
Pathways and mechanisms linking dietary components to 
cardiometabolic disease: thinking beyond calories

K. L. Stanhope1, M. I. Goran2, A. Bosy-Westphal3, J. C. King4, L. A. Schmidt5,6,7, J.-M. 
Schwarz8,9, E. Stice10, A. C. Sylvetsky11, P. J. Turnbaugh12, G. A. Bray13, C. D. Gardner14, P. 

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, 
distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

Address for correspondence: Dr KL Stanhope, Department of Molecular Biosciences, School of Veterinary Medicine, University of 
California, Davis, One Shields Avenue, Davis, CA, USA. klstanhope@ucdavis.edu. 

Conflict of interest statement
The following authors have no conflicts of interest to report: Drs Schmidt, Turnbaugh and Bray.
The following authors acknowledge these conflicts of interest.
Dr Stanhope received honoraria from the CrossFit Foundation for serving as a Conference Academic Organizer and for writing the 
manuscript.
Dr Goran received honorarium from the CrossFit Foundation for serving on the Advisory Committee and travel reimbursement from 
the CrossFit Foundation for attending the conference in July 2017.
Drs Bosy-Westphal, King, Schwarz, Sylvetsky, Gardner, Mason, Rosenbaum and Allister-Price and Ms Sigala received travel 
reimbursement from the CrossFit Foundation for attending the conference in July 2017.
Dr Malik received travel reimbursement from the CrossFit Foundation for attending the conference in July 2017. She was paid for 
consulting services by the City of San Francisco for litigation related to health warning labels of soda and is on a pro bono retainer to 
The Center for Science in the Public Interest for expert support in litigation related to sugar-sweetened beverages.
Dr Havel received travel reimbursement from the CrossFit Foundation for attending the conference in July 2017. He has received 
research grants from Bristol Myers Squibb and Arrowhead Pharmaceuticals.
Dr Stice received travel reimbursement from the CrossFit Foundation for attending the conference in July 2017. His institution has 
received research funding from Crave Crush, and he has received reimbursement for travel from Crave Crush.
Dr Ravussin received travel reimbursement from the CrossFit Foundation for attending the conference in July 2017. He serves on the 
Scientific Advisory Board to the Nutrilite Health Institute with Amway and for the Institute of Cardiometabolism and Nutrition in 
Paris, France; has a consultant contract with Janssen and with Nutrilite Health Institute with Amway; gives lectures at the Open 
Academy in Venice; and is a lecturer/advisor for the Center for Medical Weight Loss. He has received research grants or unrestricted 
gifts from Amway, Nestle, the Nutrition Science Initiative, Novartis, Sanofi-Aventis, Weight Watchers and Ethicon Surgery. He has a 
patent for ‘Night Moderate Hypoxia to Treat Insulin Resistance and Cardiometabolic Syndrome’.
Dr Welsh received travel reimbursement from the CrossFit Foundation for attending the conference in July 2017. She received 
payment from the Sugar Foundation for an analysis and presentation on sugar consumption in toddlers.
Dr Greenwood received honorarium for serving as Chairperson of the manuscript planning meeting and travel reimbursement from the 
CrossFit Foundation for attending the conference in July 2017.
Dr Astrup received honorarium from CrossFit Foundation for serving on the Advisory Committee and travel reimbursement from 
CrossFit Foundation for attending the conference in July 2017. He reports personal fees from Dutch Beer Institute, NL; Feast Kitchen 
A/S, Denmark; Groupe Éthique et Santé, France; McCain Foods Limited, USA; Nestlé Research Center, Switzerland; Weight 
Watchers, USA; BioCare Copenhagen, Zaluvida, Switzerland; Basic Research, USA; Beachbody, USA; Danish Agriculture & Food 
Council, Novo Nordisk, Denmark; Pfizer, Germany; Saniona, Denmark; Sanofi-Aventis, Germany; S-Biotek, Denmark; Scandinavian 
Airlines System, Denmark; and Tetra Pak, Sweden; personal fees and other from Gelesis, USA; grants from Arla Foods, DK; Danish 
Dairy Research Council; and Gelesis, USA outside the submitted work. In addition, Dr Astrup has a patents pending to the University 
of Copenhagen ‘Methods of inducing weight loss, treating obesity and preventing weight gain’ (licensee Gelesis, USA) and 
‘Biomarkers for predicting degree of weight loss’ (licensee Nestec SA, CH), and he is a co-inventor of a number of other patents 
owned by the University in accordance with Danish law. Astrup receives royalties for the books Verdens Bedste Kur, Politikens 
Forlag, Denmark, 2012 (subsequently published in English as World’s Best Diet, Penguin, Australia, and The Nordic Way, Random 
House, USA), and Spis dig slank efter dit blodsukker (Eat according to your blood sugar and be slim), Politikens Forlag, Denmark, 
2017. He is a co-author of several books in the pipeline about personalized nutrition for weight loss; a co-owner and member of the 
board of the consultancy company Dentacom Aps, Denmark, co-founder; and a co-owner of UCPH spin-outs Mobile Fitness A/S & 
Flaxslim ApS (where he is also a member of the board, 2015–present) and Personalized Weight Management Research Consortium 
ApS (Gluco-diet.dk/2017–present).
Dr Krauss received honorarium from CrossFit Foundation for serving on the Advisory Committee and travel reimbursement from 
CrossFit Foundation for attending the conference in July 2017. He has received payment for services on the Scientific Advisory Board 
of Virta Health and from Quest Diagnostics for services on speakers bureau. He has received research grants from the Almond Board 
of California and The Dairy Research Institute. He has a patent on lipoprotein particle analysis.

HHS Public Access
Author manuscript
Obes Rev. Author manuscript; available in PMC 2019 September 01.

Published in final edited form as:
Obes Rev. 2018 September ; 19(9): 1205–1235. doi:10.1111/obr.12699.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://creativecommons.org/licenses/by-nc/4.0/


J. Havel1,15, V. Malik16, A. E. Mason17, E. Ravussin13, M. Rosenbaum18, J. A. Welsh19, C. 
Allister-Price1, D. M. Sigala1, M. R. C. Greenwood15, A. Astrup20, and R. M. Krauss4

1Department of Molecular Biosciences, School of Veterinary Medicine, University of California, 
Davis, CA, USA,

2Department of Preventive Medicine, Diabetes and Obesity Research Institute, University of 
Southern California, Los Angeles, CA, USA,

3Institute of Human Nutrition and Food Science, Christian-Albrechts-Universität zu Kiel, Kiel, 
Germany,

4Children’s Hospital Oakland Research Institute, Oakland, CA, USA,

5Philip R. Lee Institute for Health Policy Studies, University of California, San Francisco, San 
Francisco, CA, USA,

6California Clinical and Translational Science Institute, University of California, San Francisco, 
San Francisco, CA, USA,

7Department of Anthropology, History, and Social Medicine, University of California, San 
Francisco, San Francisco, CA, USA,

8Touro University, Vallejo, CA, USA,

9Department of Medicine, University of California, San Francisco, San Francisco, CA, USA,

10Oregon Research Institute, Eugene, OR, USA,

11Department of Exercise and Nutrition Sciences, Milken Institute School of Public Health, The 
George Washington University, Washington, DC, USA,

12Department of Microbiology and Immunology, G.W. Hooper Research Foundation, University of 
California, San Francisco, San Francisco, CA, USA,

13Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA,

14Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA,

15Department of Nutrition, University of California, Davis, Davis, CA, USA,

16Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA,

17Department of Psychiatry, Osher Center for Integrative Medicine, University of California, San 
Francisco, San Francisco, CA, USA,

18Division of Molecular Genetics, Department of Pediatrics, Columbia University, New York, NY, 
USA,

19Department of Pediatrics, Emory University School of Medicine, Wellness Department, 
Children’s Healthcare of Atlanta, Nutrition and Health Sciences Doctoral Program, Laney 
Graduate School, Emory University, Atlanta, GA, USA,

20Department of Nutrition, Exercise, and Sports, Faculty of Sciences, University of Copenhagen, 
Copenhagen, Denmark

Summary

Stanhope et al. Page 2

Obes Rev. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Calories from any food have the potential to increase risk for obesity and cardiometabolic disease 

because all calories can directly contribute to positive energy balance and fat gain. However, 

various dietary components or patterns may promote obesity and cardiometabolic disease by 

additional mechanisms that are not mediated solely by caloric content. Researchers explored this 

topic at the 2017 CrossFit Foundation Academic Conference ‘Diet and Cardiometabolic Health – 

Beyond Calories’, and this paper summarizes the presentations and follow-up discussions. 

