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Abstract

To identify genetic variation underlying atrial fibrillation, the most common cardiac arrhythmia, 

we performed a genome-wide association study of > 1,000,000 people, including 60,620 atrial 

fibrillation cases and 970,216 controls. We identified 142 independent risk variants at 111 loci and 

prioritized 151 functional candidate genes likely to be involved in atrial fibrillation. Many of the 

identified risk variants fall near genes where more deleterious mutations have been reported to 

cause serious heart defects in humans (GATA4, MYH6, NKX2–5, PITX2, TBX5)1, or near genes 

important for striated muscle function and integrity (for example, CFL2 MYH7, PKP2, RBM20, 

SGCG, SSPN). Pathway and functional enrichment analyses also suggested that many of the 

putative atrial fibrillation genes act via cardiac structural remodeling, potentially in the form of an 

‘atrial cardiomyopathy’2, either during fetal heart development or as a response to stress in the 

adult heart.

We tested association between 34,740,186 genetic variants (minor allele frequency (MAF) > 

2.5 × 10−5) and atrial fibrillation, comparing a total of 60,620 cases and 970,216 controls of 

European ancestry from six contributing studies (The Nord-Trøndelag Health Study 

(HUNT), deCODE, the Michigan Genomics Initiative (MGI), DiscovEHR, UK Biobank, 

and the AFGen Consortium) (Supplementary Table 1). We identified 111 genomic regions 

with at least 1 genetic variant associated with atrial fibrillation (P < 5 × 10−8). Of these, 80 

loci have not previously been reported (Fig. 1, Supplementary Fig. 1, and Supplementary 

Tables 2 and 3). Based on approximate stepwise conditional analyses3, we identified 31 

additional genetic risk variants that demonstrated genome-wide statistically significant 

association with atrial fibrillation (Supplementary Table 4) that were nearby but independent 

of the 111 index variants (linkage disequilibrium (LD) r2 < 0.10). We applied the widely 

used genome-wide association study (GWAS) P value significance threshold of P < 5 × 

10−8. Had we applied a more stringent threshold of P < 5 × 10−9 (ref.4), we would identify 

94 loci, 63 of which have not been previously reported (Supplementary Table 2). We found 

that the total genome-wide genetic variation captured in this study explained 11.2% (s.e.m. 
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1.4%) of the variation in atrial fibrillation (h2
SNP heritability). This is consistent with a 

recent report of 11.4%5 When combining the 111 locus index variants and the 31 additional 

genetic risk variants, we found that they explained 4.6% of the variation in atrial fibrillation.

Of the 35 loci previously reported for atrial fibrillation (Supplementary Table 3), we 

identified genome-wide significant association (P < 5 × 10−8) at 31 (89%) after excluding 

results from the previously published AFGen Consortium (Supplementary Table 5)6. The 

four loci not captured comprised three loci discovered in East Asian populations (KCNIP1, 

NEBL, CUX2) and one missense variant (PLEC) for which we did not have data7. To further 

test the validity of our findings, we performed a heterogeneity test for the 111 index variants 

across the 6 contributing studies. Of the 111 index variants, only 2 index variants 

demonstrated evidence for heterogeneity of effect size across the 6 contributing studies when 

correcting for multiple testing (P < 0.05/111 = 4.5 × 10−4) (Supplementary Table 2). Both of 

these index variants represent loci that have previously been established as associated with 

atrial fibrillation across multiple studies (near PRRX1, PITX2) (Supplementary Table 3). 

These findings demonstrate a high external validity of our results.

To understand the biology underlying the 111 atrial fibrillation-associated loci, we employed 

a number of approaches, including ‘Data-driven Expression Prioritized Integration for 

Complex Traits’ (DEPICT)8 to identify cell types and tissues in which atrial fibrillation 

genes are likely to be expressed. Based on 37,427 human microarray expression samples 

from 209 different tissues and cell types, we observed a statistically significant enrichment 

for atrial (P = 2.4 × 10−5), atrial appendage (P = 2.8 × 10−5), heart (P = 5.2 × 10−5), and 

ventricular tissues (P = 1.1 × 10−4) (Fig. 2a and Supplementary Table 6). We further applied 

DEPICT to detect gene sets that were enriched for genes at atrial fibrillation-associated loci. 

Of the 14,461 gene sets we tested, 889 were enriched (false discovery rate (FDR) < 0.05; 

Fig. 2b and Supplementary Table 7). The highlighted gene sets point to biological processes 

related to cardiac development and morphology along with structural remodeling of the 

myocardium. These findings are consistent with recent reports that have linked atrial 

fibrillation with rare coding variants in the sarcomere genes MYH6 and MYL4 and in the 

multidomain cytoskeletal linking protein PLEC, along with more common coding variants in 

TTN, essential for the passive elasticity of heart and skeletal muscle7,9–11.

