate stiffness increased. More specifically, 

similar spheroid interactions with the surrounding environment would require increased 

force at elevated levels of stiffness. This phenomenon can also result in the preferential 

growth of tumors in areas of increasing mechanical compliance. To incorporate this effect, 

we first describe the mechanical equilibrium, Eq. 2:

∇ ⋅ σ − λf ⋅ ∇N = 0, (2)

where σ is the stress tensor and λf is tumor cell-force coupling constant. For 

implementation, Eq. 2 is rewritten in terms of the tissue displacement ( u ) under a linear 

elastic isotropic material assumption in Eq. 3:

∇ ⋅ G∇ u + ∇ G
1 − 2ν ⋅ (∇ ⋅ u ) − λf ∇N = 0, (3)

where G is the shear modulus (a material property that represents the constant of 

proportionality between shear stress to shear strain) and ν is Poisson’s ratio (a material 

property that is a ratio relating lateral to longitudinal strain). The first two terms on the left-

hand side in Eq. 3 represent the linear-elastic description of tissue displacement, while the 

third term represents a local body force generated by the invading tumor. ( u ) is then used to 

calculate the local normal (εxx, εyy, εzz) and shear strains (εxy, εxz, εyz). For small 

deformations, strain εi,j is defined as the total deformation in the direction i divided by the 

original length in direction j and is calculated using Eq. 4:

εxx

εyy

εzz

εxy

εxz

εyz

=

∂u/ ∂x
∂v/ ∂y
∂w/ ∂z
∂u/ ∂y
∂u/ ∂z
∂v/ ∂z

′ (4)

where u, v, and w represent the deformation in the x-, y-, and z-directions, respectively. The 

normal and shear strains are then used to calculate the normal and shear stresses using 

Hooke’s law, Eq. 5:
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σxx
σyy
σzz
σxy
σxz
σyz

= 2G
1 − 2ν

1 − ν ν ν 0 0 0
ν 1 − ν ν 0 0 0
ν ν 1 − ν 0 0 0
0 0 0 (1 − 2ν) 0 0
0 0 0 0 (1 − 2ν) 0
0 0 0 0 0 (1 − 2ν)

εxx
εyy
εzz
εxy
εxz
εyz

. (5)

The normal and shear stresses for a given voxel are then incorporated into a single term 

called the Von Mises stress, σvm(x, y, z, t), in Eq. 6:

σvm(x, y, z, t) = 1
2

σxx(x, y, z, t) − σyy(x, y, z, t) 2 + σxx(x, y, z, t) − σzz(x, y, z, t) 2

+ σzz(x, y, z, t) − σyy(x, y, z, t) 2

+6 σxy(x, y, z, t)2 + σxz(x, y, z, t)2 + σyz(x, y, z, t)2

1/2

. (6)

The Von Mises stress is a term that reflects the total experienced stress for a given section of 

tissue, and is often used within failure criterion strategies in materials. We use the Von Mises 

stress to reflect the interaction between the growing tumor and its environment, that is, in 

our approach we use the Von Mises stress to spatially and temporally restrict tumor cell 

diffusion [4, 6, 12] using Eq. 7:

D(x, y, z, t) = D0e
−λD ⋅ σvm(x, y, z, t)

, (7)

where D0 represents the diffusion coefficient of tumor cells in the absence of mechanical 

restrictions and λD is a stress-tumor cell diffusion coupling constant.

In this chapter, we will discuss how to implement this model system using the finite 

difference method as well as how to individualize this model using an individual patient’s 

imaging data. Noninvasive imaging measurements from diffusion-weighted magnetic 

resonance imaging (DW-MRI [16]) and contrast enhanced MRI (CE-MRI, [17]) are used to 

estimate the spatial distribution of tumor cell number in a murine model of glioma at several 

experimental time points. The in vivo estimated cell number then provides the initial tumor 

cell distribution and is also used to solve an inverse problem to return estimates of the model 

parameters. The estimated model parameters can then be used to simulate future tumor 

growth.
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2 Materials

2.1 Dataset

The numerical methods presented in this chapter use an in vivo dataset acquired in rats with 

intracranially inoculated glioma cells [5, 18, 19]. Alternatively, an in silico dataset can also 

be used [5]. For both approaches the dataset should contain:

1. Three-dimensional estimates of the distribution of tumor cells at several time 

points.

