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Short-term follow-up of intestinal flora
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ABSTRACT

Some gastrointestinal bacteria, otherwise known as the ‘intestinal flora’, can cause severe gastrointestinal pro-
blems, including sepsis, which are strongly linked to lifestyle-related diseases, including cardiovascular diseases.
Several investigations have focused on the long-term changes in the intestinal flora associated with radiation
exposure; however, the short-term effects remain unknown. In this study, we tracked the short-term changes in
the intestinal flora of mice exposed to different doses of X-ray irradiation (2 Gy and 4 Gy), focusing only on the
lactic acid bacteria Bifidobacterium and Lactobacillus. A decrease in the Lactobacillus abundance was detected
immediately after irradiation in individuals exposed to both 2 Gy and 4 Gy irradiation. However, mice exposed
to 4 Gy of irradiation showed a remarkable increase in Bifidobacterium, indicating a potential role of these bac-
teria in regeneration of the intestinal epithelial tissue. Studies on changes in intestinal bacteria as a result of radi-
ation exposure are limited. Therefore, continuation of this field of research is expected to provide important
fundamental insight into the mechanisms by which radiation causes damage to the intestinal tissues, contributing
to the development of sepsis.
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INTRODUCTION
The human mucosa occupies a substantial portion of the body sur-
face area, including the oral cavity, nasal cavity, gastrointestinal tract,
respiratory organs, and genital organs, accounting for an area more
than 200 times that of the skin surface. Among the components of
the mucosa, the digestive tract contributes a particularly big area,
largely due to the presence of microvilli on the surface of the intes-
tinal folds, villi, and epithelial cells, so as to absorb as many nutri-
ents as possible through expanding the area [1]. In addition, various
bacteria coexist on the mucous membranes of mammals. Indeed,
recent reports indicate that as many as 100 trillion bacteria exist in
the human intestinal tract, representing a cell population that is sev-
eral times greater than that of the human host somatic and germ
cells [2, 3]. These symbiotic bacteria of the gut are collectively
referred to as the ‘intestinal flora’, and accumulating evidence points
to a close association between the composition of the intestinal flora
and host health, including the onset of disease [4, 5].

Exposure to high-dose radiation results in remarkable disturbances
to tissues and organs with high regenerative ability, such as the hemato-
poietic tissue and intestinal mucosa [6]. However, the intestinal tract,
rich in epithelial stem cells, shows high radiosensitivity, and the conse-
quent collapse of the intestinal barrier leads to dissolution of body
fluids containing electrolytes, along with infiltration of intestinal bacteria
into the blood circulation [7]. Such transmigration of intestinal bacteria
to the blood is referred to as bacteremia, which can progress into severe
sepsis, leading to systemic symptoms such as multiple organ failure and
ultimately death. For example, women exposed to 5.7 Gy radiation in
the Goiania radiological accident in Brazil were reported to have suf-
fered from septicemia [8]. In addition, the intestinal bacterial flora has
been found to become dominated by Bacteroides spp. in patients receiv-
ing pelvic irradiation treatment, regardless of the presence or absence
of diarrhea [9]. These findings indicate that radiation destroys the bal-
ance of the intestinal bacterial flora. Thus, one strategy to improve the
symptoms induced by such intestinal injury is to restore the balance of
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the intestinal flora and maintain the barrier function of the intestinal
mucosa. However, the specific changes in the intestinal bacteria and
intestinal mucosa that occur in an individual immediately after radiation
exposure remain unclear.

In this study, we exposed mice to X-ray irradiation, and com-
pared the abundance of the genera Bifidobacterium and Lactobacillus
before and after irradiation in order to evaluate the short-term
effects on the composition of the beneficial bacteria comprising the
intestinal flora. These genera were chosen because they are lactic
acid bacteria that decompose sugars into lactic acid so as to prepare
the intestinal environment.

MATERIALS AND METHODS
Animal experimentation

Seven-week-old C57BL/6Njcl female mice (CLEA Japan, Inc.,
Japan) were used as the experimental model. After an acclimatiza-
tion period of 1 week after acquisition, the 8-week-old mice were
irradiated with 2 Gy and 4 Gy X-rays using an MBR-1520 R-3 X-
ray irradiation apparatus (Hitachi, Japan). Irradiation conditions
were 1 Gy/min, with a tube voltage of 150 kV, tube current of
20 mA, and a Al 0.5 mm + Cu 0.3 mm filter. Three mice were used
in each experimental group. To monitor the health condition of
the mice throughout the experiment, body weight and food intake
were measured every day for 2 weeks after irradiation. Feces were
collected before irradiation, and at 1, 2, 6, 12, 24, 48 and 72 h after
irradiation for analysis of intestinal flora with real-time polymerase
chain reaction (PCR). The animals were maintained in a
temperature-controlled room at 23.9 ± 0.3°C with 26.6 ± 4.2%
humidity. Moreover, the mice were periodically inspected for the
presence of pathogens (bacteria, viruses, parasites) to confirm
maintenance of a specific-pathogen-free environment. The animal
experiments were conducted in compliance with guidelines con-
cerning the use of laboratory animals of Hirosaki University
(approval number: G 17003).

