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Abstract

It is of fundamental interest in statistics to test the significance of a set of covariates. For example, 

in genome-wide association studies, a joint null hypothesis of no genetic effect is tested for a set of 

multiple genetic variants. The minimum p-value method, higher criticism, and Berk–Jones tests 

are particularly effective when the covariates with nonzero effects are sparse. However, the 

correlations among covariates and the non-Gaussian distribution of the response pose a great 

challenge towards the p-value calculation of the three tests. In practice, permutation is commonly 

used to obtain accurate p-values, but it is computationally very intensive, especially when we need 

to conduct a large amount of hypothesis testing. In this paper, we propose a Gaussian 

approximation method based on a Monte Carlo scheme, which is computationally more efficient 

than permutation while still achieving similar accuracy. We derive non-asymptotic approximation 

error bounds that could vanish in the limit even if the number of covariates is much larger than the 

sample size. Through real-genotype-based simulations and data analysis of a genome-wide 

association study of Crohn’s disease, we compare the accuracy and computation cost of our 

proposed method, of permutation, and of the method based on asymptotic distribution.
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1 Introduction

Testing whether a set of covariates have any effect on a response is commonly encountered 

in practice and a fundamental statistical problem. In many applications, only a small fraction 

of covariates are expected to be related with the response, i.e., the covariates with nonzero 

effects in the set are sparse. For example, in typical genome-wide association studies, a 
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sample of subjects is collected with their phenotypes and genetic information that may 

contain millions of genetic variants, e.g., single nucleotide polymorphism (SNP). It is often 

of interest to jointly test the existence of any genetic effect within a set of SNPs, such as a 

gene, pathway, or other functional genetic segment. One would expect that most SNPs have 

no effect on the phenotype (see, e.g., Wu et al., 2010). Therefore, there is an increasing 

demand for tests that are particularly powerful against sparse alternatives. Among these 

tests, the minimum p-value (Tippett, 1931), higher criticism (Donoho and Jin, 2004), and 

Berk-Jones (Berk and Jones, 1979) tests have received substantial interests in the literature. 

Specifically, they have been shown to have strong power in sparse settings (Arias-Castro et 

al., 2011; Li et al., 2015; Moscovich et al., 2016), and been adapted to genome-wide 

association studies to scan the whole genome for significant genes (Chen et al., 2006; 

Ballard et al., 2010; Wu et al., 2014). All the three tests can be viewed as approaches of 

combining marginal test statistics of individual covariates to aggregate individual effects.

To apply statistical tests in practice, it is important to obtain accurate p-values in order to 

make valid inference. However, the p-value calculation of the aforementioned three tests 

could be very challenging for various reasons, including correlations among covariates, non-

Gaussian responses, and the large scale of the data. Using the example of genome-wide 

association study again, the genotypes of SNPs are possibly highly correlated due to linkage 

disequilibrium, and the phenotype of interest may be a binary disease status or follow a 

skewed distribution. In the literature, the majority of p-value calculation methods for the 

three tests are derived under the independence and normality assumptions of marginal test 

statistics, such as methods based on the asymptotic null distributions of the test statistics and 

analytic (approximation) methods including Noé (1972); Barnett and Lin (2014); Li et al. 

(2015). However, when the two assumptions are violated, there is no guarantee that these 

methods can provide accurate p-values for practical uses. As an alternative strategy, the 

permutation method has been widely adopted for p-value calculation, as it naturally 

incorporates the dependency structure and is robust to the normality assumption. For 

example, permutation was employed to compute p-values by Ballard et al. (2010) for the 

minimum p-value method and Wu et al. (2014) for the higher criticism test. Nevertheless, in 

a large-scale analysis that involves an enormous number of tests, simulating the null 

distributions of test statistics by permutation is computationally very intensive. For instance, 

tens of thousands of genes need to be tested in genome-wide association studies, making 

permutation computationally expensive (see also Barnett and Lin, 2014).

In this paper, we aim to provide a p-value calculation method that is computationally more 

efficient than permutation and also maintains reasonable accuracy under general 

distributions and dependency structures. We prove that the null distributions of the three test 

statistics can be well approximated by replacing the original marginal statistics with a 

Gaussian vector that has the same covariance matrix. Based on this theoretical implication, 

we propose to compute the p-values of the three tests by simulating correlated Gaussian 

variables. Similar to Barnett and Lin (2014), our proposed method is computationally 

advantageous over permutation when the number of covariates, denoted by d, is not large. 