2. Three-dimensional map of k (or initial guess).

3. Single value for D0 (or initial guess).

4. Values for G, ν, λD, λf, and θ (based on literature, calculation, or assignment, 

see Note 1).

For use in Matlab this dataset should be saved as a “.mat” file consisting of a 4D array of 

tissue cellularity, a 3D array of k values, and one-element arrays of D0, G, ν, λD, λf, and θ 
all with double precision.

2.2 Software/Hardware Requirements

The forward evaluation and parameter optimization of the mechanically coupled model was 

ran on a Dell PowerEdge R820 server consisting of four Intel Xenon E5–4610 2.3 GHz 

processors with a total of 256 GB of memory using Matlab 2015b. The forward evaluation is 

relatively less computationally intensive and takes less than 16 s for a 10 day simulation on a 

laptop with 8 GB of memory and an Intel i5–2550 M 2.5 GHz processor. The parameter 

optimization computation time, however, depends on both the number of parameters being 

estimated and the number of iterations of the optimization algorithm until stopping criteria 

are met. Parallelization of the parameter perturbation code can reduce computation time by a 

factor approximately equal to the number of parallel threads. (For example parameter 

perturbation for 100 parameters takes 13.1 min with 1 thread, 3.1 min with 4 threads, 1.7 

min with 8 threads, 0.9 min with 16 threads, and 0.7 min with 32 threads.)

3 Methods

3.1 Animal Experiments

While details are presented in [5], we here discuss the salient features of the experimental 

procedure (see Fig. 1). The in vivo dataset described in this section was acquired in female 

Wistar rats inoculated intracranially with C6 Glioma cells (1 × 105) via stereotaxic injection 

on day 0 (Fig. 1a). On day 8, permanent jugular catheters were placed in each rat (Fig. 1b). 

Beginning on day 10, rats are imaged (Fig. 1c), with a 3D gradient echo, DW-MRI and CE-

MRI (see Note 2 for remarks on the experiment timeline and measurement frequency). The 

3D gradient echo data was collected with a larger field of view (45 mm × 45 mm × 45 mm) 

and larger sampling matrix (256 × 256 × 128) for image registration purposes. The DW-MRI 

and CE-MRI data was acquired with a 32 mm × 32 mm × 16 mm field of view and a 128 × 

128 × 16 sampling matrix. During the CE-MRI acquisition, a 200 μL bolus (0.05 mmol/kg) 

of gadolinium-diethylenetriamine pentaacetic acid, an MRI contrast agent, is injected to 
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identify tumor regions (Fig. 1d). Areas of signal enhancement in the post-contrast CE-MRI 

data were used to identify tumor regions of interest (ROI). Tumor cellularity (N(x, y, z, t)) 
was estimated from DW-MRI. Briefly, DW-MRI is an imaging method that is sensitive to the 

diffusion of water within tissue, and several groups have observed an inverse relationship 

between the apparent diffusion coefficient (ADC) and cellularity [20–24]. The ADC is 

estimated voxel-wise from DW-MRI (Fig. 1e) data acquired at several b-values by fitting Eq. 

8 to the acquired signal at each b-value:

S(x, y, z, b) = S0(x, y, z) ⋅ e−b ⋅ ADC(x, y, z), (8)

where S(x, y, z, b) is the acquired signal at three-dimensional position (x, y, z) and b-value 

b, S0(x, y, z) is the intrinsic signal, and ADC (x, y, z) is the apparent diffusion coefficient. 

The tumor ROI identified from CE-MRI is then applied as a mask to ADC(x, y, z) (Fig. 1f), 

to estimate cellularity only within the tumor using Eq. 9:

N(x, y, z) = θ
ADCw − ADC(x, y, z)

ADCw − ADCmin
, (9)

where θ is the maximum tumor cell carrying capacity, ADCw is the ADC of 

waterat37 °C(2.5 × 10−3 mm2/s) [25],ADC(x, y, z)is the ADC value at position (x, y, z), and 

ADCmin is the minimum ADC value which corresponds to the voxel with the largest number 

of cells [2]. θ can be calculated using the imaging voxel dimensions (0.25 mm × 0.25 mm × 

1.00 mm), and assuming spherical tumor cells with a packing density of 0.7405 [26] and an 

average cell volume of 908 μm3 [27] (see Note 3 for further remarks on packing density and 

cell volume).