Regarding the health effects of dietary fat, sugar and non-nutritive sweeteners, it is concluded that 

food-specific saturated fatty acids and sugar-sweetened beverages promote cardiometabolic 

diseases by mechanisms that are additional to their contribution of calories to positive energy 

balance and that aspartame does not promote weight gain. The challenges involved in conducting 

and interpreting clinical nutritional research, which preclude more extensive conclusions, are 

detailed. Emerging research is presented exploring the possibility that responses to certain dietary 

components/patterns are influenced by the metabolic status, developmental period or genotype of 

the individual; by the responsiveness of brain regions associated with reward to food cues; or by 

the microbiome. More research regarding these potential ‘beyond calories’ mechanisms may lead 

to new strategies for attenuating the obesity crisis.
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Introduction: Janet King, Laura Schmidt

With the emergence and global spread of the highly palatable, processed foods that are 

major components of the Western diet and the rising rates of obesity and cardio-metabolic 

diseases (e.g. cardiovascular disease [CVD] and type 2 diabetes [T2D]), the focus of 

nutrition science has shifted from concerns about dietary deficiencies to concerns about 

dietary excesses. Given the well-documented relationship between Western diet and obesity 

(1–4) and between obesity and cardiometabolic disease (5) (Fig. 1), the dietary excess of 

greatest concern is caloric consumption. Unquestionably, most Americans are consuming 

too many calories; 69% of US adults are overweight (6), and new estimates, just released, 

indicate 39.8% of US adults are obese (7).

Yet a major question remains: are all calories equal with regard to effects on cardiometabolic 

disease and obesity? This was the question that was deliberated by national and international 

researchers at the 2017 CrossFit Foundation Academic Conference ‘Diet and 

Cardiometabolic Health – Beyond Calories’ in San Francisco, California.

In one important aspect, the answer to this question is clearly ‘yes’. The first law of 

thermodynamics states that energy can be neither created nor destroyed: energy in = energy 

out. Nutritionally, this means that once full growth is reached, if the energy consumed from 

foods and beverages is greater than the energy expended through metabolism, thermogenesis 

and physical activity, the surfeit will be stored mostly as body fat. Thus, our traditional 

energy balance paradigm dictates that excess consumption of calories from any food will 
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drive energy storage and increase the risk of obesity and cardiometabolic disease as defined 

by

Energy in > energy expended  = energy storage as fat .

There is no doubt that positive energy balance, due to excessive caloric consumption and/or 

inadequate physical activity, is the main driver of the obesity and cardiometabolic epidemics. 

However, it was the first objective of the Conference to consider whether certain dietary 

components increase risk for cardiometabolic disease by metabolic effects that are not 

driven solely by positive energy balance and fat gain. The evidence specific for saturated fat 

and added sugar, and the challenges pertaining to obtaining such evidence, were presented 

and discussed. It was the second objective of the conference to consider whether certain 

dietary patterns or components have the potential to promote fat gain via mechanisms that 

are in addition to their specific contribution of calories to the ‘energy in’ side of the energy 

balance equation. These mechanisms could include promoting excess energy consumption, 

more efficient extraction of energy from food within the intestine or preferential partitioning 

of energy towards fat storage. Evidence addressing this question was presented and 

discussed for long-debated topics such as high carbohydrate (CHO) diets and non-nutritive 

sweeteners (NNSs). Also, newer, emerging evidence was presented for the effects of caloric 

and NNSs during critical periods of development and for effects of the Western diet on 

reactivity in brain regions associated with reward and on reshaping gut microbiota. This 

paper summarizes the evidence presented for each topic, the areas of agreement, the topics 

that require more research and the nutritional approaches that should be emphasized for 

improving public health.

Objective 1: do certain dietary components increase risk for 

cardiometabolic disease by metabolic effects that are not driven solely by 

positive energy balance and fat gain?

Dietary fats: Ronald Krauss

A review, published in 1958, on the relationship of dietary fat to atherosclerotic disease 

stated:

The evidence now appears to be conclusive that sufficient quantities of 

polyunsaturated fat in the diet, with proportional decrease in saturated fat, will 

result in major decrease in blood lipid. Some evidence indicates that such blood 

lipid lowering produces a desirable effect upon existing atherosclerosis (8).

Fast forward to 2014 and there are at least two reviews on the same topic. One of them 

concludes that ‘data provide support for current recommendations to replace saturated fat 

with polyunsaturated fat for primary prevention of coronary heart disease (CHD)’ (9). The 

other concludes ‘current evidence does not clearly support CVD guidelines that encourage 

high consumption of polyunsaturated fatty acids and low consumption of total saturated fats’ 

(10). Clearly, both cannot be correct. Therefore, in addition to reviewing the evidence that 

supports the conclusion that dietary fats differ in their weight-independent effects on 
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cardiometabolic risk, it is also important to consider the challenges involved in conducting 

and interpreting nutritional research on the topic of dietary macronutrients. These challenges 

have contributed to 60 years of sometimes inconsistent and conflicting conclusions 

regarding the role of dietary fat and other macronutrients in the development and prevention 

of cardiometabolic disease.

Macronutrient subtypes—The major macronutrients, particularly fat and CHO, include 

subtypes that need to be carefully controlled/monitored and reported when conducting 

nutrition studies. This may seem obvious, but the results of many nutrition studies are 

challenging to interpret because the amounts and types of fat or CHO were not monitored 

and/or reported. One of the many examples is a study designed to compare the cholesterol-

lowering and triglyceride (TG)-lowering effects of four fat-restricted diets (30%, 26%, 22% 

and 18% of energy as fat), achieved via CHO replacement. The results were reported in the 

Journal of the American Medical Association in 1997 without any description of the type of 

CHO prescribed or consumed. The words sugar, simple CHO, sucrose, high-fructose corn 

syrup (HFCS) or other key CHO descriptors do not appear in the article (11). In the case of 

fats, one must also consider that beyond the major categories of saturated, monounsatu-

rated, n-3 and n-6 polyunsaturated, and trans fatty acids, there is heterogeneity within each 

group that may contribute to differing biologic and clinically relevant effects. Failure to 

distinguish between macronutrient subtypes, which has occurred even in recent reports (12), 

has likely contributed to conflicting dietary conclusions and to the ‘high fat versus high 

CHO diet’ debate that still rages today.