More importantly, our method can be considered as an approach that Efron (2014) referred 

to as “a combination of a little mathematics with a lot of computation”, achieving a good 

balance between accuracy and computational efficiency. In comparison, the permutation 
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method and the methods derived under the independence and normality assumptions are 

solely based on numerical simulations or theoretical approximation, respectively. Finally, 

although the idea of Gaussian approximation is not new, to the best of our knowledge, it has 

not been used to calculate p-values of the three tests that have particularly strong power in 

sparse settings.

In addition to the methodological contribution, our theoretical development has its own 

interest and is based on a recent theory of high-dimensional Gaussian approximation 

developed in Chernozhukov et al. (2013). The theory of Chernozhukov et al. (2013) provides 

a non-asymptotic bound for the Gaussian approximation errors that could converge to 0 even 

if d is much larger than the sample size n under arbitrary covariance structures. Specifically, 

d can be as large as O(exp(Cnc)) for some constants C > 0 and 1 > c > 0. In addition, the 

non-asymptotic bound is considered more advanced than the traditional asymptotic result as 

it specifies how the approximation errors depend on n and d explicitly. However, the theory 

of Chernozhukov et al. (2013) only applies to a type of maximum test statistics, which 

essentially are the minimum p-value test statistic considered here. We extend their 

remarkable result to the higher criticism and Berk-Jones tests, which complement the 

minimum p-value test and can be more powerful under a wide range of sparsity levels. Our 

extension is nontrivial since the higher criticism and Berk–Jones test statistics involve a 

sequence of order statistics and have a much more complicated form than the minimum p-

value test statistic. In addition, we also extend to allow unknown error variance.

The paper is organized as follows. In Section 2, we establish the non-asymptotic error 

bounds of Gaussian approximation for the three tests. In Section 3, we compare the 

computation procedures of the Gaussian approximation and permutation methods, and 

discuss their efficiency. In Section 4, we evaluate the accuracy of p-values computed based 

on our proposed method, permutation, and asymptotic null distribution using real genotype-

based simulation, and demonstrate the effectiveness of our method on data from a genome-

wide association study of Crohn’s disease. A discussion is given in Section 5. The technical 

proofs of the theorems and additional simulation results are provided in the supplementary 

material.

2 Theory of Gaussian approximation

2.1 Gaussian approximation

For a set of d covariates with n samples, we consider a regression model:

Y = α01n + XT β + ε (1)

with a response vector Y ∈ ℝn, an intercept α0, a vector of coefficients β ∈ ℝd, an error 

vector ε = (ε1, ⋯, εn)T ∈ ℝn, and a fixed design matrix X = (X1, ⋯ Xd) ∈ ℝn×d, where 1n ∈ 
ℝn is a vector of ones. The error terms εk’s are assumed to be independent and identically 

distributed with mean 0 and variance σ2 > 0. The problem of interest is to test the joint null 

hypothesis H0: β = 0 against a sparse alternative that only a small fraction of regression 

coefficients are nonzero. Throughout the paper, we assume n, d ≥ 2.
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Let X∼ = (X∼1, ⋯X∼d) ∈ ℝn × d be a matrix with standardized columns, namely, 1n
TX∼i = 0 and 

X∼i
TX∼i = n for 1 ≤ i ≤ d. Define the marginal statistic as

ri = 1
n

X∼i
TY
sy

,

where sy is the sample standard deviation of the response Y. For the regression model (1), 

we take X∼i to be the standardized ith covariate Xi, then ri/ n is the sample correlation 

coefficient between the ith covariate and the response variable.

In the case of known error variance σ2, let

ri
σ = 1

n

X∼i
TY
σ .

Write r = (r1, ⋯, rd)T and rσ = (r1
σ, ⋯, rd

σ)T, and then we have r = (σ/sy)rσ. Since each X∼i is 

centered, the response vector Y in ri and ri
σ can be replaced by the error vector ε under the 

null hypothesis. Note that we do not require the error terms to be Gaussian variables. The 

marginal statistics r and rσ can have general multivariate distributions under the null.