A voxel-wise k and a global D0 are estimated from serial measurements of N(x, y, z, t) in a 

parameter optimization procedure [5]. G is assigned from literature values to anatomical 

regions identified in imaging data (e.g., cortex, corpus callosum, hippocampus, thalamus, 

putamen) [28, 29], while ν is set to 0.45 (as we assume that tissue is nearly incompressible). 

λD can be assigned or a range of values can be evaluated to apply different degrees of 

mechanical coupling, while λf is set to 1.

3.2 Modeling

We now discuss the details of the finite difference simulation for Eqs. 1 and 2, the forward 

evaluation of the model system, and the parameter optimization and the tumor growth 

prediction approach. Figure 2 shows an overview of the data collection, parameter 

optimization, and prediction approach. Briefly, data is acquired from ti to tf. A subset of the 

total data (days ti to tn, where tn is less than tf) are first used to determine the optimal model 

parameters. Once the stopping criteria are met for the parameter optimization approach, the 

optimized model parameters are then used in a forward evaluation of the model to simulate 

future tumor growth. The measured data is then compared to the model predicted growth on 

days tn+1 to tf. With respect to the clinical context, tn would represent the time point at 
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which early-course of therapy data could be collected, and calibrated to the patient. Once 

complete, assessments on efficacy of therapy would be forecasted in silico for future time 

point tf and perhaps lead to changes to therapy regimen or alternate therapies.

3.2.1 Finite Difference Simulation Setup—As an illustrative example for clarity, we 

show the derivation of the finite difference model for a 1D implementation, followed by 

extending the model to the full 3D implementation. A Taylor series expansion is used to 

derive the finite difference approximation of the tumor cell model (Eq. 1) as shown for the 

1D implementation in Eq. 10:

N x, t + ht − N(x, t)
ht

= δN(x, t)
2hx

⋅ δD(x)
2hx

+ D(x) ⋅ δ2N(x, t)
hx

2 + k(x) ⋅ N(x, t)

⋅ 1 − N(x, t)
θ ,

(10)

where ht is the time step, and hx is the grid spacing in the x-direction, and δ represents the 

central difference operator, defined below in Eqs. 11 and 12. Finite difference 

approximations are derived using a full grid approach to take advantage of the natural, 

voxelized gridding from the experimental imaging data measurements. The central 

difference approximation of the first derivative in (for example) the x-direction is shown in 

Eq. 11:

∂N(x, t)
∂x ≈ δN(x, t)

2hx
=

N x + hx, t − N x − hx, t
2hx

. (11)

Similarly, the central difference approximation of the second derivative in (for example) the 

x-direction is shown in Eq. 12:

∂2N(x, t)
∂x2 ≈ δ2N(x, t)

hx
2 =

N x + hx, t − 2 ⋅ N(x, t) + N x − hx, t

hx
2 . (12)

In the case of a mesh boundary, where the node at either (x + 1) or (x −−1) does not exist, 

the zero flux boundary condition (∂N/∂x = 0) can be used to relate N(x + hx, t) to N(x − hx, 

t) (or vice versa) as shown in Eq. 13:

N x + hx, t − N x − hx, t
2hx

= 0 N x + hx, t = N x − hx, t . (13)

The 3D implementation of Eq. 1 is shown below in Eq. 14:
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N x, y, z, t + ht − N(x, y, z, t)
ht

= δN(x, y, z, t)
2hx

⋅ δD(x, y, z)
2hx

+ D(x, y, z) ⋅ δ2N(x, y, z, t)
hx

2

+ δN(x, y, z, t)
2hy

⋅ δD(x, y, z)
2hy

+ D(x, y, z) ⋅ δ2N(x, y, z, t)
hy

2 + δN(x, y, z, t)
2hz

⋅ δD(x, y, z)
2hz

+ D

(x, y, z) ⋅ δ2N(x, y, z, t)
hz

2 + k(x, y, z) ⋅ N(x, y, z, t) ⋅ 1 − N(x, y, z, t)
θ .

(14)

The derivation of the finite difference approximation of Eq. 2 is shown for the 1D 

implementation in Eqs. 15–17. Equation 2 is first rewritten in terms of the 1D stress in the x-

direction (σx) in Eq. 15:

∇ ⋅ σx(x) − λf ∇N(x, t) = 0. (15)

σx is then replaced with Hooke’s law for a linear elastic isotropic material (σx = E εx) in Eq. 