Although we could identify protein-altering variants at 21 loci, comprising either the index 

variant (n = 2 loci) or a variant in high LD (r2) with the index variant (n = 19 loci; 

Supplementary Table 8), we noted that most associated risk variants are in the non-coding 

genome. To assess the potential function of associated non-coding variants, we tested for 

enrichment of atrial fibrillation-associated variants with a variety of regulatory features, 

including DNase I hypersensitive sites, histone methylation marks, transcription factor 

binding sites, and chromatin states in a variety of cell and tissue types available from 

Roadmap Epigenomics12 using ‘Genomic Regulatory Elements and Gwas Overlap 

algoRithm’ (GREGOR)13. This method tests whether the number of atrial fibrillation-

associated index variants, or their LD proxies, overlap with the corresponding regulatory 

feature more often than expected when compared to control sets. Of 785 combinations of 

regulatory features and tissues examined (Supplementary Table 9), we found that atrial 

fibrillation-associated variants were most strongly associated with features in adult and fetal 
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heart: active enhancers as indicated by H3K27ac in right atrium (P = 2 × 10−33; 2.9 × 

enrichment); H3K27ac in left ventricle (P = 3 × 10−33; 2.6 × enrichment); and in fetal heart 

tissue we found strong enrichment with H3K4me1 (P = 9 × 10−27; 2.0 × enrichment) and 

open chromatin as measured by DNase hypersensitivity (P = 2 × 10−26; 2.1 × enrichment) 

(Fig. 2c, Supplementary Fig. 2 and Supplementary Table 9). This suggests that some atrial 

fibrillation loci are important in transcriptional regulation in the adult heart, in development 

of the fetal heart, or both.

To further enhance the biological understanding of the atrial fibrillation-associated loci, we 

identified candidate functional genes. There were 3,048 genes or transcripts for which the 

transcribed region overlapped (see Online Methods) at least 1 variant in the 111 loci. We 

prioritized biological candidate genes that: (1) harbored a protein-altering index variant itself 

or in high LD (r2 > 0.80; Supplementary Table 8); (2) had expression levels that were 

associated and colocalized with atrial fibrillation-associated variants (P <1.14 ×10−9 in 

Genotype-Tissue Expression (GTEx) consortium data)14; (3) were highlighted by DEPICT 

(FDR < 0.05; Supplementary Table 10); or (4) were nearest to the index variant in a locus. 

Using these criteria, we prioritized 151 candidate genes (Supplementary Tables 2 and 11).

To identify tissues in which the 151 prioritized candidate genes showed enhanced 

expression, we used ‘Tissue Specific Expression Analysis’ (TSEA)15 and found enrichment 

in heart (P = 1 × 10−16), blood vessel (9 × 10–13) muscle tissues (P = 7 × 10−11). To assess 

the empirical significance of these results, we performed 1,000 permutations of the same 

number of genes selected: (1) randomly from the genome, and (2) subsets of the 3,048 genes 

within the 111 atrial fibrillation loci. We determined that the observed TSEA P values were 

substantially more significant than expected by chance (Fig. 3). The finding of increased 

expression of these genes in heart support that the genes we prioritized are strong candidates 

for being involved in atrial fibrillation.

Interestingly, we identified as functional candidates at least 18 genes likely to be involved in 

cardiac and skeletal muscle function and integrity (AKAP6, CFL2, MYH6, MYH7, 

MYO18B, MYO1C, MYOCD, MYOT, MYOZ1, MYPN, PKP2, RBM20, SGCA, SSPN, 

SYNPO2L, TTN, TTN-AS, WIPF1); these included SGCG, which has been associated with 

muscular dystrophy16, RBM20, which has been associated with dilated cardiomyopathy17, 

and PKP2, which has been associated with arrhythmogenic right ventricular 

cardiomyopathy18. We identified at least 13 genes likely to be involved in mediation of 

developmental events (ARNT2, EPHA3, FGF5, GATA4, GTF2I, HAND2, LRRC10, NAV2, 

NKX2–5, PITX2, SLIT3, SOX15, TBX5) along with genes likely to be involved in 

intracellular calcium handling in the heart (CALU, CAMK2D, CASQ2, PLN), angiogenesis 

(TNFSF12, TNFSF12-TNFSF13), hormone signaling (CGA, ESR2, IGF1R, NR3C1, 

THRB), and function of cardiac ion channels (HCN4, KCND3, KCNH2, KCNJ5, KCNN2, 

KCNN3, SCN10A, SCN5A, SLC9B1).

We tested the 111 atrial fibrillation index variants for association with 123 electrocardiogram 

(ECG) parameters in 62,974 Icelanders in sinus rhythm, after exclusion of atrial fibrillation 

cases (Supplementary Fig. 3 and Supplementary Table 12). Sixty variants were associated 

with at least 1 ECG parameter when we controlled for an FDR of 0.05 at the variant level, 
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39 of which were novel atrial fibrillation variants, including many with substantial ECG 

effects, such as the variants near NACA, THRB, CAMK2D, NKX2–5, and CDKN1A. Many 

of the associated ECG parameters, including heart rate, P-wave duration, PR interval, and 

heart rate-corrected QT interval, are well-established intermediate phenotypes for atrial 

fibrillation19–22. Accordingly, several of the highlighted associations can be seen as indirect 

replications of the atrial fibrillation risk variants identified through GWASs. The results also 

indicate that many of the 111 atrial fibrillation risk variants act in the heart before atrial 

fibrillation. The type and direction of the ECG parameter associations might help inform the 

biology underlying the specific loci.