Food context—The food context within which macronutrients are consumed can also 

have a significant impact on CVD risk. For example, a 10-year cohort study provided 

evidence that the consumption of saturated fatty acids (SFA) from dairy foods was 

associated with decreased risk of CVD, while consumption of the same amount of SFA from 

meat (including red and processed meat, fish and poultry) was associated with increased 

CVD risk (13). Yet, even within the same food category, differences in formulations or 

processing can impact health effects. The fermentation of dairy products provides a notable 

example. While current evidence does not support an association between intake of dairy 

products and risk of cardiometabolic disease, fermented dairy products, such as cheese and 

yogurt, generally show inverse associations (14). Indeed, results from randomized crossover 

trials show that consumption of SFA in cheese lowers total and/or low-density lipoprotein 

cholesterol (LDL-C) compared with consumption of SFA in butter (15–18). As another 

example, a meta-analysis of 17 prospective cohorts and three case–control studies indicated 

that consumption of processed meat was associated with increased risk of CHD, but 

consumption of red meat was not (19).

Meta-analyses—Meta-analyses that combine studies that compared macro-nutrient A 

with B and studies that compared A with C or D or E can lead to misleading conclusions 

(20). Hooper et al. (21) illustrated this by pooling randomized controlled trials (RCTs) 

comparing SFA with polyunsaturated fatty acids (PUFAs; n-6 fatty acids), monounsaturated 

fat, CHO or protein and reporting a 17% reduction in CVD events with replacement of SFA. 

However, in separate analyses with each of the replacement nutrients, replacement of SFA 
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with n-6 fatty acids yielded a significant 27% reduction in CVD events. The separate 

analyses for replacement of SFA with monounsaturated fat, CHO or protein all showed non-

significant effects on CVD events (21). Differences in the effects of the replacement 

nutrients in both RCTs and observational cohort studies, and the pooling of these effects, 

likely help to explain the discrepant results from studies and meta-analyses investigating the 

effects of dietary SFA and other macronutrients on CVD risk (9,10,22–25).

Conclusions drawn from meta-analyses that include inappropriate studies can also be 

misleading. For example, the 2014 meta-analysis (10) that challenged the CVD benefit of 

replacing SFA with n-6 fatty acids has been criticized (26) for including potentially 

confounded data from the Sydney Diet Heart Study (27). The Sydney Diet Heart Study had 

included margarine with high trans fats in the n-6 fatty acids supplementation arm. 

Exclusion of the Sydney Diet Heart Study resulted in a seven-study meta-analysis with a 

relative risk estimate of 0.81 (0.68–0.98), thus supporting a CVD benefit of replacing SFA 

with n-6 fatty acids (28). However, concerns have been raised regarding the rationale for 

exclusion of this trial (29), as well as the inclusion of other trials (the Finnish Mental 

Hospital (30) and Oslo Diet-Heart (31) studies) that allowed for the continued consumption 

of trans fats from margarines in the control arms of the studies, thus confounding 

comparisons with the n-6 fatty acid diets (28). Furthermore, during the Oslo Heart Study, the 

experimental patients and spouses were taught in their homes how to select and prepare 

study foods, while the control group was not (31). In short, decisions regarding what studies 

are appropriate to include or exclude from a meta-analysis can vary among investigators and 

contribute to conflicting conclusions.

Randomized controlled trials with cardiovascular disease outcomes—Despite 

the limitations of the Finnish Mental Hospital (30) and Oslo Diet-Heart (31) studies, both of 

these RCTs, along with two others conducted at Wadsworth Hospital and Veterans 

Administration Center in Los Angeles (32) and by the British Medical Research Council 

(33), have been described as providing the highest-quality evidence available regarding the 

effects of dietary SFA compared with n-6 fatty acids (24). The population sizes in these four 

trials ranged from 400 to 1,200, and maximum diet exposure was 4–8 years, long enough to 

obtain CVD outcomes. All four trials monitored blood lipid levels and compliance 

biomarkers, and the two longest and largest trials also provided standardized diets (30,32). 

These studies were conducted more than 50 years ago, yet they compose the core evidence 

upon which a 2017 Presidential Advisory from the American Heart Association based the 

following summary: ‘randomized controlled trials that lowered intake of dietary saturated fat 

and replaced it with polyunsaturated vegetable oil reduced CVD by approximately 30%’ 

(24). Given the challenges and escalating costs associated with conducting nutritional RCTs 

with CVD outcomes, these four trials are likely to remain the highest-quality evidence 

available regarding the effects of dietary SFA compared with n-6 fatty acids (24).

Exemplifying the challenge and the expense of RCTs with CVD outcomes is the more recent 

Women’s Health Initiative Dietary Modification Study of ~48,000 women with an estimated 

cost of over $400m (34). Women were randomized to receive intensive behaviour 

modification in group and individual sessions aimed at reducing total fat intake to 20% of 

calories and increasing intake of vegetables/fruits to five servings per day and grains to at 
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least six servings per day or to the no-diet-modification group that received only diet-related 

education material. By year 6, the diet-modification group reported a mean increase of 1.1 

and 0.5 servings per day of fruit/vegetable and grain, respectively, and a mean 8% reduction 

in total fat energy. This resulted in a group reduction in fat consumption that was less than 

anticipated (37% of daily energy down to 28.8%), no significant reduction in CVD outcomes 

and only a modest reduction in LDL-C of 3.6% during the ~8-year intervention (35). It is not 

possible to know if the intervention failed to achieve reduction in CVD outcomes because 

the fat restriction was focused on total fat rather than subtype or because the dietary 

modifications reported by the participants were too modest or were overestimations of the 

dietary changes that actually occurred. The two latter limitations, potential non-compliance 

(36) and inaccurate reporting of food consumption (37) by research participants, are 

formidable challenges faced by all nutritional research studies, with the exception of those 

conducted in well-monitored inpatient facilities.

In contrast to the Women’s Health Initiative, a recent and smaller multicentre trial conducted 

in Spain focused on sub-types of fat in specific foods (38). Approximately 7,000 participants 

with T2D or three CVD risk factors were randomized to ad libitum Mediterranean diets 

supplemented either with extra-virgin olive oil (50 mL d−1 prescribed for participants, 1 L 

week−1 provided for family needs) or with mixed nuts (30 g d−1 provided for participants, 

1000 g/3 months provided for family needs) or to a control diet (non-food gifts provided) 

that was centred around a Mediterranean diet with advice to reduce dietary fat. After 4 years, 

the Mediterranean diets supplemented with either extra-virgin olive oil or nuts resulted in a 

relative risk reduction of approximately 30% for major CVD events (primarily stroke) 

compared with the control diet (38). These beneficial results were mainly mediated by 

consumption of the supplemental extra-virgin olive oil and the nuts, as there were few diet 

differences among the groups that were not due to these foods (38). It is worth noting that 

despite receiving supplemental calories in the olive oil (~9,000 kcal week−1) or nuts (~1,400 

kcal week−1), neither of the experimental groups nor the control group gained body weight 

during the trial (group means for Δbody weight at 4.8 years ranged from −0.9 to −0.4 kg) 

(39). The authors suggest that results provide evidence that restricting intake of healthy fats 

is not required for maintenance of body weight (39).