16:

∇ ⋅ Eεx(x) = λf ∇N(x, t), (16)

where E is Young’s Modulus, and εx is equal to ∂u/∂x. The divergence is then evaluated and 

the finite difference approximations are applied in Eq. 17:

δE(x)
2hx

δu(x)
2hx

+ E(x)δ2u(x)
hx

2 = λf
δN(x, t)

2hx
. (17)

A similar approach as shown in Eqs. 15–17 can be followed to obtain the full 3D 

implementation of Eq. 2. Equations 18–20 show the finite difference approximation for the 

3D implementation of Eq. 2. Equation 18 shows the x-direction component of Eq. 2:
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2(1 − v)
1 − 2v

δG
2hx

δu
2hx

+ Gδ2u
hx

2 + 2v
1 − 2v

δG
2hx

δv
2hy

+ G δ
2hx

δv
2hy

+ 2v
1 − 2v

δG
2hx

δw
2hz

+ G δ
2hx

δw
2hz

+ 2 δG
2hx

δu
2hy

+ G δ
2hx

δu
2hy

+ 2 δG
2hx

δu
2hz

+ G δ
2hx

δu
2hz

= λ f
δN
2hx

,

(18)

where u, v, and w represent tissue displacement in the x-, y-, and z-directions, respectively. 

Eq. 19 shows the y-direction component of Eq. 2:

2(1 − v)
1 − 2v

δG
2hy

δv
2hy

+ Gδ2v
hy

2 + 2v
1 − 2v

δG
2hy

δu
2hx

+ G δ
2hy

δu
2hx

+ 2v
1 − 2v

δG
2hy

δw
2hz

+ G δ
2hy

δw
2hz

+ 2 δG
2hy

δv
2hx

+ G δ
2hy

δv
2hx

+ 2 δG
2hy

δv
2hz

+ G δ
2hy

δv
2hz

= λ f
δN
2hy

.

(19)

Equation 20 shows the z-direction component of Eq. 2:

2(1 − v)
1 − 2v

δG
2hz

δw
2hz

+ Gδ2w
hz

2 + 2v
1 − 2v

δG
2hz

δu
2hx

+ G δ
2hz

δu
2hx

+ 2v
1 − 2v

δG
2hz

δv
2hy

+ G δ
2hz

δv
2hy

+ 2 δG
2hz

δw
2hx

+ G δ
2hz

δw
2hx

+ 2 δG
2hz

δw
2hy

+ G δ
2hz

δw
2hy

= λ f
δN
2hz

.

(20)

The unknown tissue displacements u, v, and w are solved by rewriting Eqs. 18–20 into a 

matrix system shown in Eq. 21:
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[M] U = λf ∇N , (21)

where [M] is a square 3n × 3n matrix of the finite difference coefficients, {U} is equal to 

{u1, ⋯·un, v1, ⋯·vn, w1, ⋯wn}T, where ui, vi, and wi represent the displacement at the ith 

node in the x-, y-, and z-direction, respectively. {∇N} is equal to {∂N1/∂x, ⋯·∂Nn/∂x, ∂N1/
∂y, ⋯ ∂Nn/∂y, ∂N1/∂z, ⋯·∂Nn/∂z}T, where ∂Ni/∂x, ∂Ni/∂y, and ∂Ni/∂z represent the gradient 

at the ith node in the x-, y-, and z-direction, respectively. Rows 1 through n of [M]represent 

coefficients for Eq. 18, rows n + 1 through 2n of [M]represent the coefficients for Eq. 19, 

and 2n + 1 through 3n of [M]represent the coefficients for Eq. 20. Rows 1 through n of {U} 

and {∇N} represent the x-direction components (u and ∂N/∂x, respectively), rows n + 1 

through 2n of {U} and {∇N} represent the y-direction components (v and ∂N/∂y, 

respectively), and rows 2n + 1 through 3n of {U} and {∇N} represent the z-direction 

components (w and ∂N/∂z, respectively). [M] is built only once and can be factorized into 

lower and upper triangular matrices (refer to Note 4 for further details on the construction 

and solving of Eq. 21). Equations 1 and 2 are solved using a three dimension in space (grid 

spacing: 250 × 250 × 1000 μm), fully explicit in time (for Eq. 1, time step = 0.01 days) finite 

difference simulation. (Refer to Note 5 for details on selecting an appropriate time step.) 

Equation 1 has no diffusive flux at the brain tissue boundaries (Neumann boundary 

condition [30]). Equation 2 has no tissue displacement in the Cartesian direction of the 

boundary (Dirichlet boundary condition), while displacement in the other Cartesian 

directions is unknown (slip condition [31]).