For the locus around index variant rs422068 on chromosome 14, our approach prioritized 

MYH6 and MYH7 as the most likely functional genes (Supplementary Table 2). A rare 

missense mutation in MYH6 has in prior GWASs been associated with sick sinus 

syndrome23, atrial fibrillation7, and coarctation of the aorta24, and several protein-altering 

variants in MYH7 have been linked to hypertrophic cardiomyopathy25. MYH6 and MYH7 
encode the molecular motors of cardiac muscle that transduce chemical energy from ATP 

hydrolysis into mechanical energy of each heartbeat. MYH6 encodes α -myosin heavy chain 

(α -MyHC), which is the faster molecular motor of the thick filaments of the contractile 

apparatus in healthy adult atrial muscle26. On the other hand, MYH7 encodes β -MyHC, a 

slower molecular motor27, which is expressed only in the atria during cardiac development 

and not in the normal adult atria. It has been established that MYH6 and MYH7 are 

regulated in an inverse manner in the ventricles of the heart, and in heart failure and other 

cardiac disorders in humans, β -MyHC is upregulated, whereas α-MyHC is downregulated, 

resulting in diminution of cardiac performance28. Importantly, recent experiments have 

demonstrated that MYH7 expression is elevated in atrial myocytes of patients with chronic 

atrial fibrillation as well as in an ovine model of chronic atrial fibrillation29.

To explore potential mechanisms of MYH6 and MYH7 in atrial fibrillation, we developed an 

ischemic heart failure model for atrial fibrillation in rabbits. Ischemia was produced by 

chronic ligation of the left circumflex artery during thoracotomy with subsequent 

development of ischemic heart failure (> 4 weeks postoperatively), profound left atrial 

dilation, and development of long-lasting atrial fibrillation following burst pacing (Fig. 4 and 

Supplementary Fig. 4). We found that MYH7 expression was only detectable in the heart 

failure remodeled left atrium (Fig. 4 and Supplementary Fig. 5). The control left atrium did 

not express detectable levels of MYH7 and exclusively expressed MYH6. More importantly, 

in the dilated left atrium, MYH7 expression was heterogeneously distributed (Fig. 4 and 

Supplementary Fig. 6), which thus resulted in contractile and metabolic heterogeneity, both 

of which are probably arrhythmogenic. Although the association between the rs422068 

locus and atrial fibrillation could potentially be mediated through structural heart defects 

such as coarctation of the aorta or hypertrophic cardiomyopathy via genetic variation not 

captured in this study, it is likely that the heterogeneously distributed switch from the adult 

to the fetal isoform of myosin heavy chain that we observed in the dilated left atrium may 

predispose rabbit (and possibly human) hearts to developing long-lasting atrial fibrillation.

Next, we investigated whether any of the 151 biological candidate genes that we identified 

could potentially represent a novel drug target for already developed drugs or drugs 
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undergoing development by querying the Drug Gene Interaction Database30. We found 1 or 

more potential drug or substance interactions for 32 of the 151 prioritized genes, totaling 

475 drugs. Of these, 78 drugs targeting 14 genes are already known to be able to control or 

trigger atrial fibrillation or other cardiac arrhythmias (Supplementary Table 13). In addition 

to a number of drugs that could potentially impact atrial fibrillation via an effect on cardiac 

ion channels (for example, rottlerin, bepridil), including drugs already used for treating 

various neuropsychiatric disorders (for example, fosphenytoin, flunarizine), we also 

identified a number of anti-inflammatory drugs, including several glucocorticoids, and a 

cardiac-specific myosin activator (omecamtiv mecarbil), which is currently being tested for 

treatment of heart failure31. Whether the highlighted drugs can be used to treat or prevent 

atrial fibrillation requires further evaluation, but the findings can be used as a foundation for 

directing future functional experiments and clinical trials.

We constructed a polygenic risk score based on the 111 locus index variants and the 31 

additional risk variants, identified through stepwise conditional analyses, weighted by effect 

estimates obtained from meta-analyses excluding the UK Biobank (Supplementary Table 

14). We found that the risk score predicted prevalent atrial fibrillation in the UK Biobank 

with an unadjusted area under the receiver operator curve of 65%. We then used the 

polygenic risk score to test for association with 1,494 International Classification of 

Diseases (ICD) code-defined disease groups in UK Biobank participants of white British 

ancestry32. In addition to a strong association with atrial fibrillation (P = 2 × 10−920), we 

found association to additional mainly cardiovascular conditions (P < 0.05/1,494 = 3.3 × 

10−5), including palpitations, heart valve disorders, heart failure, ischemic heart disease, and 

stroke (Supplementary Table 15 and Supplementary Fig. 7). However, when participants 

diagnosed with any type of cardiac arrhythmia (n = 24,681) were excluded from the analyses 

to avoid assessment bias (termed an exclusion phenome-wide association study)33, the atrial 

fibrillation risk score was no longer associated with any ICD disease group (all P > 3.3 × 

10−5). This suggests that the atrial fibrillation polygenic risk score is specific for atrial 

fibrillation and that the additional associations identified were mediated through atrial 

fibrillation, either as a result of a more thorough clinical examination (for example, heart 

valve disorders) or because atrial fibrillation is an intermediate step towards the disease (for 

example, stroke).