Biomarkers that can demonstrate causality—Given the high costs and challenges 

associated with RCTs with CVD outcomes, the next strongest line of research to draw on is 

prospective cohort studies. However, while these studies increase the feasibility of studying 

CVD outcomes, they cannot prove causality and are limited by the inaccuracies of self-

reported food intake (37) and the challenges related to identifying and adjusting for relevant 

covariates. Evidence of causality must often rely on RCTs in which outcomes are 

biomarkers of CVD rather than CVD events. Among modifiable CVD risk biomarkers, 

LDL-C and blood pressure have been the most strongly validated (40), and they provide the 

major rationale for therapies aimed at reducing disease risk (28). However, reliance on 

identifying dietary macronutrient effects on LDL-C may obscure effects on LDL particles, 

especially small dense LDL (sdLDL). sdLDLs may have more direct and specific effects on 

the development and progression of CVD than are predicted by the LDL-C measurement 

(41). Increased atherogenicity of sdLDL may be due in part to a longer residence time in 
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plasma, which exposes the arterial endothelium to proinflammatory and proatherogenic 

particle components such as apolipoprotein (apo)CIII (28,41,42). sdLDLs have been shown 

to be reduced with lower CHO intake (43). Further, the prevalence of LDL subclass pattern 

B, a categorical marker for atherogenic dyslipidaemia defined by the predominance of 

sdLDL, has been linearly and positively associated with increasing concentrations of dietary 

CHO (consisting of 50% starch and 50% sugar) in RCTs owing to effects of CHO that can 

occur in as few as 3 d (43). In contrast to CHO, dietary SFA in the ranges generally 

consumed appears to mainly increase larger LDL particles, which are less strongly 

associated with risk of CVD (41). Thus, SFA-induced increases in LDL-C may not signify 

an increase in CVD risk commensurate with that predicted from the relationship of LDL-C 

to CVD risk in the population (41). For example, recent results from the large multinational 

Prospective Urban Rural Epidemiology study found a correlation between SFA intake and 

LDL-C. However, simulation models indicated that LDL-C provided a poor measure of risk 

of CVD events and mortality as opposed to the ratio of serum apolipoprotein (apo)B (a 

measure of the total number of atherogenic lipoprotein particles) to apoAI (the principal 

high-density lipoprotein [HDL] protein), a ratio that in turn is associated with sdLDL levels 

(44). More studies are needed regarding whether there are specific pathophysiological 

properties of particles within the spectrum of sdLDL that merit the use of standardized 

assays for their measurement as a more informative biomarker of CVD risk than LDL-C 

(41). Another candidate CVD biomarker is apoCIII (28). apoCIII has been found 

consistently to be positively associated with the risk of CVD, likely because of its capacity 

to retard plasma clearance of atherogenic remnant lipoproteins (45) as well as its direct 

proinflammatory activity (46). Further, apoCIII in apoB-containing particles is increased 

with high-CHO diets (47,48). Given our reliance on the totality of the scientific evidence 

(prospective cohort studies: association between nutrient and disease outcome + RCTs: 

direct effects of nutrient on disease biomarker), valid biomarkers are essential.

Nutrient substitutions—Any isocaloric change in one macronutrient requires changes in 

others, and hence, it is difficult to determine if effects are caused by the increase in 

macronutrient A or the decrease in macronutrient B. Thus, rather than focus on effects of 

high versus low consumption of single nutrients on CVD risk, it is more appropriate to 

statistically evaluate the effects of nutrient or, better yet, food substitutions. The effects of 

nutrient substitutions for SFA were evaluated in over 127,500 men and women who were 

followed for 24–30 years (49). Replacing 5% of energy intake from SFA with equivalent 

energy intake from PUFAs, monounsaturated fatty acids or CHOs from whole grains was 

associated with a 25%, 15%, and 9% lower risk of CHD, respectively. Replacing SFA with 

trans fats or CHOs from refined starches/added sugars was not significantly associated with 

CHD risk (49). These results are consistent with the findings from recent meta-analyses that 

are not confounded by the challenges discussed above (9,21,24), although the effects of 

macronutrient heterogeneity and food context, as discussed above, also require 

consideration.

The evidence concerning omega-3 (n-3) PUFAs and cardiometabolic risk remains unclear. 

The consumption/supplementation of n-3 fatty acid is associated with reduced CVD risk in 

prospective cohort studies (10,50), but randomized controlled supplementation trials have 
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not shown significant beneficial effects (10). Nevertheless, a recent Science Advisory from 

the American Heart Association (51) stated that treatment with omega-3 PUFA supplements 

of patients with prevalent CHD such as a recent myocardial infarction is reasonable as even 

a potential modest reduction in CHD mortality (10%) in this clinical population would 

justify treatment with a relatively safe therapy.

Conclusions—Focusing on effects of nutrient substitution rather than high versus low 

SFA indicates that replacement of SFA with n-6 fatty acids is associated with lower CVD 

risk, while replacement of SFA with refined CHOs (starches and sugars) is associated with a 

neutral or adverse effect. However, more research is needed to consider the food and dietary 

context in which specific fats are consumed and to develop better tools to assess dietary 

patterns. Given the challenges of large RCTs with CVD disease endpoints, and the 

limitations of observational studies, identification and validation of additional surrogate 

biomarkers for RCTs would be of great value.

Dietary sugars: Kimber Stanhope and Jean-Marc Schwarz

All the challenges involved with conducting and interpreting research on dietary fat are also 

pertinent to the topic of dietary CHO/sugar. Therefore, similar to dietary fat, recent reviews 

(52–58) and meta-analyses (59–65) offer very conflicting conclusions concerning the effects 

of added sugar on cardiometabolic risk.

Definitions of added sugars and free sugars—As defined by the US Food and Drug 

Administrations, added sugars include sugars that are either added during the processing of 

foods or are packaged as such and include sugars (free, monosaccharides and disaccharides), 

sugars from syrups and honey and sugars from concentrated fruit or vegetable juices that are 

in excess of what would be expected from the same volume of 100% fruit or vegetable juice 

of the same type (66). The World Health Organization’s definition of free sugars is similar 

except that it also includes the sugar naturally present in 100% fruit juices and fruit juice 

concentrates (67).

Natural sugars—The sugars naturally present in whole fruit are exempt from both 

definitions, and dietary guidelines emphasize the importance of consuming whole fruits and 

vegetables. Prospective cohort studies consistently support this with evidence that fruit 

consumption (68–75) or fruit-plus-vegetable consumption (76–80) is inversely associated 

with incidence of CVD and T2D (81). The evidence from RCTs is inconclusive (82,83), and 

this is possibly due to the generally modest changes in fruit and vegetable intake that have 

been achieved in these studies (84). While dietary intervention studies comparing the 

consumption of added sugar to isocaloric amounts of sugar in whole fruit are lacking, the 

results from three RCTs suggest that consumption of naturally sweetened orange juice 

(85,86) or grape juice (87) decreases risk factors compared with sugar-sweetened beverages 

(SSB). In support of this, there are population studies that report that incidence/prevalence of 

metabolic syndrome (88,89), CVD (90) and T2D (91–93) and their risk factors (94–96) are 

associated with consumption of SSB or fruit juice with added sugar (93), but not with 

consumption of 100% fruit juice. However, the findings from several prospective cohort 

studies suggest that both 100% fruit juice and SSB consumption are positively and 
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comparably associated with metabolic syndrome (97) and T2D (98,99). Therefore, more 

RCTs comparing SSB and naturally sweetened fruit juice are warranted, as well as RCTs 

comparing added sugar with the sugar in whole fruit (82).

Added sugar—Regarding disagreements among meta-analyses concerning the health 

effects of added sugar, conclusions differ between those that compare fructose with any 

CHO, including sucrose and HFCS (60,100), and those that compare high added sugar diets 

with lower added sugar diets (62). Meta-analyses that include inappropriate studies also 

provide conflicting conclusions. An example of an inappropriate study, included in at least 

four meta-analyses reporting little or no detrimental effects of fructose consumption 

(61,100–102), is one in which the fructose in the high-fructose diet (60 g of fructose per 

day) was not added sugar but was rather provided by whole fruit (103). Furthermore, both 

the high-fructose and low-fructose (20 g of fructose per day) diets were weight loss diets; 

thus, subjects in both interventions lost significant amounts of weight (diet with fruit: −4.2 

± 0.3 kg; diet without fruit: −2.8 ± 0.3 kg) and, not unexpectedly, exhibited improvements in 

cardiometabolic risk factors (103).