3.2.2 Forward Evaluation—A summary and example of the forward evaluation 

algorithm is presented in Fig. 3. The forward evaluation begins with solving the mechanical 

model (steps 1 through 4 in Fig. 3). At the beginning of each iteration, the gradient of the 

current distribution of tumor cells, ∇N(x, y, z, t), is calculated and is assigned to {∇N} (step 
1 in Fig. 3). {U} is then solved for in Eq. 21 (step 2 in Fig. 3). The strains (Eq. 4) and 

stresses (Eqs. 5 and 6) are calculated (step 3 in Fig. 3). σvm(x, y, z, t) is then used to update 

D(x, y, z, t) (Eq. 7, step 4 in Fig. 3). Finally, D(x, y, z, t) is used in the evaluation of Eq. 1 to 

determine N(x, y, z, t + 1) (step 5 in Fig. 3). The forward evaluation of the model system is 

then repeated at each simulation time step.

3.3 Parameter Optimization and Tumor Growth Prediction

The optimal model parameters are determined using an iterative Levenberg-Marquardt [32, 

33] weighted least squares optimization:

JTWJ + α ⋅ D
JTWJ

⋅ Δβ = JTW Nmeas − Nmodel(β) , (22)

where J is the Jacobian matrix, W is a diagonal weighting matrix, α is a damping parameter, 

D
JTWJ

 is a diagonal matrix consisting of the diagonal elements of JTWJ, {Δβ}is as vector of 

updates to model parameters, {Nmeas} is a vector of the measured cell number, and 
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{Nmodel(β)} is a vector of the model described cell number using the current best set of 

parameters β. J is a (n (number of voxels) × nt (number of time points)) by p (the number of 

model parameters) matrix, W is a (n × nt) × (n × nt) matrix, has p components, and {Nmeas} 

has (n × nt) components. J can be estimated using numerical differentiation (refer to Note 6 

for further comments on J). For example, the J element at row i and column j, Eq. 23, 

represents the partial derivative of the model cell number at node i with respect to the jth 

model parameter and is calculated by individually perturbing model parameters as described 

below:

Ji, j =
∂Ni
∂β j

=
N  model  i, β alt  − N  model (i, β)

β alt , j − β j
, (23)

where Nmodel(i, βalt) is the model cell number at the ith index of {Nmodel} using parameters 

βalt, Nmodel(i, β) is the model cell number at the ith index of {Nmodel} using parameters β. 

βalt is equal to β at all indices except for the jth index which is perturbed by a factor f (i.e., 

βalt,j = f × βj).(Note f should be a number close to but not equal to 1. Inthiswork, weassign f 
= 1.001.) W is as quare matrix with n × nt rows and columns. W weights the elements of J 
by the reciprocal of the total number of cells at each time point. This weighting is included 

to balance the influence of later time points to the earlier time points (which often have 

much fewer nonzero voxel measurements compared to the later time points). For nt = 2, Wi,i 

is calculated using Eq. 24:

W i, i =
i ≤ n ∑

j = 1

j = n
N  meas ( j, t = 1)

−1

i > n and i ≤ 2n ∑
j = 1

j = n
N  meas ( j, t = 2)

−1 . (24)

Figure 4 summarizes the parameter optimization approach used to estimate model 

parameters k(x, y, z) and D0. The model is initially evaluated with a guess of the model 

parameters (step 1 in Fig. 4). A guess of β is used to evaluate the objective function 

described in Eq. 25 (step 2 in Fig. 4):

Error = ∑
t = t1

tn
∑
i = 1

i = n
N  meas (i, t)

−1
⋅ ∑

i = 1

i = n
N  model (i, t, β) − N  meas (i, t) 2 . (25)

The initial evaluation of Eq. 25 sets the current minimum error or Error(β). J, W, and D
JTWJ

are then built (step 3 in Fig. 4). The parameter update vector {Δβ} is then calculated using 

Eq. 22 and then added to {β} for the current guess of model parameters {βtest} (step 4 in 

Fig. 4). The forward evaluation of the model is performed using model parameters {βtest} 

(step 5 in Fig. 4). Equation 25 is then re-calculated using {βtest} (step 6 in Fig. 4). The error 
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evaluated using {βtest} or Error(βtest) is compared to Error(β). If Error(βtest) is less than 

Error(β), {βtest} is accepted (i.e., {β} = {βtest}) and α decreased by a factor of 12. If 

Error(βtest) is greater than Error(β), {βtest} is rejected and α increased by a factor of 3. 