We further define

vi = 1
n

X∼i
Te

and v = (v1, ⋯, vd)T, where e = (e1, ⋯, en)T is a vector of independent standard Gaussian 

variables. Under the null hypothesis, the Gaussian vector v has the same mean 0 and 

covariance matrix X∼TX∼/n as the marginal statistics rσ.

Suppose T(r) is a test statistic for the null hypothesis H0, which summarizes the marginal 

statistics or mathematically is a function of r. For instance, the minimum p-value, higher 

criticism and Berk-Jones test statistics, which we will introduce later, are such statistics. We 

refer to T(v) as the Gaussian approximation of T(r). Without a strong restriction on the 

correlation structure of r and the normality assumption of the error ε, the null distribution of 

T(r) is often theoretically intractable. But the distributions of T(r) and its Gaussian 

approximation T(v) could be very close in the sense of Kolmogorov–Smirnov distance. 

Therefore, T(v) can be utilized to approximate the p-value of the test based on T(r). In 

general, the accuracy of this approximation depends on the form of the test statistic, i.e., 

T(·), and can be poor. But for the test statistics considered in this paper, we will show that 

the approximation error converges to 0 even when d is much larger than n.

In the example of genome-wide association studies, we use the regression model (1) for 

testing the joint null hypothesis of no genetic effect within a set of d SNPs, where Y denotes 
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a vector of quantitative phenotypes of n subjects and Xi represents the genotypes of the ith 

SNP in the set. The SNP genotype is coded as 0, 1, 2 representing the copy number of the 

minor alleles. The magnitude of the marginal statistic ri reflects the individual effect of the 

ith SNP and the covariance matrix X∼TX∼/n characterizes the patterns of correlation among 

SNPs. Since the genotypes of SNPs can be highly correlated due to linkage disequilibrium 

and the correlation patterns vary among different genes, it is desirable to study the 

approximation error under general dependency structures.

2.2 Non-asymptotic bounds of approximation errors

We next establish the non-asymptotic bounds of the Gaussian approximation errors for the 

minimum p-value, higher criticism, and Berk–Jones tests, which are particularly powerful 

for testing the joint null hypothesis H0 against sparse alternatives.

The minimum p-value method corresponds to a maximum test statistic

TMinP(r) = max
1 ≤ i ≤ d

ri ,

of which large values reject the null hypothesis. Its Gaussian approximation is given by

TMinP(v) = max
1 ≤ i ≤ d

vi .

The minimum p-value method summarizes the marginal statistics by their maximum, and is 

therefore powerful when the effects of individual covariates are sparse and strong.

Write a ⪯ b if a is smaller than or equal to b up to multiplying some positive constant 

independent of n and d. Assume the following conditions are satisfied:

(A.1) E(εk
4) ≤ C, where C is some positive constant;

(A.2) x∼ki ≤ Bn for any 1 ≤ k ≤ n and 1 ≤ i ≤ d, where x∼ki’s are the entries of X∼ and Bn 

≥ 1 is a sequence of constants, possibly growing to infinity as n → ∞.

Theorem 1—Suppose that Conditions (A.1) and (A.2) are satisfied. Under the null 

hypothesis, we have

sup
t ∈ ℝ

|P{TMinP(r) ≤ t} − P{TMinP(v) ≤ t} | ≺
Bn

2/3log7/6(dn)

n1/6 .

Theorem 1 essentially is a direct consequence of the main theoretical result of 

Chernozhukov et al. (2013), except that we extend it to allow for unknown variance σ2. 

More specifically, our Conditions (A.1) and (A.2) follow one of the conditions of Corollary 

2.1 in Chernozhukov et al. (2013) for a fixed design. Note that the left-hand side of the 

inequality above is the Kolmogorov–Smirnov distance between the null distributions of 
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TMinP(r) and TMinP(v). Theorem 1 indicates that the approximation error is uniformly 

bounded at any significance level.

The Condition (A.2) requires that the entries of the standardized design matrix are uniformly 

bounded by Bn. In genome-wide association studies, SNPs with a minor allele frequency 

less than a given threshold (e.g. 0.01) are often excluded. Given this fact and that the value 

of the SNP genotype is between 0 and 2, x∼ki’s are uniformly bounded by a constant and thus 

Bn = O(1). In general situations where covariates are generated from sub-Gaussian 

distributions, we can expect that Bn = O( log nd). For both cases, the non-asymptotic bound 

in Theorem 1 implies that the approximation error increases very slowly as d grows and 

converges to 0 even if d is much larger than n. This result is established under arbitrary 

correlation structures. Moreover, only a bounded fourth moment is required for the error 

terms in Condition (A.1), which allows a broad range of distributions.