To examine the genetic impact on age of onset of atrial fibrillation, we generated a polygenic 

risk score (n = 142 markers) in which weights were based on information from all 

contributing studies (Supplementary Table 14) and tested for association with atrial 

fibrillation age of onset in the HUNT Study. In agreement with our previous report11, we 

found that younger atrial fibrillation age of onset was associated with a higher genetic 

burden of atrial fibrillation (Supplementary Fig. 8). This finding supports previous 

epidemiological studies indicating that the risk of atrial fibrillation increases with decreasing 

atrial fibrillation age of onset in close relatives34,35.

After acceptance of this manuscript, a GWAS of AF in 65,446 cases identifying 97 loci was 

published online36. We meta-analyzed the index variants from this report with samples from 

HUNT, deCODE, MGI, and DiscovEHR, comprising the largest possible independent 

dataset (up to 93,315 cases), and identified 24 genome-wide significant loci that are 
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independent of the 111 we report here (Supplementary Table 16). We suggest that 

combining the initial 111 locus index variants, the 31 additional risk identified through 

approximate stepwise conditional analyses, and the 24 new locus index variants (n = 166 

variants) would comprise the current optimal variant list for a polygenic risk score for atrial 

fibrillation (Supplementary Table 16).

In summary, we substantially increased the number of genome-wide significant risk variants 

for atrial fibrillation through a large GWAS meta-analysis. We highlighted genes important 

for function of cardiac ion channels and calcium signaling, along with cardiac transcription 

factors, which in turn could also affect the electrical properties of the myocardium37,38, and 

in addition prioritized multiple atrial fibrillation functional candidate genes likely to be 

involved in structural integrity and function of heart and skeletal muscle. We performed 

pathway and functional enrichment analyses that highlighted fetal heart tissue and pathways 

related to cardiac development as important for developing atrial fibrillation. This might 

reflect that atrial fibrillation risk variants are acting in the developing heart or that the 

variants are important for reactivating fetal genes or pathways as a response to stress in the 

adult heart. We demonstrated an example of the latter; experiments in rabbits with heart 

failure and left atrial dilation identified a heterogeneous distributed molecular switch from 

the adult to the fetal isoform of myosin heavy chain, which resulted in contractile and 

functional heterogeneity that may predispose to initiation and maintenance of atrial 

fibrillation. These findings need confirmation but provide a foundation for directing future 

functional experiments to better understand the biology underlying atrial fibrillation.

URLs.

GotCloud, https://genome.sph.umich.edu/wiki/GotCloud; Michigan Imputation Server, 

https://imputationserver.sph.umich.edu/index.html; METAL, http://genome.sph.umich.edu/

wiki/METAL_Documentation; PLINK1.9, https://www.cog-genomics.org/plink/1.9; 

DEPICT, https://data.broadinstitute.org/mpg/depict/; COJO-GCTA software, http://

cnsgenomics.com/software/gcta/; Roadmap Epigenomics project, http://

www.roadmapepigenomics.org/; GTEx database, http://gtexportal.org; GREGOR, http://

csg.sph.umich.edu/GREGOR/; Unified Medical Language System, https://

www.nlm.nih.gov/research/umls/.

Methods

Methods, including statements of data availability and any associated accession codes and 

references, are available at https://doi.org/10.1038/s41588-018-0171-3.

Methods

Discovery cohorts.

Additional details on selected cohorts are provided in the Supplementary Note.

HUNT.—The Nord-Trøndelag Health Study (HUNT) is a population-based health survey 

conducted in the county of Nord-Trøndelag, Norway, since 198439. We used a combination 
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of hospital, out-patient, and emergency room discharge diagnoses (ICD-9 and ICD-10) to 

identify 6,493 atrial fibrillation cases and 63,142 atrial fibrillation-free controls with 

genotype data. Participation in the HUNT Study is based on informed consent, and the study 

has been approved by the Data Inspectorate and the Regional Ethics Committee for Medical 

Research in Norway.

deCODE.—The Icelandic atrial fibrillation population consisted of all patients diagnosed 

with atrial fibrillation (ICD-10 code I48 and ICD-9 code 427.3) at Landspitali, The National 

University Hospital, in Reykjavik, and Akureyri Hospital (the two largest hospitals in 

Iceland) from 1987 to 2015. All atrial fibrillation cases, a total of 13,471, were included. 

Controls were 358,161 Icelanders recruited through different genetic research projects at 

deCODE genetics, excluding those in the atrial fibrillation cohort. The study was approved 

by the Icelandic Data Protection Authority and the National Bioethics Committee of Iceland 

(no. VSNb2015030021).

MGI.—MGI is a hospital-based cohort collected at Michigan Medicine, USA. Atrial 

fibrillation cases (n = 1,226) were defined as patients with ICD-9 billing code 427.31, and 

controls were individuals without atrial fibrillation, atrial flutter, or related phenotypes 

(ICD-9 426–427.99). MGI was reviewed and approved by the Institutional Review Board of 

the University of Michigan Medical School.