Real-time PCR of intestinal bacterial flora
NucleoSpin® DNA Stool (TAKARA BIO INC., Japan) was used to
extract the DNA of feces. Three PCR primers sets were prepared to
analyze the changes in the abundance of intestinal bacterial flora
(Table 1) [10–12]. Analysis was performed by detection of

excitation light with a Power SYBR® Green Master Mix (Thermo
Fisher Scientific Inc., Waltham, MA, USA) on the Step One Plus
instrument (Applied Biosystems Inc., Foster City, CA, USA). Each
cycle threshold (CT) value of the target bacteria was corrected by
the CT value for the ‘all bacteria’ PCR product, and compared with
the respective CT value before irradiation to determine the relative
abundance. All target CT values were corrected by the ΔCT meth-
od and compared with the 0 hour value (ΔΔCT method). The
PCR conditions were 40 cycles of thermal denaturation at 95°C for
15 s, annealing for 30 s, and elongation at 80°C for 30 s. The
annealing temperature was set for each primer as indicated in
Table 1. CT values of all fecal DNA samples were measured three
times in triplicate.

Statistical analysis
For statistical analysis of the bacterial flora, the Student’s t-test was
performed as a relative comparison between the values before and
after irradiation with Origin Ver. 8.1 statistical analysis software.

RESULTS
Weight fluctuations and food intake of experimental

mice
Food intake decreased sharply at 24 h after irradiation, and tempor-
ary weight loss was observed on the first day after irradiation.
Thereafter, both the 2 Gy– and 4 Gy–irradiated groups showed an
increase in food intake and body weight, and no individuals died
during the 2-week observation period (Fig. 1).

Short-term fluctuations of the intestinal bacterial flora
upon irradiation exposure

Quantification of naturally discharged fecal bacteria showed changes
in both Bifidobacterium and Lactobacillus (Fig. 2). In the 2 Gy–irra-
diated group, Bifidobacterium showed a decreasing trend from 6 h
after irradiation, which continued until 72 h. However, the abun-
dance of Bifidobacterium increased by 9-fold in the 4 Gy–irradiated
group as of 48 h after irradiation, and reached a 28-fold increase
compared with the pre-irradiation level after 72 h (Fig. 2A).
Moreover, the expression of Lactobacillus genes decreased from 6 h
to 12 h after irradiation, and then recovered up to the baseline level
in both groups (Fig. 2B). This finding suggests that 2 Gy or 4 Gy

Table 1. Table showing the targeted bacterial taxa, bacterial genes and their primers used for qPCR assays

Phyla/Division Family Primer (5′–3′) Production length (bp) Annealing temp (°C)

All bacteria GCCTAACACATGCAAGTCGA 472 58

GTATTACCGCGGCTGCTGG

Actinobacteria Genus Bifidobacterium AGGGTTCGATTCTGGCTCAG 156 58

CATCCGGCATTACCACCC

Firmicutes Genus Lactobacillus TGGAAACAGRTGCTAATACCG 232 62

GTCCATTGTGGAAGATTCCC
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irradiation might result in short-term suppression of intestinal bac-
terial growth, but the normal bacterial flora will be rebalanced.
Interestingly, the sharp increase in Bifidobacterium with the higher
dose (4 Gy) of irradiation was confirmed. Although there are indi-
vidual differences, Bifidobacterium in the 4 Gy–irradiated group
increased ~10 times after 48 h and reached 28 times after 72 h.

DISCUSSION
The two bacterial genera targeted in this study, Lactobacillus and
Bifidobacterium, are known to exhibit various probiotic effects, and
have thus been adopted in the treatment of gastrointestinal diseases
in clinical practice as probiotics [13, 14]. For example, Lactobacillus
rhamnosus GG strain (LGG) is used for the treatment of traveler’s

Fig. 1. Body weight fluctuation and feed intake of irradiated mice. (A) Body weight decreased from 1 to 3 days after
irradiation in both the 2 Gy– and 4 Gy–irradiated groups. (B) A sharp decline in food intake was observed after 1 day of
irradiation followed by recovery.