As the minimum p-value, higher criticism and Berk-Jones tests all are powerful against 

sparse alternatives, intuitively, their critical regions should be similar and the Gaussian 

approximation should be also accurate for the other two tests. However, the higher criticism 

and Berk-Jones test statistics are much more complicated than the minimum p-value test 

statistic, which makes the extension of Theorem 1 not straightforward.

We introduce some notations for the higher criticism test statistic first. For x > 0, define

ψi(x) = d[i/d − π(x)]
π(x)[1 − π(x)] ,

where π(x) = 2[1 − Φ(x)] and Φ(·) is the cumulative distribution function of standard 

Gaussian distribution. Let r(i) and v(i) be the ith largest absolute value of ri’s and vi’s, 

respectively. For example, r(1) = TMinP(r). The higher criticism test statistic and its Gaussian 

approximation are given by

THC(r) = max
1 ≤ i ≤ d

ψi r(i) and THC(v) = max
1 ≤ i ≤ d

ψi v(i) .

Note that π(r(i)) can be viewed as the ordered ith smallest marginal p-value. The higher 

criticism uses the maximum of standardized ordered marginal p-values as a summary 

statistic and is particularly effective in the case of rare and weak effects (Donoho and Jin, 

2015).

To facilitate the analysis, and similar to Arias-Castro et al. (2011), we search for the 

maximum over c0 log d terms, where c0 ≥ 1 is a fixed constant, and define

THC
∗ (r) = max

1 ≤ i ≤ c0log d
ψi r(i) , THC

∗ (v) = max
1 ≤ i ≤ c0logd

ψi v(i)

In comparison, Arias-Castro et al. (2011) searches for the maximum over at most 5log d
terms. Further, assume that
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(A.3) The density of v(i) is bounded by log d up to some multiplicative positive 

constant for any 1 ≤ i ≤ c0 log d.

The following theorem shows that a similar bound of the Gaussian approximation error 

holds for the higher criticism test.

Theorem 2—Suppose that Conditions (A.1), (A.2) and (A.3) are satisfied. Under the null 

hypothesis, we have

sup
t ∈ ℝ

|P{THC
∗ (r) ≤ t} − P{THC

∗ (v) ≤ t} | ≺
Bn

3/2 log d 5/2

n1/8 .

Remark 1—Our Condition (A.3) is motivated from the following observations. Recall that 

v(i)’s are the order statistics of the standard Gaussian variables vi’s. Firstly, when vi’s are 

independent, it can be easily shown that Condition (A.3) holds. A proof is given in Lemma 8 

of the supplementary material. Secondly, when vi’s are correlated, we can use simulations to 

support the validity of (A.3). For instance, in Figure 1 of the supplementary material, a 

variety of correlation matrices are examined. The results show that the maximum density 

values are no larger than that of the independent case. Therefore, the density of v(i) is also 

bounded by log d (up to some multiplicative positive constant) under these correlation 

matrices. We anticipate that the phenomena observed in these examples would be true for 

general correlation structures of vi’s. Lastly, for the maximum order statistic v(1), Theorem 3 

of Chernozhukov et al. (2015) implies that the upper bound in (A.3) holds uniformly for any 

correlation structures of vi’s.

We next consider the Berk–Jones statistic proposed by Berk and Jones (1979). Let

ϕi(x) = d (i/d)log i/d
π(x) + (1 − i/d)log 1 − i/d

1 − π(x) ,

for x > 0. The Berk–Jones statistic and its Gaussian approximation are

TBJ(r) = max
1 ≤ i ≤ d

ϕi r(i) and TBJ(v) = max
1 ≤ i ≤ d

ϕi v(i) ,

respectively. The Berk–Jones test is motivated by considering the Kullback–Leibler distance 

between two Bernoulli distributions, one with a success probability i/d and the other with 

π(r(i)). It also has strong power against sparse alternatives (Li et al., 2015).