(Note, the factors that α is increased or decreased by (3 and 12 in this work) are often 

problem-specific and need to be empirically determined to improve convergence.) At this 

point, the stopping criteria are also evaluated. The stopping criterion can be a maximum 

number of iterations, a minimal threshold of error, or a minimal relative change in model 

error between successful iterations, or a minimal relative change in model [34] between 

successful iterations. In general, error will never reach zero for this type of system so 

selecting a stopping criteria that is sensitive to the relative change in error or parameter 

values will indicate convergence. The parameter optimization process continues by returning 

to step 3 until the stopping criteria are met.

At the conclusion of the parameter optimization process, the optimized model parameters 

are used in a final forward evaluation of the model from ti to tf. The error between Nmodel(x, 

y, z, t) and Nmeas(x, y, z, t)is assessed at the time points not used in the parameter 

optimization tn + 1 to tf.

3.4 Summary and Outlook

In this chapter, a modeling and experimental framework was described which can be used to 

individualize a predictive biophysical model from an individual patient’s imaging data. 

Clinically available imaging measurements from CE-MRI and DW-MRI were used to 

provide serial estimates of tumor cell number that were then used in an inverse problem to 

optimize model parameters for the measured tumor. These individually optimized model 

parameters could then be used to predict future growth or response. For example, acquiring 

data early in the course of a patient’s therapy could be used to calibrate a patient-specific 

model that could then be used to predict the efficacy of the current treatment weeks or 

months before response is identifiable through standard criteria (e.g., the Response 

Evaluation Criteria in Solid Tumors [34]). For predicted non-responders, the calibrated 

model could potentially be used to evaluate other treatment regimens to adapt clinical care to 

improve the outcome on an individual patient basis. While this is a promising avenue for the 

future of clinical cancer care, further development of predictive biophysical models is 

needed to characterize patient response to a variety of available patient treatments [35].

4 Notes

1. When collecting a new dataset or evaluating this model in a different disease setting, 

model parameters should be measured or estimated on an individual basis. When this is not 

the case, however, model parameters should be assigned (or calculated) from literature 

values (e.g., G, ν, θ) obtained from experiments that most closely match the tumor or tumor 

location that is currently under investigation. For model parameters that cannot be measured 

experimentally or assigned from literature (e.g., λD, λf) can be assigned empirically based 

on results observed in a cohort. Sensitivity analysis (e.g., [36]) of the model system can also 

be used to help determine which model parameters require assignment on an individual basis 

and which model parameters may be assigned for the cohort.
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2. The experimental time line may change depending on the particular cancer under 

investigation, its growth rate, and the initial size of the tumor. We selected day 10 to start our 

imaging experiments, as the tumors are approximately 20–40 mm3 and typically extend over 

multiple imaging slices.

3. To calculate the physical carrying capacity (i.e., the maximum number of cells a space can 

contain) assumptions will need to be made about the overall tissue structure and cellular 

shape which can be verified through histological observations of the tissue. For the C6 line, 

we assumed that the tumor cell tissue was predominately composed of spherical tumor cells 

with a packing density and an average cell volume obtained from the literature [26, 27]. 

When comparing between the DW-MRI estimate of cellularity and the model predicted 

cellularity the precise values for packing density and average cell volume are not critical as 

long as the same carrying capacity is used in both the model and the ADC to cellularity 

calculation. However, when comparing to histological data, more care is required to match 

the average size, shape, and packing density of the tumor cells to what is observed in vivo. 

Packing density can be calculated from Hematoxylin and Eosin (H&E) stained tissue 

sections by calculating the fraction of the H&E stained area over the total tumor ROI. The 

average cell area can then be calculated as the total occupied area (packing density 

multiplied by total ROI area) divided by the number of positive stained Hematoxylin cells. 

The average cell area can then be used to calculate an average cell radius and volume. In 

H&E stained sections obtained in one rat we calculated an average packing density of 0.764 

± 0.054% (mean ± 95% confidence interval) and an average volume of 982 ± 247 μm3.