Prospective cohort studies—The recent meta-analyses of prospective cohort studies 

investigating consumption of SSB have consistently shown positive relationships with CVD 

(59,104,105), T2D (106–110) and hypertension (59,111). The Nutrition and Chronic 

Diseases Expert Group systematically reviewed the evidence for effects of dietary factors on 

cardiometabolic diseases, including comprehensively assessing evidence for causality (112). 

They concluded that evidence from prospective studies suggests a body mass index (BMI)-

independent effect of SSB on incidence of T2D and CHD and an additional effect on 

adiposity (112).

The consumption of added sugar has been less extensively studied than SSB. In 2014, two 

large prospective cohort studies came to differing conclusions concerning the association 

between added sugar consumption and CVD mortality. Consumption of added sugar was 

positively associated with CVD mortality over 15 years in 11,733 National Health and 

Nutrition Examination Survey (NHANES) participants (age 20 and above) (113), but not 

over 13 years in 353,751 National Institutes of Health–American Association of Retired 

Persons (NIH-AARP) Diet and Health Study participants (age 50–71) (114). In the latter 

study (114), fructose in beverage was positively associated with CVD mortality. Study 

differences that may have influenced the results include sugar intake: the NHANES 

participants reported a mean baseline level of added sugar consumption of ~15.7% of daily 

energy (113), while the NIH-AARP Diet and Health Study participants reported a mean 

baseline level of free sugar consumption of ~9.6% of daily energy (114). The definition of 

free sugars for this study included sugar from dried fruit and applesauce, as well as from 

100% fruit juice (114). A 10-year prospective study in 2,379 girls (9–10 years at baseline) 

showed that consuming <10% of energy as added sugar resulted in increasing concentrations 

of HDL-C compared with consuming ≥10% of energy as added sugar (115). However, a 

study that divided added sugar into sugar added to beverage (mean intake: 2.6% of daily 

energy) and sugar added to solid food (mean intake: 9.4% of daily energy) found that the 

development of impaired glucose homeostasis and insulin resistance over 2 years in 8- to 10-
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year-old children (n = 564) at risk for obesity was only associated with added sugar in 

beverages (116).

Fructose versus glucose—There is evidence and plausible mechanisms to suggest that 

there are differences between CHOs with regard to their effects on cardiometabolic risk 

factors that mainly involve the differential metabolism of fructose and glucose. Even though 

both pure fructose and pure glucose are generally not used as added sugars, investigations of 

their specific metabolic effects have provided important mechanistic insights into the effects 

of sucrose and HFCS, the most commonly used added sugars that contain both fructose and 

glucose. The effects of fructose and glucose were compared in adults (mean age: 54 years, 

mean BMI: 29 kg m−2) who consumed 25% of their energy requirement (Ereq) as fructose-

sweetened or glucose-sweetened beverages for 10 weeks (117). These subjects resided at the 

clinical research centre and consumed eucaloric diets consisting of 55% Ereq as complex 

CHO for 2 weeks while baseline procedures were conducted. This was followed by an 8-

week outpatient period during which subjects consumed the fructose-sweetened or glucose-

sweetened beverages along with their usual ad libitum diets. Intervention procedures were 

conducted during the last 2 weeks of the study while subjects resided at the clinical research 

centre and consumed eucaloric diets consisting of 30% Ereq complex CHO and 25% Ereq as 

the assigned beverage. Although both groups gained comparable amounts of body weight 

(~1.5%) and body fat (~3%), there were marked differences between the effects of the two 

sugars. Subjects consuming glucose exhibited markedly higher post-meal glucose and 

insulin responses than those consuming fructose (118). Also, in keeping with the established 

paradigm by which positive energy balance promotes the development of metabolic 

syndrome through the increased insulin resistance and lipolytic activity of enlarged 

adipocytes (119) (Fig. 2), subjects consuming glucose exhibited higher 24-h circulating free 

fatty acids (FFA) (117). In contrast, fructose consumption did not affect FFA levels. Yet it 

was the subjects consuming fructose who exhibited increased de novo lipogenesis (DNL), 

reduced fat oxidation, increased circulating TG (postprandial only), LDL-C, sdLDL-C, 

oxidized LDL, apoB, apoCIII and uric acid and decreased insulin sensitivity (117,120,121). 

The essential mechanistic feature that explains these results is that the hepatic uptake and 

metabolism of glucose is regulated by hepatic energy status, which allows glucose to bypass 

the energy-replete liver and raise post-meal blood glucose and insulin levels. In contrast, the 

hepatic uptake and metabolism of fructose is unregulated (122,123); thus, excessive fructose 

consumption results in a hepatic substrate overload that increases uric acid production 

(121,123–125) and up-regulates DNL (117,126,127). As illustrated in Fig. 3, the major 

downstream effects include inhibition of fat oxidation (120,127), increased liver lipid 

content (127–129), up-regulated secretion of large very-low-density lipoproteins 1 (130), 

dyslipidaemia (131) and hepatic insulin resistance (132,133). Increased inflammation 

induced by increases in visceral fat (117,128) or fructose exposure in the intestine (134,135) 

or liver (136) may also mediate or enhance metabolic dys-regulation.

High fructose corn syrup versus fructose and glucose—The results from the 10-

week intervention comparing fructose and glucose (117) suggest that the hepatic substrate 

overload induced by excessive consumption of fructose (Fig. 3) is a more rapid pathway to 

metabolic dys-regulation than the increased FFA (Fig. 2) and post-meal hyperglycaemia/
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hyperinsulinaemia induced by excessive consumption of glucose. These studies also suggest 

that because the commonly consumed sugars HFCS and sucrose contain 50–55% fructose, 

their overconsumption would have less detrimental effects on risk factors than isocaloric 

amounts of pure fructose. Data from a 2-week dietary intervention study (125,137), in which 

adults (mean age: 26 years, mean BMI: 25 kg m−2) consumed beverages containing 25% 

Ereq as fructose, glucose or HFCS along with their usual ad libitum diet, showed that 

circulating post-prandial TG, apoCIII and uric acid concentrations were highest during 

fructose consumption (Δbody weight: −0.1 kg), lowest during glucose consumption (Δbody 

weight: 0.4 kg) and intermediate during HFCS consumption (Δbody weight: 0.4 kg) (137). 

However, surprisingly, this was not the pattern for fasting and postprandial concentrations of 

LDL-C, non-HDL-C and apoB. The levels of these CVD risk factors were highest after 

HFCS consumption, lowest after glucose consumption and intermediate after fructose 

consumption (137), suggesting potentially synergistic effects of fructose and glucose 

consumption on these measures when the two sugars are consumed concurrently.

Utilizing the same 2-week dietary intervention protocol (125,137), adults (mean age: 25 

years, mean BMI: 26 kg m−2) consuming beverages containing 0% (aspar-tame-sweetened 

beverage), 10%, 17.5% or 25% Ereq from HFCS with their usual ad libitum diets exhibited 

dose-dependent increases of fasting and postprandial non-HDL C, LDL-C, apoB and uric 

acid and postprandial apoCIII and TG concentrations (all P < 0.001) (125). HFCS 

consumption also resulted in a dose-dependent increase in body weight (Δbody weight: 0%, 

0.1 kg; 10%, 0.0 kg; 17.5%, 0.3 kg; 25%, 0.8; P < 0.05); however, in adjusted statistical 

models, the variance attributed to Δbody weight was 1–3% and the variance attributed to 

HFCS dose was 9–29% (125). These results are in contrast to those from a study in which 

adults consuming beverages containing 8%, 18% or 30% Ereq as sucrose or HFCS with 

usual ad libitum diets for 10 weeks exhibited no differences in cholesterol and LDL-C (138) 

or 24-h uric acid and TG area under the curve (139) between doses. As previously discussed 

in detail (58,125), possible explanations for the conflicting results include differences in the 

statistical analyses employed, use of three cups per day of low-fat milk as a vehicle for the 

sugars, lack of a vehicle control group and lack of an objective measure of compliance in the 

10-week study (138,139).