In analogy to the higher criticism statistic, we consider the maximum over the first c0 log d 
terms to facilitate the analysis and define

TBJ
∗ (r) = max

1 ≤ i ≤ c0log d
ϕi r(i) , TBJ

∗ (v) = max
1 ≤ i ≤ c0log d

ϕi v(i) ,

A similar non-asymptotic bound is obtained for the Berk–Jones test in the following result.
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Theorem 3—Suppose that Conditions (A.1), (A.2) and (A.3) are satisfied. Under the null 

hypothesis, we have

sup
t ∈ ℝ

|P{TBJ
∗ (r) ≤ t} − P{TBJ

∗ (v) ≤ t} | ≺
Bn

3/2 log d 5/2

n1/8 .

To demonstrate the accuracy of Theorem 1–3, we carry out simulations and use p-p plots to 

compare the distributions of T(r) and its Gaussian approximation T(v) for the three tests, 

respectively. The result is displayed in Figure 2 in the supplementary material. It shows that 

the distributions of the test statistic and its Gaussian approximation are close to each other 

for all the three tests.

Note that our primary interest is to use T(v) for p-value approximation. As p-values that 

indicate significance correspond to the tail probabilities, more extensive simulations are 

performed in Section 4.1 to examine the Gaussian approximation accuracy at a range of 

stringent significance levels.

2.3 Binary phenotype

The regression model (1) only applies to problems with continuous responses. In case-

control genome-wide association studies, the phenotype of interest is a binary disease status. 

Recall that the SNP genotypes (covariates) can only take three values (i.e., 0, 1 and 2). If the 

Cochran-Armitage trend test is employed to test the association between each SNP and the 

disease status, then the marginal test statistic has exactly the same form as ri and our 

theorems in Section 2.2 can be directly applied.

In addition, for balanced case-control studies, Zuo et al. (2006) proposed another Z-statistic:

ri
b = n

pcase − pcontrol
2pall(1 − pall)

,

where pcase, pcontrol and pall are the estimated minor allele frequency of the ith SNP in cases, 

controls and all subjects, respectively. We adopt rb as the marginal statistics in a balanced 

case-control study, where rb = (r1
b, ⋯, rd

b)T. In this case, we take 

X∼i = (Xi − 2pall)/ 2pall(1 − pall) in the definitions of ri, ri
σ and vi for any 1 ≤ i ≤ d, then the 

approximation error bounds in Theorem 1–3 also hold. Furthermore, some straightforward 

algebra leads to r = (2sy)rb. As 2sy converges to 1 at the rate of n, the marginal statistics r 

and rb are very close to each other with a high probability. Hence, the Gaussian 

approximation T(v) can also be applied for the test statistic T(rb).

Remark 2—In the marginal test statistics rb, note that n ≤ X∼i
TX∼i ≤ 2n instead of X∼i

TX∼i = n. 

With some minor modifications, Theorem 1–3 can be established in a general situation 

where c1n ≤ X∼i
TX∼i ≤ c2n for some fixed positive constants c1 ≤ c2. By the relationship 
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between r and rb, it is straightforward to further generalize Theorem 1–3 for the 

approximation errors between the null distributions of T(rb) and T(v). We omit the proofs.

3 Computation procedures and their efficiency

In practice, permutation has been commonly used for p-value calculation. Let Yp denote a 

random permutation sample of Y and define

rp = 1
n

X∼TYp

sy
,

which represents the marginal statistics under the permuted sample. We refer to the null 

distribution of T(r), T(v), and T(rp) as the true, Gaussian approximation, and permutation 

null distribution, respectively. The true null distribution is unknown in practice, and the other 

two null distributions are used to approximate it. We have derived the non-asymptotic 

bounds for the Kolmogorov–Smirnov distance between the true and Gaussian approximation 

null distributions in Section 2. In this section, we study the computational efficiency of the 

Gaussian approximation and permutation methods.

Let Tobs denote the observed test statistic calculated from a given data set. The p-values 

based on the Gaussian approximation and permutation methods are given by

P T(v) ≥ Tobs and P T(rp) ≥ Tobs ,

where the probability is with respect to the Gaussian approximation and permutation null 

distribution, respectively. The analytic forms of the two null distributions are barely 

available, but we can simulate independent Monte Carlo samples from them to obtain the 

empirical p-value, which is simply the proportion of samples greater than the observed test 

statistic Tobs.