4. The coefficient matrix [M]is a sparse and potentially very large (3n × 3n) matrix. To 

conserve memory and accelerate computational time, [M] can be represented by a sparse 

matrix [Mcompact] which is an nz × 3 matrix, where nz is the number of nonzero elements of 

[M], and the three columns represent the matrix nonzero entry, the entry’s matrix row, and 

entry’s matrix column entry, respectively. While many sparse matrix data formats exist, in 

this realization we used the format native to MATLAB. With respect to solution methods 

associated with sparse matrices, standardly some form of iterative approach would be 

adopted with an accompanying matrix precondition method to increase speed of calculation. 

In this realization, we employed one of the available MATLAB methods, namely, the bi-

conjugate gradient stabilized method with an incomplete LU factorization as a 

preconditioner.

5. The simulation time step, ht, is selected to maintain numerical stability for a range of 

diffusion coefficients for the parameter optimization process. To be stable, the product 

D ⋅ ht 1/hx
2 + 1/hy

2 + 1/hz
2  must be less than 1/2, or for isotropic dimensions the product 

D ⋅ ht /h
2 must be less than 1/6. To be monotonic and stable, the product 

D ⋅ ht 1/hx
2 + 1/hy

2 + 1/hz
2  must be less than 1/4, or for isotropic dimensions the product 

D ⋅ ht /h
2 must be less than 1/12.

6. Building or updating the Jacobian matrix, J, can be time intensive as the number of model 

parameters increases as Eq. 23 (and thus a full model evaluation) needs to be evaluated for 
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each model parameter perturbation. Parallelized code can be used to simultaneously build 

several columns of J at a time, dramatically decreasing the computation time. For example, 

non-parallelized code takes approximately 13.1 min per 100 parameters, while parallelized 

code divided among 32 threads takes 0.7 min per 100 parameters. Alternatively, approaches 

such as Broyden’s method [37] can be used to update J at each iteration while only building 

the full J matrix in the first iteration. Briefly, Broyden’s method is a secant method update 

that estimates J at the nth iteration based on the previous J, the difference between the model 

evaluation at the (n − 1) and (n −−2) iterations, and the difference between model parameters 

at the (n − 1) and (n − 2) iterations.
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Fig.1. 
Experimental timeline and estimation of in vivo cell number from DW-MRI data. (a) On day 

0, rats are injected intracranially with 105 C6 glioma cells. (b) Jugular catheters are then 

inserted on day 8. (c) On days 10 through 20, rats are imaged with MRI with 3D gradient 

echo, DW-MRI, and CE-MRI. (d) CE-MRI is used to identify tumor tissue by subtracting 

pre-contrast image from the post-contrast image. (e) ADG(x, y, z, t) is then estimated from 

DW-MRI data. Finally, N(x, y, z, t) is estimated (f) within the tumor tissue using Eq. 9 and 

ADC(x, y, z, t)
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Fig. 2. 
Tumor growth modeling and prediction flow chart. DW-MRI and CE-MRI data is first 

acquired in rats at days ti to tf. A subset of the total data (ti to tn is used to first estimate 

model parameters using an iterative optimization algorithm. The optimized model 

parameters are then used in a forward evaluation of the model system to predict tumor 

growth at the remaining data points (tn + 1 to tf). The error is then assessed between the 

model and measured values of N(x, y, z, t)
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Fig. 3. 
Algorithm and example forward evaluation of mechanical and tumor cell model. The 

mechanical model is first solved to calculate the tissue displacement vector {U} due to N(x, 
y, z, t), Eq. 21. {U} is then used to calculate strain, stress, and σ(x, y, z, t). The new value of 

D(x, y, z, t)is calculated using Eq. 2 and σvm(x, y, z, t). Finally, D(x, y, z, t) is used in Eq. 6 

to calculate the value of N(x, y, z, t + 1)
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Fig. 4. 
Iterative parameter optimization approach. A schematic is shown above for the iterative 

parameter optimization algorithm using the Levenberg-Marquardt method [32, 33]. The 

model is first evaluated with an initial guess of model parameters, line 1. The objective 

function is then evaluated with the current set of model parameters, line 2. The optimal 

model parameters are then determined in an iterative “while-loop” which ceases when 

stopping criteria are met. At the beginning of each iteration, the Jacobian is built, line 3, and 

is used to solve for the new guess of model parameters, line 4. The model is then re-

evaluated with the new model parameters, line 5, and the objective function is calculated, 

line 6. Finally, the error is compared to the previously observed lowest error to determine if 

the new parameter values are acceptable. The optimization ceases when the stopping criteria 

are met
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