DiscovEHR.—The DiscovEHR collaboration cohort is a hospital-based cohort including 

58,124 genotyped individuals of European ancestry from the ongoing MyCode Community 

Health Initiative of the Geisinger Health System, USA40. Atrial fibrillation cases (n = 6,679) 

were defined as DiscovEHR participants with at least one electronic health record problem 

list entry or at least two diagnosis code entries for two separate clinical encounters on 

separate calendar days for ICD-10 I48: atrial fibrillation and flutter. Corresponding controls 

(n = 41,803) were defined as individuals with no electronic health record diagnosis code 

entries (problem list or encounter codes) for ICD-10 I48. The Study was approved by the 

Geisinger Institutional Review Board.

UK Biobank.—The UK Biobank is a population-based cohort collected from multiple sites 

across the United Kingdom32. Cases of atrial fibrillation were selected using ICD-9 and 

ICD-10 codes for atrial fibrillation or atrial flutter (ICD-9 427.3 and ICD-10 I48). Controls 

were participants without any ICD-9 or ICD-10 codes specific for atrial fibrillation, atrial 

flutter, other cardiac arrhythmias, or conduction disorders.

AFGen Consortium.—Published atrial fibrillation association summary statistics from 31 

cohorts representing 17,931 atrial fibrillation cases and 115,142 controls were obtained from 

the authors6.

Genotyping array, imputation, and association analysis.

HUNT.—Genotyping was performed at the Norwegian University of Science and 

Technology (NTNU) using the Illumina HumanCore Exome v1.0 and v1.1. Quality control 

was performed at the marker and sample level. A total of 2,201 individuals were whole-
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genome sequenced at low pass and genotype calls were generated using GotCloud pipeline 

(see URLs). Variants from the HUNT low-pass genomes were imputed into The Haplotype 

Reference Consortium (HRC) samples and vice versa to generate a single imputation 

reference panel of ~34,000 individuals including 2,201 HUNT study-specific samples. 

Imputation was performed using Minimac3, and variants with imputation r2 > 0.3 were 

taken forward. We performed testing for association with atrial fibrillation using a 

generalized mixed model, including covariates birth year, sex, genotype batch, and principal 

components 1–4 as implemented in SAIGE41.

deCODE.—The study is based on whole-genome sequence data from 15,220 Icelanders 

participating in various disease projects at deCODE genetics. The sequencing was done 

using Illumina standard TruSeq methodology to a mean depth of 35× (s.d. 8)9. Autosomal 

SNPs and indels were identified using the Genome Analysis Toolkit version 3.4.042. 

Variants that did not pass quality control were excluded from the analysis according to 

Genome Analysis Toolkit best practices. Variants identified through sequencing (SNPs and 

indels) were then imputed into 151,677 Icelanders genotyped using Illumina SNP chips and 

their close relatives (familial imputation)43. Variants for the meta-analysis were selected 

based on matching with either the 1000 Genomes Project reference panel (Phase 3) or the 

Haplotype Consortium reference panel44 (based on allele, frequency, and correlation 

matching). Logistic regression was used to test for association between SNPs and atrial 

fibrillation, treating disease status as the response and allele counts from direct genotyping 

or expected genotype counts from imputation as covariates. Other available individual 

characteristics that correlate with phenotype status were also included in the model as 

nuisance variables. These characteristics were: sex, county of birth, current age or age at 

death (first- and second-order terms included), blood sample availability for the individual, 

and an indicator function for the overlap of the lifetime of the individual with the time span 

of phenotype collection. To account for inflation in test statistics due to cryptic relatedness 

and stratification, we applied the method of LD score regression45. The estimated correction 

factor for atrial fibrillation based on LD score regression was 1.38 for the additive model.

MGI.—Genotyping was performed at the University of Michigan using the Illumina Human 

Core Exome v1.0 and v1.1. Quality control was performed at the marker and sample level. 

Imputation of variants from the HRC reference panel was performed using the Michigan 

Imputation Server (see URLs), and variants with imputation r2 > 0.3 were included. 

Association with atrial fibrillation was determined using the Firth bias-corrected logistic 

likelihood ratio test46 with adjustment for age, sex, and principal components 1–4.

DiscovEHR.—Aliquots of DNA were sent to Illumina for genotyping on the Human 

OmniExpress Exome Beadchip. All individuals of European ancestry, as determined using 

principal component analysis, were imputed to the HRC reference panel using the Michigan 

Imputation Server. Markers with imputation r2 > 0.3 and MAF > 0.001 were carried forward 

for analysis. BOLT-LMM47 was used to analyze BGEN dosage files, and variants were 

tested for association with atrial fibrillation under an additive genetic model, adjusting for 

sex, age, age2, and the first four principal components of ancestry; additionally, a genetic 

relatedness matrix (calculated using variants with MAF > 0.001, per-genotype missing data 
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rate < 1%, and Hardy–Weinberg equilibrium P < 10−15) was included as a random-effects 

variable in the model.