For either Gaussian approximation or permutation, it consists of three steps to generate M 
independent Monte Carlo samples of the test statistic under the corresponding null 

distribution. Note that v follows a multivariate Gaussian distribution with mean 0 and 

covariance matrix X∼TX∼/n. When d < n, as a pre-step, we calculate the Cholesky 

decomposition of the covariance matrix, namely, QTQ = X∼TX∼/n. The upper triangular matrix 

Q has d × d dimensions and is used to speed up the computation for the Gaussian 

approximation method.

Step 1: Randomly generate a matrix. For permutation, generate a matrix Gn×M where 

the columns are independent permuted samples of Y/( nsy). For Gaussian 

approximation, generate a matrix Ed×M when d < n or En×M otherwise, where the 

entries are independent standard Gaussian samples.
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Step 2: Compute the marginal statistics. For permutation, Rd × M = X∼d × n
T · Gn × M. 

For Gaussian approximation, Vd × M = Qd × d
T · Ed × M when d < n or 

Vd × M = X∼d × n
T · En × M otherwise.

Step 3: Compute test statistics based on each column of Rd×M or Vd×M.

We analyze the computation cost of the two methods step by step. We consider the case of d 
< n at first. In Step 1, the ratio of the matrix sizes of G and E is n/d, and thus a larger matrix 

needs to be generated for permutation than for Gaussian approximation. Step 2 involves 

matrix multiplication, where the computation complexity is O(n × dM) for permutation and 

O(d × dM) for Gaussian approximation. Step 3 is the same for both methods in terms of 

computation cost. In addition, the Gaussian approximation method requires less memory 

than permutation in the first two steps. The Cholesky decomposition in the pre-step for 

Gaussian approximation is computationally cheap and almost negligible compared to other 

steps, since it only needs to be computed once. Therefore, given a fixed d, the computation 

time of Gaussian approximation remains almost constant for any sample size n. When d ≥ n, 

the Cholesky decomposition is not performed and hence the two methods require a similar 

amount of computation and memory. To conclude, our method is computationally more 

efficient than permutation in the situation where d < n, and the computation saving becomes 

more dramatic as the ratio n/d increases. In practice with large-scale hypothesis testing, there 

may be a wide range of d. The computation savings would be substantial when a big portion 

of the tests have d < n. This is clearly demonstrated by a genome-wide association study in 

Section 4.

Remark 3

In the case of an orthogonal design matrix X, the Gaussian approximation can be 

implemented straightforwardly without Step 2. Therefore, its computation is further reduced 

and is much faster than that of permutation. When X is not orthogonal, one may consider to 

render X orthogonal (e.g., by the Gram-Schmidt transformation) as a preprocessing step to 

speed up the computation. On the other hand, in some situations where the signals are sparse 

and the correlation between covariates is moderate or strong, the de-correlation 

transformation may dampen the signals and result in power loss (see, e.g., Barnett and Lin, 

2014). Since these situations are expected in genome-wide association studies, we do not 

perform the orthogonal transformation in our analysis.

4 Applications

We evaluate the accuracy and computation cost of the Gaussian approximation method, 

permutation, and the method based on asymptotic distribution, which are denoted by GA, 

Permu, and Asym, respectively. The original test statistics THC(·) and TBJ(·) are adopted for 

the higher criticism and Berk–Jones tests. For all three tests, we use the marginal statistics r 
or rb, depending on whether the response is quantitative or binary.

For both simulation and real-data analysis, we use the data of the Crohn’s disease genome-

wide association study (Duerr et al., 2006), which aims at identifying genes that are 
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associated with the inflammatory bowel disease. This data consists of a total of 1760 

independent subjects from Jewish and non-Jewish populations. Following the data quality 

control in Duerr et al. (2006), we exclude subjects with overall SNP call rates less than 94%, 

and remove SNPs with minor allele frequencies less than 1%, call rates less than 95%, or 

Hardy-Weinberg equilibrium p-values less than 0.01. The final data set consists of 293,426 

SNPs and a total of 1719 subjects. SNPs are grouped into 15,279 genes on chromosomes 1–

22 according to Genome Build UCSC hg 17 assembly. The gene size (number of SNPs) 

ranges from 1 to 705 and is highly skewed to the right. The first quartile, median and third 

quartile are 3, 7 and 17, respectively.