Fig. 2. Changes in intestinal flora in radiation-exposed mice. The asterisks indicate a significant difference (*P < 0.05, **P <
0.01) when compared with the control group (0 h). (A) Bifidobacterium significantly decreased in the 2 Gy–irradiated group
6 h after irradiation, but showed a sharp increase from 48 h after irradiation in the 4 Gy–irradiated group, which continued
until 72 h. (B) Both groups showed a sharp decrease in Lactobacillus from 6 to 12 h after irradiation and then recovered.
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diarrhea, antibiotic-associated diarrhea, and relapsing Clostridium dif-
ficile colitis [15]. Bifidobacterium bifidum has also been reported to
have a beneficial effect on the clinical course of rotavirus diarrhea
[16]. These effects are attributed to several mechanisms of the bac-
teria, such as resistance to acids and bile, adhesion to intestinal cells,
and regulation of the mucosal immune response, thereby contribut-
ing to improvement of diarrhea and pathogen reduction [15, 17].
Thus, in recent years, it has become clear that the probiotic activity
of Lactobacillus and Bifidobacterium plays a major role in stabiliza-
tion of the barrier function of the intestinal mucosa.

The normal intestinal mucosa functions as a barrier (intestinal
barrier) that eliminates bacteria attempting to invade intestinal tis-
sue and cells. However, in an inflamed, pathogenic, or radiation-
induced intestinal tract disorders, the osmotic pressure of the barrier
changes, allowing intestinal bacteria to invade the blood and other
organs [18, 19]. Oral administration of a probiotic to living bodies
subjected to such gastrointestinal disturbances has been shown to
influence the intestinal permeability and contribute to normalization
of the intestinal microflora, with eventual stabilization of the intestinal
environment [20]. In addition, oral administration of Lactobacillus to
irradiated mice is shown to prolong survival and suppress the inci-
dence of sepsis [21].

Although few studies have examined the variation of intestinal
bacteria in radiation-exposed individuals, there is some evidence
that radiation leads to an increase in bacteria known to be hazard-
ous to the host [22–24]. Intestinal damage due to radiation in
humans is recognized as the most frequent side effect of cancer
treatment to the pelvic organs [25–27]. A study on the changes in
the intestinal bacterial flora in patients who received pelvic irradi-
ation treatment shows that the radiation therapy led to deterioration
in the intestinal environment due to an increase in Bacteroides spp.,
regardless of the presence or absence of diarrhea [9]. In addition,
exposure to radiation above 10 Gy led to intestinal death in rats,
which was accompanied by an increase in Proteobacteria comprising
gram-negative pathogenic species [28]. Proteobacteria is a phylum
that contains many pathogenic bacteria such as Salmonella, Vibrio,
and Helicobacter, and thus an increase in the abundance of this phy-
lum increases the risk of sepsis [29–31].

Cellular exposure to ionizing radiation leads to oxidizing events
that alter atomic structure through direct interactions of radiation
with target macromolecules or via products of water radiolysis [32–
34]. In general, radioresistant bacteria are thought to have enzymes,
such as catalase and superoxide dismutase, to neutralize active oxygen
species produced in vivo, and to aid DNA regeneration and repair
[35–37]. In this study, Lactobacillus without catalase and superoxide
dismutase seems to have caused a transient decrease. Bifidobacterium,
which showed an increase in this study, can produce catalase and
superoxide dismutase. Therefore, Bifidobacterium may be radioresis-
tant and may show a relative increase so as to supplement other
intestinal bacteria transiently suppressed proliferation. In addition,
several studies have reported that some Bifidobacterium strengthen
the barrier function of the intestinal tract and prevent migration of
pathogenic bacteria and foreign substances into the blood [38–40].
Therefore, increased Bifidobacterium in radiation-exposed mice may
be effective in restoring radiation-impaired intestinal epithelium.

Furthermore, Bifidobacterium produces lactic acid and acetic acid by
glycolysis and shows the action of decreasing intestinal pH and regu-
lating the intestinal environment, so Bifidobacterium promotes the
recovery of a radiation-injured intestinal epithelium injured and the
associated disordered intestinal environment. It may recover the intes-
tinal flora, including Lactobacillus, which had decreased. However, this
study is a relative comparison study, and therefore this result does
not reflect an actual increase or decrease in bacterial groups, so con-
tinuation of this research is necessary.
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