UK Biobank.—Details on quality control, genotyping, and imputation can be found 

elsewhere48. In brief, study participants were genotyped using two very similar genotyping 

arrays (Applied Biosystems UK BiLEVE Axiom Array and UK BioBank Axiom Array) 

designed specifically for the UK Biobank. Phasing and imputation were done by the UK 

Biobank analysis team based on the HRC reference panel and the UK10K haplotype 

resource48. We restricted our analyses to HRC-imputed markers only as there have been 

reports of incorrect estimates for non-HRC markers in the first 500,000 people-release from 

UK Biobank. We performed testing for association with atrial fibrillation in people of white 

British ancestry using a generalized mixed model including covariates birth year, sex, 

genotype batch, and principal components 1–4 as implemented in SAIGE41.

Meta-analysis.

We included all markers that were available for analyses in any of the six contributing 

studies. For the DiscovEHR that applied the BOLT-LMM mixed model, we obtained an 

approximation of the allelic log-odds ratio and corresponding variance from the linear model 

as described previously49. Following this, we performed meta-analyses using the inverse 

variance method implemented in the software package METAL (see URLs)50. When 

estimating the cross-cohort allele frequencies, we only included participating studies where 

individuals were sampled independent of atrial fibrillation status (HUNT, deCODE, MGI, 

DiscovEHR, UK Biobank). This was done to avoid sampling bias. Heterogeneity tests were 

performed as implemented in METAL50.

Definition of independent loci.

Independent loci were defined as genetic markers > 1 Mb and > 0.25 cM apart in physical 

and genomic distance, respectively, with at least one genetic variant associated with atrial 

fibrillation at a genome-wide significance threshold of P < 5 × 10−8. Loci borders were 

defined as the highest and lowest genomic positions within the locus reaching genome-wide 

significance plus an additional 1 Mb on either side.

LD estimation.

We used 5,000 unrelated individuals that were randomly sampled among the HUNT Study 

participants for calculating LD r2 by using the software PLINK1.9 (see URLs). We 

additionally used the 1000 Genomes Project phase 3 European (EUR) sample for LD 

estimation.

Approximate, stepwise conditional analyses.

To identify independent risk variants within the identified atrial fibrillation-associated loci, 

we used the COJOGCTA software (see URLs) to perform approximate, stepwise conditional 

analyses based on summary statistics from the meta-analyses and an LD matrix obtained 

from 5,000 unrelated individuals randomly sampled from the HUNT Study3. Only variants 

with MAF > 0.01 were included in the analyses and variants were only considered truly 
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independent if they were not in LD (r2 < 0.10) with the locus index variant and any of the 

other independent risk variants.

Estimation of heritability.

The genome-wide heritability explained by all markers was estimated based on GWAS 

summary statistics, LD-score regression, and European-ancestry LD information from the 

1000 Genomes Project45. The heritability explained by atrial fibrillation-associated index 

variants and additional independent risk variants was calculated on the basis of odds ratios 

and risk allele frequencies as described previously51.

Identifying candidate functional genes, gene sets, and tissues using DEPICT.

We employed DEPICT (see URLs) to identify: (1) the most likely causal gene at associated 

loci, (2) reconstituted gene sets enriched for atrial fibrillation loci, and (3) tissues and cell 

types in which genes at associated loci that are preferentially expressed8. DEPICT uses gene 

expression data derived from a panel of 77,840 messenger RNA expression arrays52 together 

with 14,461 existing gene sets defined based on molecular pathways derived from 

experimentally verified protein–protein interactions53, genotype–phenotype relationships 

from the Mouse Genetics Initiative54, Reactome pathways55, KEGG pathways56, and gene 

ontology terms57. Based on similarities across the microarray expression data, DEPICT 

reconstitutes the 14,461 existing gene sets by assigning each gene in the genome a 

likelihood of membership in each gene set. Using these precomputed gene sets and a set of 

trait-associated loci, DEPICT quantifies whether any of the 14,461 reconstituted gene sets 

are significantly enriched for genes in the associated loci and prioritizes genes that share 

predicted functions with genes from the other associated loci more often than expected by 

chance. Additionally, DEPICT uses a set of 37,427 human mRNA microarrays to identify 

tissues and cell types in which genes from associated loci are highly expressed (all genes 

residing within an LD of r2 > 0.5 from index variant).

We ran DEPICT using all atrial fibrillation-associated index variants and all variants 

identified through stepwise conditional analyses, regardless of LD structure. For the gene 

sets significantly enriched for atrial fibrillation-associated loci (P < 1 × 10−6, FDR < 0.05), 

we computed a weighted pairwise similarity based on the number of overlapping genes for 

genes with a Z score < 4.75 (corresponding to P < 1 × 10−6) for being part of the gene set. 

For gene sets with no genes with a Z score < 4.75, we included the three most significant 

genes as suggested previously58.

Identification of regulatory elements using GREGOR.

We tested for enrichment of index variants with functional domains using the software 

GREGOR (see URLs)13. This method tests for an increase in the number of atrial 

fibrillation-associated index variants, or their LD proxies, overlapping with the regulatory 

feature more often than expected by chance by comparing to permuted control sets where 

the variants are matched for frequency, number of LD proxies, and distance to the nearest 

gene. We use a saddle-point approximation to estimate the P value by comparing to the 

distribution of permuted statistics13. We ran GREGOR using all atrial fibrillation-associated 

index variants and all variants identified through stepwise conditional analyses, regardless of 
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LD structure, and narrow peak BED-files from the Roadmap Epigenomics project (see 

URLs)12.