Sucrose—Data from several older studies suggest that consumption of sucrose also 

increases total and/or LDL-C (140–144) or postprandial TG (142,145). More recently, men 

(mean age: 26 years, mean BMI: 22 kg m−2) consuming beverages containing either 80 g d
−1 sucrose or fructose with their usual ad libitum diets for 3 weeks had higher concentrations 

of total and LDL-C and reduced LDL particle size than when they consumed beverages 

containing 80 g of glucose (146,147). This study also showed that the fructose-sweetened 

beverages decreased hepatic insulin sensitivity compared with the glucose-sweetened 

beverages, even though body weight, body fat and waist circumference were reduced after 

fructose consumption compared with glucose consumption (146). In the longest of the recent 

intervention trials, liver fat, and fasting TG, total cholesterol and uric acid concentrations 

were increased in adults (mean age: 39 years, mean BMI: 32 kg m−2) consuming 1 L of 

sucrose-sweetened cola per day with their usual ad libitum diets for 6 months compared with 

subjects consuming isocaloric amounts of low-fat milk or 1 L of aspartame-sweetened cola 
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or water per day (124,128). The changes in body weight ranged from +0.1 (aspartame) to 

+1.4% (low-fat milk) and did not differ among the four diet groups (P = 0.8) (128). A 2-

week study that concurrently investigated consumption of 25% Ereq as sucrose-sweetened 

(Δbody weight: 0.5 kg) or HFCS-sweetened beverages (Δbody weight: 0.8 kg) with ad 
libitum diets in adults (mean age: 26 years, mean BMI: 25 kg m−2) showed that the effects 

of the two added sugars on LDL-C, apoB, apoCIII, uric acid and postprandial TG were 

comparable (148).

Sucrose versus starch—There appears to be only one study that has investigated the 

effects of replacing starch with sucrose in solid food, as opposed to SSB, at levels less than 

30% Ereq. Twenty-four women and men with hyperinsulinaemia (mean age: 36 years, mean 

BMI: 25 kg m−2) consumed three eucaloric (42% Ereq fat, 14% protein and 44% CHO), 

crossover diets in which the 44% CHO component was provided as 39% starch + 5% 

sucrose, 26% starch + 18% sucrose or 11% starch + 33% sucrose in solid form for 6 weeks 

each. Fasting lipids (143), glucose and insulin concentrations, and the glucose and insulin 

responses to an oral sucrose tolerance test (149) were increased when subjects consumed the 

18% and 33% Ereq sucrose diets compared with the higher starch diet containing only 5% 

Ereq sucrose (143,149). More studies are needed to compare the metabolic effects of sugar 

consumed in solid and liquid forms with both refined and whole-grain CHO in 

normoinsulinaemic individuals consuming isocaloric diets.

Weight-independent effect of fructose/sugar—All of the studies detailed above, with 

the exception of the investigation on solid-form sucrose versus starch (143,149), provided 

the intervention sugar as supplements to the participants’ usual ad libitum diets. While the 

modest weight gains suggest that most of the subjects partially compensated for the sugar 

supplements by consuming less of their usual diet, there is still the potential for confounding 

by excess energy consumption and weight gain. However, studies with dietary protocols that 

included the provision of eucaloric diets with matched macronutrient distribution between 

the high-sugar and low-sugar diets have demonstrated that fructose and sucrose consumption 

can increase risk factors in the absence of positive energy balance and weight gain 

(127,140,143–145,149–158). These studies include a recent crossover study that provided 

evidence that all the major effects of fructose overload, detailed in Fig. 3, can occur in the 

absence of positive energy balance and weight gain. Eight men (mean age: 42 years, mean 

BMI: 24 kg m−2) resided at a clinical research centre and consumed eucaloric diets in which 

the CHO component consisted of 25% Ereq fructose-sweetened beverage + 25% complex 

CHO or 50% Ereq complex CHO for 9 d each (127). Despite weight maintenance, this 

short-term exposure to fructose-sweetened beverage increased DNL, inhibited fat oxidation, 

increased liver fat and postprandial plasma TG concentrations and decreased hepatic insulin 

sensitivity compared with the complex CHO diet. Each of these effects was observed in all 

eight participants, with the exception that postprandial TG was not increased in one 

individual (127). It is important to note, however, that these results could have been affected 

by both the differences between fructose and complex CHO and the differences between 

beverage and solid food. However, in a much older study, Hallfrisch et al. compared the 

isocaloric substitution of starch with 0%, 7.5% or 15% Ereq as fructose in solid food, 

utilizing eucaloric crossover diets that were provided for 5 weeks each to 12 
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hyperinsulinaemic and 12 normoinsulinaemic men (mean age: 40 years, mean BMI: 26 kg m
−2). Compared with the 0% fructose diet, the 7.5% and 15% fructose diets increased total 

cholesterol and LDL-C (154) and the 15% fructose diet increased glucose and insulin 

responses to a 3-h oral sucrose tolerance test in both groups of subjects (153). More recently, 

a study that provided eucaloric diets including 25% Ereq as fructose-sweetened (n = 15) or 

glucose-sweetened beverages (n = 17) for 2 weeks to men (mean age: 34 years, mean BMI: 

29 kg m−2) did not reveal differences in liver fat, but fasting uric acid concentrations and 

homeostatic model assessment insulin resistance (HOMA-IR) were increased by fructose 

compared with glucose consumption (155). Similar results were reported from a crossover 

study in which men (mean age: 46 years, mean BMI: 32 kg m−2) were provided eucaloric 

low-sucrose (sucrose 5.2%, total sugar 17.1% of daily calories) or high-sucrose (sucrose 

14.9%, total sugar 30.2% of daily calories – details about non-sucrose sugar are not 

provided) diets for 6 weeks (156). While there were no differences in peripheral glucose 

utilization and suppression of endogenous glucose production during a two-step 

hyperinsulinaemic euglycaemic clamp, fasting and oral glucose tolerance test areas under 

the curve were higher for both glucose and insulin after the high-sucrose versus lowsucrose 

diet (156).

Sugar restriction—In a study designed to demonstrate weight-independent effects of 

fructose restriction to reverse the adverse metabolic effects of excessive fructose 

consumption, eucaloric diets were provided for home consumption to 43 Latino and 

African–American adolescents (mean age: 13 years) with metabolic syndrome for 9 d (159). 

The diets contained 10% Ereq as added sugar, considerably less than the average of 27% 

Ereq recorded for the participants’ usual diets (159). In response to the lower-sugar diets, the 

adolescents exhibited numerous benefits including reductions of liver fat, visceral adipose 

tissue and DNL (160), plasma lipids and lipoproteins (161), glucose and insulin excursions 

during oral glucose tolerance test and diastolic blood pressure (159). Body fat was not 

affected (−0.3 kg, P = 0.17), but body weight was significantly decreased (−0.9 kg, P < 
0.01). Despite efforts by the investigators to promote body weight maintenance by providing 

more food, body scales for daily weight monitoring at home, and individualized weight 

maintenance counselling, 34 of the 43 participants exhibited a decrease in body weight 

(159). This confounds assessment of the direct metabolic effects of fructose restriction as 

opposed to those mediated by negative energy balance and weight loss. However, the 

subgroup of nine subjects who did not lose weight also had statistically significant 

reductions in most of the outcomes (DNL, liver fat, visceral adipose tissue, fasting glucose, 

insulin and HOMA-IR) (159–161).