In practice, one may want to control for clinical covariates, which can be easily incorporated 

for quantitative phenotypes. Denote the clinical covariates by Z1, Z2, ⋯, Zq, where fixed 

constant q ≤ n − 2. Let Z = (1n, Z1, ⋯, Zq) and PZ = Z(ZT Z)−1ZT be the orthogonal 

projection matrix of Z. Then we take

X∼i = (I − PZ)Xi/ Xi
T(I − PZ)Xi/(n − q) 1/2

and sy = {YT (I − PZ)Y/(n − q)}1/2, where I is an n × n identity matrix. The marginal 

statistic and its Gaussian approximation are

ri = 1
n − q

X∼i
TY
sy

and vi = 1
n − q

X∼i
Te,

respectively.

4.1 Simulation based on real genotypes and simulated phenotypes

To examine the accuracy of p-value calculation methods under realistic dependency 

structures, namely, the real patterns of correlation among SNPs, we use real genotypes from 

the Crohn’s disease data and simulate phenotypes. Six settings of gene size are considered: d 
= 5, 20, 50, 100, 300, 500. We randomly select 10 genes containing (exactly or around) d 
SNPs for each gene size and a total of 60 genes from the Crohn’s disease data. For 

simulating binary phenotypes, Y is independently generated from Bernoulli(p), where p is 

the probability parameter and three values of p are examined (p = 1/8, 1/4, 1/2). For 

simulating quantitative phenotypes, we also consider three covariates in the null model: 

gender and two principal components for population stratification (Price et al., 2006). 

Denote the three covariates by Z1, Z2 and Z3. The response variable is simulated according 

to the null model Y = α0 + α1Z1 + ⋯ + α3Z3 + ε, where the coefficients αi’s are 

independently generated from N(0, 0.4) for i = 0, 1, …, 3. Three distributions of the error 

term ε are examined: Unif(0, 1), t(4) and Gamma(10, 1), which represent bounded, heavy-

tailed, and skewed distributions. These distributions are standardized to have mean 0 and 

variance 1. We consider two sample sizes according to the Crohn’s disease data: the non-

Jewish population with n = 997 and the entire data with n = 1719.
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The empirical sizes (or type I errors) of the three p-value calculation methods are compared 

over a range of significance levels: α = 0.01, 0.001, 0.0001. For each gene, we first draw 106 

independent Monte Carlo samples from the Gaussian approximation and permutation null 

distributions of each statistic, respectively, to calculate their critical values at significant 

level α. The asymptotic critical values for the minimum p-value method, higher criticism 

and Berk–Jones tests are computed according to the formulas in the literature (Cai et al., 

2014; Donoho and Jin, 2015; Wellner and Koltchinskii, 2003), which are also listed in the 

supplementary Table 1. Next, we generate 106 independent Monte Carlo samples from the 

true null distribution. Then the empirical size of each method is the proportion of samples 

greater than the corresponding critical value obtained above. For each value of d, we average 

the empirical sizes over the 10 genes with the same size.

The results for t distribution are summarized in Table 1 and 2. Additional results for the 

uniform, gamma and Bernoulli distributions are given in the supplementary Tables 2–11. An 

empirical size that is closer to the significance level α indicates better performance of the 

corresponding method. It can be seen that (i) the Gaussian approximation error drops when 

sample size n increases and/or gene size d decreases; (ii) the asymptotic p-values are wildly 

inaccurate, especially for the higher criticism and Berk–Jones tests; (iii) the Gaussian 

approximation error increases very slowly with respect to d, as indicated by the bounds in 

Theorem 1–3 that depend on d only at the logarithmic rate; (iv) the Gaussian approximation 

method performs similarly for each of the three test statistics; (v) in general, the Gaussian 

approximation method is slightly less accurate than permutation, but still provides 

reasonably accurate p-values for practical uses, even in the situation of small p-values.

In Table 3, we demonstrate the computation time in seconds based on our implementation. 

The computation was carried out on a computer node with 2.5 GHz quad-core Intel Xeon 

E3-1284 CPUs and 32 GB memory. Since the computation time does not depend on the 

specific numbers in a genotype matrix, we use simulated genotypes independently generated 

from Binomial(2, 0.3) to investigate a broader range of sample size: n = 1000, 2000, 4000. 