Identification of expression quantitative trait loci (eQTLs) using GTEx data.

We performed eQTL look-up using the GTEx database (see URLs)14 version 6p, which 

holds cis-eQTL expression data of up to 190,000,000 single nucleotide variants across 44 

tissues, by searching for all atrial fibrillation-associated loci index variants, all independent 

risk variants identified from the stepwise conditional analyses, and any variants in strong LD 

(r2 > 0.80) with these variants using an eQTL significance threshold of P < 1.14 × 10−9 (5 × 

10−8/44 tissues). For all statistically significant genes, we queried all markers in the GTEx 

database that affected the expression of the affected genes and tested whether the eQTL 

markers colocalized with the GWAS signal as described previously59.

Ischemic heart failure model of atrial fibrillation susceptibility.

Ischemic heart failure was modeled using a previously described rabbit model of left 

circumflex artery ligation60. In this model, the left atrium progressively dilates following the 

ischemic insult as heart failure develops. Figure 4a shows images of Langendorff perfused 

hearts of control (sham operated) and heart failure animals highlighting the overt dilation of 

the left atrium in heart failure. With equivalent left atrial pressure, atrial fibrillation was 

induced in each condition with high frequency burst pacing as shown in the ECG traces and 

as described previously61. Protein expression analysis was performed using western blot. 

Use of animals was reviewed and approved by the Care and Use Committee of the 

University of Michigan. All pre-, intra-, and postoperative surgical procedures were 

developed in collaboration with veterinarians on staff in the Unit for Laboratory Animal 

Medicine of the University of Michigan.

Tissue-specific expression analysis (TSEA).

The TSEA analyses were performed using the R software pSI package (see URLs)15. For the 

calculations, predefined pSI values provided by the pSI package creators were used. To get 

null distributions for the P values for the prioritized genes, we performed two sets of 

permutations: randomly selected from the entire human genome and randomly selected from 

the associated loci (also matching the number of genes picked in each of the loci), as done 

previously62. In both scenarios, 1,000 permutations were performed.

ECG-wide association analyses.

ECG data were collected from Landspitali University Hospital in Reykjavik and included all 

ECGs obtained and digitally stored from 1998 to 2015, including a total of 434,000 ECGs 

from 88,217 individuals. A total of 289,297 ECGs of 62,974 individuals were sinus rhythm 

(heart rate 50–100 beats per minute) ECGs of individuals without the diagnosis of atrial 

fibrillation. The ECGs were digitally recorded with the Philips PageWriter Trim III, 

PageWriter 200, Philips Page Writer 50, and Phillips Page Writer 70 cardiographs and stored 

in the Philips TraceMasterVue ECG Management System. These were ECGs obtained in all 

hospital departments, from both inpatients and outpatients. Digitally measured ECG 

waveforms and parameters were extracted from the database for analysis. The Philips 
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PageWriter Trim III QT interval measurement algorithm has been previously described and 

shown to fulfill industrial ECG measurement accuracy standards63. The Philips PR interval 

and QRS complex measurements have been shown to fulfill industrial accuracy standards64.

We tested the 111 genome-wide significant atrial fibrillation index variants for association 

with 123 ECG parameters using a linear mixed effects model implemented in the Bolt 

software package47, treating the ECG measurement as the response and the genotype as the 

covariate. All measures except heart rate and QT interval are presented for all 12 ECG leads. 

For this analysis, we used 289,297 sinus rhythm ECGs (heart rate 50–100 beats per minute) 

from 62,974 individuals who have not been diagnosed with atrial fibrillation according to 

our databases. This was done to assess the effect of the atrial fibrillation variants on ECG 

measures and cardiac electrical function in the absence of atrial fibrillation. Individuals with 

pacemakers were also excluded. The ECG measurements were adjusted for sex, year of 

birth, and age at measurement and were subsequently quantile standardized to have a normal 

distribution. For individuals with multiple ECG measurements, the mean standardized value 

was used. We assume that the quantitative measurements follow a normal distribution with a 

mean that depends linearly on the expected allele at the variant and a variance–covariance 

matrix proportional to the kinship matrix65. Since 123 traits were tested, the Benjamini–

Hochberg FDR procedure controlling the FDR at 0.05 at each marker was used to account 

for multiple testing.

Polygenic risk scores.

For each study participant in the UK Biobank and in the HUNT Study, we constructed an 

inverse normal-transformed polygenic risk score for atrial fibrillation using summarized 

dosage-weighted risk estimates from the list of 142 independent risk variants. For the UK 

Biobank risk score, risk estimates (beta coefficients) were obtained by meta-analyzing the 

risk variants across all contributing studies excluding the UK Biobank. To explore the 

association between the genetic burden of atrial fibrillation and the age of onset of atrial 

fibrillation, which we assumed was independent of the case status used for obtaining the risk 

estimates, we obtained risk estimates from meta-analyses of the full sample size.