Two more recent studies demonstrate benefits of sugar restriction in children with obesity 

(162,163). In response to a 6-week dietary intervention consisting of advice to reduce 

fructose consumption from a usual intake >70 to <20 g d−1, 54 children (age range: 6–11 

years) exhibited significant decreases in liver fat and fasting TG, but no changes in body 

weight or BMI (162). A 6-month dietary intervention consisting of advice to reduce 

consumption of fructose and high glycaemic index foods resulted in lowered systolic blood 

pressure, alanine aminotransferase, apoB and HOMA-IR in 12 children (age range: 7–18 

years) with non-alcoholic fatty liver disease (NAFLD) (163). An important limitation of all 
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three of these studies (159,162,163) is they did not include control groups. However, in a 

recent RCT, adults (mean BMI: 31 kg m−2), whose normal diets contained ~94 g of sugar 

per day from SSB, were randomized to receive and consume their usual quantity of beverage 

sweetened with sucrose (n = 14) or with an NNS (n = 13) for 12 weeks (164). The group 

consuming NNS exhibited significant decreases in liver fat compared with the group who 

continued to consume SSB (87.9 g sugar from SSB consumed per day at 12 weeks) (164). 

However, while the changes in body weight were not significant, the NNS group lost ~1.4 kg 

and the SSB group gained ~1 kg. More adequately powered RCTs are required to delineate 

the weight-independent and weight-dependent effects of sugar restriction.

Conclusions—Consumption of fructose-sweetened, HFCS-sweetened or sucrose-

sweetened beverages leads to greater increases in risk factors for cardiometabolic disease 

than isocaloric amounts of starch. More studies comparing the metabolic effects of SSB with 

those of added sugar in solid food and comparing added sugar in solid foods with both 

refined and whole-grain complex CHO are required. The metabolic dys-regulation induced 

by excessive consumption of fructose-containing sugar is mainly caused by hepatic fructose 

overload increasing DNL, which leads to inhibited fat oxidation, increased liver fat and 

increased very-low-density lipoprotein production/secretion. Risk factors associated with 

metabolic dys-regulation increase even when fructose-containing sugars are consumed with 

diets that do not result in positive energy intake and weight gain.

Objective 2: do certain dietary patterns or components have the potential 

to promote fat gain via mechanisms that are in addition to their specific 

contribution of calories to the ‘energy in’ side of the energy balance 

equation?

Older and emerging evidence on the high-carbohydrate/high-glycaemic-index diet: Anja 
Bosy-Westphal

The high-carbohydrate versus high-fat diet debate—The potential to promote fat 

gain via mechanisms that are in addition to caloric content has been attributed to both high-

CHO and high-fat diets. Thirty years ago, the consensus was that a high-fat diet promotes 

greater fat gain than a high-CHO diet because dietary fat is converted to body fat much more 

efficiently than dietary CHO (165). At that time, clinical studies showed that the body does 

not handle fat ingestion in the same way as CHO or protein ingestion. More specifically, (a) 

unlike CHO ingestion, which stimulates CHO oxidation and even DNL in extreme cases 

(166), the ingestion of dietary fat is not reciprocated by an increase in fat oxidation (167–

169); (b) similarly, under eucaloric conditions, replacement of CHO by fat in the diet takes 

several days or weeks to stimulate fat oxidation, even in the presence of increased physical 

activity (169–172); (c) the thermic effect of dietary fat is lower than that from CHO or 

protein (173–175); (d) because of the higher energy density of fat and its low satiating effect, 

fat ingestion leads to food overconsumption (176,177). Together, these results strongly 

suggested that dietary fat was a key culprit in the western diet leading to enhanced storage of 

body fat (178). All these studies lead to the development of the ‘Flatt hypothesis’, which 

proposes that unlike CHO and protein, excess fat intake is not rapidly buffered by increased 
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fat oxidation but requires a significant amount of weight gain to re-establish a new fat 

balance (179). At this new weight and body composition, the amount of CHO, fat and 

protein oxidized will match the amount of CHO, fat and protein consumed (i.e. respiratory 

quotient = food quotient) and weight can be maintained (179).

The consensus that dietary fat is the specific culprit in the obesity crises has waned with the 

perception that while Americans decreased their intake of dietary fat, the rates of overweight 

and obesity have risen (180). Whether this occurred because dietary fat does not promote fat 

gain more efficiently than CHO or because Americans did not achieve substantial reductions 

in fat intake or because their fat calories were replaced by even more calories of low-fat/

high-CHO/high-sugar foods is not known. However, it increased focus on the possibility that 

a high-CHO diet has the potential to increase fat gain by affecting both sides of the energy 

balance equation. Specifically, when meals with a high proportion of glucose-containing 

CHOs are consumed, higher post-meal glucose excursions lead to larger meal-associated 

insulin excursions than when isocaloric high-fat/low-CHO meals are consumed (181). This 

physiologic hyperinsulinaemia has the potential to promote fat gain by driving glucose and 

FFA into storage forms, which also decreases the availability of circulating metabolic fuels 

and promotes hunger (182).

Energy-restricted weight loss diets—This mechanism serves as the rationale for many 

popular high-fat weight loss diets. However, it is not supported by a recent 14-day inpatient 

metabolic balance study examining the effect of selective isocaloric reduction of dietary 

CHO versus fat on body weight, energy expenditure and fat balance in 19 volunteers with 

obesity. The results showed that calorie for calorie, the high-CHO weight loss diet led to 

greater body fat loss than the high-fat diet, despite the fact it was the high-fat diet that led to 

decreased insulin secretion (183). A 2014 meta-analysis of 19 RCTs lasting 3 months to 2 

years with ~3,200 participants showed no significant differences in loss of body weight 

between participants assigned to consume low-CHO weight loss diets compared with those 

assigned to consume isocaloric higher-CHO (45–65% of energy) weight loss diets (184). A 

second meta-analysis also indicated there was no significant difference in weight loss 

between low-fat and high-fat weight loss interventions when the interventions were 

concordant for caloric restriction (185). Furthermore, an RCT with a 2 × 2 factorial design 

comparing four energy-restricted diets with low or high amounts of protein (10% or 20% of 

energy) and low or normal amounts of CHO (25% or 50% of energy) showed that weight 

loss after the 12-month intervention was unaffected by CHO content but significantly greater 

on the high protein diets (186). A recent 12-month weight loss diet study showed 

comparable weight reduction in subjects consuming a healthy low-fat diet (−5.3 kg) vs. a 

healthy low-CHO diet (−6.0 kg). Notably, the dietary instructions for both diet groups 

included the following: (1) maximize vegetable intake; (2) minimize intake of added sugars, 

refined flours and trans fats; and (3) focus on whole foods that were minimally processed, 

nutrient dense and prepared at home whenever possible (187). Collectively, these results 

suggest that hypocaloric high-CHO diets do not impede fat loss compared with hypocaloric 

low-CHO diets in the majority of the population.
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Ad libitum diets—However, because the majority of people do not spend the majority of 

their time consuming hypocaloric diets, far more important to the obesity epidemic is the 

question of whether high-CHO/lower-fat diets promote fat gain compared with low-CHO/

higher-fat diets when consumed ad libitum (188). In the ad libitum condition, a differential 

effect between the two diets to promote weight gain could be mediated by mechanisms 

related to satiety and energy in-take, as well as by differences in their potential to promote 

fat storage versus fat oxidation. Results from a meta-analysis of 16 studies suggest high-