Table 3 shows that the computation of Gaussian approximation is much less intensive than 

permutation, especially for small or moderate d. The computation savings of Gaussian 

approximation over permutation increases along with the ratio of n/d. For a fixed d, the 

computation time of Gaussian approximation remains almost the same for different sample 

sizes, while the time of permutation increases roughly linearly with the sample size n.

To study the computation time in large-scale hypothesis testing, we apply the Gaussian 

approximation and permutation methods to screen the whole genome in the Crohn’s disease 

data, where 77% of genes have d ≤ 20 SNPs and the sample size is 1719. Specifically, the p-

value of each gene is calculated by simulating 106 Monte Carlo samples. The Gaussian 

approximation method requires hours to complete the computation over the genome, with 

3.8, 9.3 and 12.3 hours for the minimum p-value method, higher criticism and Berk-Jones 

tests, respectively. On the other hand, the permutation method can only complete screening a 

fraction of the genome within a day. Based on the proportion of genes being processed in 

one day, we estimate that the permutation method would take 12.0, 12.3 and 12.4 days for 

the three tests.

Liu and Xie Page 12

J Am Stat Assoc. Author manuscript; available in PMC 2019 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To summarize, our simulation study demonstrates the tradeoff between computation 

efficiency and accuracy. The p-value calculation based on asymptotic distribution requires 

negligible computation compared to the other two methods, while its precision is very poor. 

Our proposed Gaussian approximation method slightly sacrifices the accuracy but 

substantially speeds up the computation in comparison with permutation.

4.2 Real-data analysis

We apply the three tests and p-value calculation methods to analyze a subpopulation of the 

Crohn’s disease data, where the phenotype of interest is the Crohn’s disease and the subset 

of samples are from the non-Jewish population. After quality control, the final data consists 

of 498 cases and 499 controls.

We specifically study 12 genes that are found to be functionally interesting or associated 

with Crohn’s disease in the literature (Franke et al., 2010). In particular, IL23R and NOD2 

are identified as the most significant two genes by all the three tests in this analysis. We use 

108 Monte Carlo samples for these two genes and 106 for the rest to compute the p-values 

based on permutation and the Gaussian approximation method. The results are summarized 

in Table 4. It can be seen that the p-values computed by the Gaussian approximation method 

and permutation are close in general, while the asymptotic p-values are widely off, 

especially for the higher criticism and Berk–Jones tests. According to both permutation and 

Gaussian approximation p-values, IL23R and NOD2 are identified as significant genes at a 

level of 0.05 with Bonferroni correction.

5 Discussion

As can be seen from the simulation, our proposed Gaussian approximation method is 

particularly accurate and computationally much more efficient than permutation when the 

sample size n is large and the number of covariates d is small or moderate. In the application 

of genome-wide association studies, a small number of covariates is the case for the vast 

majority of genes. There may be a few genes with d comparable to or even larger than n. The 

computational advantage of Gaussian approximation is not substantial in this situation. 

Thus, a mixture of both methods might lead to an overall faster computation and accurate p-

values. For example, one may consider using the Gaussian approximation method for genes 

with n/d larger than 2 and permutation for the other genes.

As d grows, the approximation errors for the three tests increase very slowly, more 

specifically, at a rate of (log d)c for some constant c > 0. This nice property implies the good 

performance of Gaussian approximation and is mainly owing to the maximum form of the 

three test statistics. For other types of test statistics that are functions of the marginal 

statistics, the Gaussian approximation method can be directly applied, but the performance 

may be quite poor. For instance, we observe through simulations that the accuracy of 

Gaussian approximation for the Fisher’s combination test (Fisher, 1925) is much worse than 

that for the three tests considered in this paper.

This research is motivated by large-scale genome-wide data analysis, which requires 

massive hypothesis testing and hence it is tricky to calculate p-values for powerful tests. 
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Despite of its motivating example, the proposed Gaussian approximation method is 

generally applicable to broader statistical problems and is very easy to implement. It is 

convenient to use the method in many applications of modern high-throughput data analysis, 

for example, differential gene expression from next generation sequencing and signal 

detection in engineering.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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