Phenome-wide association analyses in the UK Biobank.

We used a previously published scheme to define disease-specific binary phenotypes by 

combining hospital ICD-9 codes into hierarchical PheCodes, each representing a particular 

disease group66. ICD-10 codes were mapped to PheCodes using a combination of available 

maps through the Unified Medical Language System (see URLs), string matching, and 

manual review. UK Biobank study participants were labeled with a PheCode if they had one 

or more of the PheCode-specific ICD codes. Cases were all UK Biobank study participants 

with the PheCode of interest and controls were all UK Biobank study participants without 

the PheCode of interest or any related PheCodes. Sex checks were performed, so PheCodes 

specific for one sex could not mistakenly be assigned to the other sex. The associations 

between the polygenic risk score and each of the defined phenotypes were tested using a 

logistic regression adjusted for sex and birth year.
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Reporting summary.

Further information on experimental design is available in the Nature Research Reporting 

Summary linked to this article.

Data availability.

The meta-analysis summary association statistics that support the findings of this study are 

available for download at http://csg.sph.umich.edu/willer/public/afib2018.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1 |. Manhattan plot showing known (orange) and novel (red) loci associated with atrial 
fibrillation.
A total of 34,740,186 genetic variants (each represented by a dot) were tested, comparing 

60,620 atrial fibrillation cases and 970,216 controls free of atrial fibrillation. The x axis 

represents the genome in physical order, and the y axis represents P values (–log10(P value)) 

of association. The black horizontal dotted line represents a Bonferroni-corrected threshold 

of statistical significance corresponding to 1,000,000 independent tests (P< 5×10−8).
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Fig. 2 |. Tissues, reconstituted gene sets, and regulatory elements implicated in atrial fibrillation.
a, Based on expression patterns across 37,427 human mRNA microarrays, DEPICT 

predicted genes within atrial fibrillation-associated loci to be highly expressed across various 

cardiac tissues. Tissues are grouped by type and significance. Red columns represent 

statistically significant tissues following Bonferroni correction (P< 0.05/209 = 0.0002). b, 

Top (P< 1× 10−6) reconstituted gene sets (out of 826 with FDR < 0.05 and after exclusion of 

‘gene subnetworks’) found by DEPICT to be significantly enriched for genes in atrial 

fibrillation-associated loci. Each node, colored according to the permutation P value, 

represents a gene set and the gray connecting lines represent pairwise overlap of genes 

within the gene sets. c, Heatmap indicating the overlap between atrial fibrillation-associated 

risk variants and regulatory elements across 127 Roadmap Epigenomics tissues (each 

represented by a row) using GREGOR. Black indicates no data. PSC, pluripotent stem cell; 

ESC, embryonic stem cell.
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Fig. 3 |. Significance of the expression enrichment for the atrial fibrillation candidate genes.
This figure compares the tissue-specific gene expression enrichment for the 151 biological 

candidate genes (colored dots) to a null distribution derived by randomly selecting the same 

number of genes from the whole genome or from the associated loci. Tissue-specific gene 

expression data (n = 25 tissues) were obtained from Genotype-Tissue Expression (GTEx) 

consortium data. The gray dots represent the P values for each of the permutations for the 

randomized tests (1,000 for both sampling scenarios for each tissue), and the blue and 

yellow lines represent the per-tissue P value thresholds comparable to a false positive rate of 

0.05.
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Fig. 4 |. Atrial fibrillation is associated with heterogeneous changes in left atrial myosin isoform 
expression.
a, Langendorff-perfused rabbit hearts from control (blue, top) or heart failure rabbits (red, 

bottom panel) were tested for atrial fibrillation inducibility and duration following burst 

pacing at 50 ms cycle length. Heart failure was induced by chronic left circumflex artery 

ligation and was allowed to develop over 6 weeks. During heart failure progression, severe 

left atrial hypertrophy occurred. b, Heart failure hearts (n = 4) developed long-lasting atrial 

fibrillation (> 60 s) when intra-atrial pressure was increased to 10 cm H2O. Control hearts (n 
= 4) did not develop long-lasting atrial fibrillation until intra-atrial pressure was increased to 

30 cm H2O. The colored bars represent mean atrial fibrillation duration and the black error 

bars represent the corresponding standard errors of the mean. All individual data points are 

shown in the more detailed Supplementary Fig. 4. c, Western blotting for MYH7 expression 

(β -MyHC protein) indicates MYH7 expression exclusively in the remodeled heart failure 

left atrium. The experiment was repeated for two independent heart failure animals and two 

control animals with similar results. An uncropped version of the western blot is shown as 

Supplementary Fig. 5. d, Immunostaining and confocal microscopy revealed heterogeneous 

MYH7 expression (green) in the heart failure left atrium. Consistent with western blotting 

data, the heart failure right atrium did not express MYH7. The experiment was repeated for 

two independent heart failure animals with similar results. Supplementary Figure 6 shows an 

additional image. LAA, left atrial appendage; RAA, right atrial appendage; V, ventricle; AF, 

atrial fibrillation; HF, heart failure; SR, sinus rhythm; w, week; LA, left atrium; RA, right 

atrium.
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