CHO/lower-fat diets do not cause more weight gain than low-CHO/high-fat diets. Instead it 

was concluded that a reduction in dietary fat to 27% of energy without intentional restriction 

of energy intake caused weight loss compared with control diets containing 37% of energy 

as fat (and less CHO) in subjects without obesity (189). A more recent meta-analysis of 30 

RCTs comparing participants consuming ad libitum lower-fat versus usual or moderate-fat 

diets also showed a consistent but small effect of low-fat intake to reduce body fat and/or 

weight (190). However, the majority of the studies included in both of these meta-analyses 

provided the participants with dietary guidelines rather than diets, and the dietary 

instructions and counselling time spent with the groups consuming the fat-restricted diets 

were considerably more extensive than those provided to the groups consuming the higher-

fat control diets. A separate analysis with five trials that did equalize attention between both 

diets groups showed there was still significantly more weight loss in the groups consuming 

the lower-fat diets (190).

Another recent meta-analysis does not support this conclusion (185). This 17-trial meta-

analysis excluded trials shorter than 1 year because initial, maximal weight loss after 

approximately 6 months is often followed by weight regain (185). It showed that the weight 

loss exhibited by the low-fat groups was specific to comparisons with groups consuming 

‘usual diet’ and receiving less attention in the form of dietary instruction and/or counselling. 

Only four of the included trials provided comparable attention to both the low-fat and 

higher-fat diet groups, and two showed greater weight loss with the low-fat diet while the 

other two did not. Therefore, the authors of this meta-analysis concluded that evidence from 

RCTs does not support low-fat diets over other dietary interventions for beneficial effects on 

energy balance (185).

Thus, the effects of high-CHO/lower-fat diets compared with low-CHO/higher-fat diets on 

energy balance continues to be a subject of controversy owing to the lack of well-controlled 

studies of sufficient duration. The challenges involved in filling this gap do not consist of 

just ensuring that the attention provided to the intervention and control groups are equal. 

Study participants often fail to meet the goals of their dietary assignments, especially in the 

later months of the intervention period, even when equal, and even very intensive (191), 

dietary instructions and counselling are provided (191,192). This suggests that the better 

way to compare the effects of ad libitum high-CHO/low-fat diets with low-CHO/high-fat 

diets on energy intake and body weight gain is to provide the participants with ample food 

and meals formulated to the specification of the assigned diet and prohibit the consumption 

of any other foods. This is an expensive protocol that will still be limited by potential non-

compliance (36) and failure to report the non-compliance (37). Future technological 

advances may address the compliance and reporting limitations with, for example, wearable 
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food intake monitoring devices (193). However, even if/when perfect compliance and 

accurate reporting are achieved, there still remains the possibility that provided study diets 

lead to reductions in ad libitum energy intake because of monotony and curtailment of 

freedom of dietary choice, rather than to the specific dietary manipulations. Unintended 

weight loss, which could have been related to the lack of dietary choice rather than dietary 

composition, confounded the results of a recent crossover study that provided subjects with 

high-CHO meals for 4 weeks and then very-low-CHO meals for 4 weeks (194). The lack of 

freedom of choice is also a potential confounder for long-term inpatient protocols, especially 

ones in which the change of energy intake is the primary outcome. Restrictions related to 

dietary freedom can reduce energy intake, but inpatient confinement can lead to boredom 

and/or depression and increase energy intake.

Possibly, the protocol that best minimizes the monotony and the freedom of dietary choice 

issues for studies investigating effects of ad libitum diets on energy intake and body weight 

gain is the ‘shop’ model utilized in studies conducted in Europe for 6-month interventions 

(195). This protocol provides free foods that are appropriate to the formulations of the 

assigned experimental diets in a grocery shop setting. At the check-out stand, the foods 

selected by the participants are scanned to ensure that the selections in total meet the 

specifications for the assigned diet and provide at least 100% of daily Ereq. The uneaten 

foods are returned and re-scanned for calculation of energy and nutrient intake. The 

feasibility of utilizing this protocol for 1-year interventions is limited by the expense.

In addition to controlling the potential effects that restricted dietary choice and monotony 

may have on energy intake, the optimal protocol for comparing the effect of high-CHO 

versus high-fat diets on weight gain must also control for other dietary components that can 

affect satiety and energy intake. This includes protein, which has been shown to dose-

dependently increase postprandial fullness, decrease postprandial hunger and affect 

homeostatic hormones involved in the regulation of energy intake (196). There is also 

evidence to suggest that a high-protein diet reduces reward-driven eating behaviour 

(197,198). Fibre also affects satiety (199) by mechanisms that may include energy density, 

decreasing and slowing nutrient absorption from the intestine or triggering signals related to 

fullness by causing water absorption and distention in the stomach (200). Because whole 

grains contain more fibre and have a lower energy density than refined grain, it is not 

surprising that most short-term studies suggest they promote greater satiety (201). It also 

then would not be surprising if a study comparing a high-fat diet with a high-CHO diet with 

whole grains yielded different results than a study comparing a high-fat diet with a high-

CHO diet with refined grains. The type of fat to be studied may also affect results as there is 

evidence to suggest that n-3 fatty acids increase satiety (202).

Thus, the challenges involved in resolving the high-CHO versus high-fat diet debate are 

immense. Research effort and funds may be better directed to determining the optimal ad 
libitum diet for promoting satiety and reduced energy in-take. This was recently undertaken 

by Arguin et al. (200) who compared an ad libitum diet consisting of food components 

(protein > 20% of energy, whole grain, whole fruit and vegetable, n-3 fatty acids, chilli 

peppers with capsaicinoids (203) and calcium (204)) known to have satiety-enhancing 

properties (e.g. low-energy density and fibre) with an ad libitum control diet based the 
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Canadian Food Guide for Healthy Eating for 16 weeks. Fat mass was significantly 

decreased, and the satiety quotient for hunger, fullness and prospective food consumption 

was significantly increased in male participants who consumed the diet with the satiety-

enhancing food components compared with those who consumed the control diet. However, 

an important limitation of the dietary protocol that may have affected subject retention rates 

(satiety diet: 91.4%; control diet: 55.9%) and study results was the provision of one pre-

prepared meal per day to the high-satiety diet group, but none to the control diet group 

(200). Nevertheless, the advantages of changing focus from diets designed around 

macronutrient groups to diets designed around high-nutrient, satiating food components that 

have the palatability to compete with low-nutrient, energy-dense processed foods warrant 

exploration.

Preventing weight regain in weight-reduced subjects—Another area that warrants 

more focus is how to prevent weight regain in subjects who have lost weight on energy-

restricted diets. Numerous studies show that the energy homeostatic systems regulating 

energy intake, energy expenditure, neuroendocrine function and autonomic function in 

weight-reduced subjects conspire to oppose reduced weight maintenance (205–208), in 

individuals with or without obesity (207). These adaptations, rather than the comparative 

efficacy of various weight-loss diets or treatments, are responsible for the depressingly 

unsuccessful clinical attempts to reverse the obese or overweight states. Investigations 

focusing on the leptin signalling pathways may have the most potential to yield strategies to 

prevent weight regain. Leptin administration, which has little effect on subjects at their usual 

body weight or on subjects consuming energy-restricted diets, has been shown to, at least 

partially, reverse many of the metabolic, autonomic, neuroendocrine and behavioural 

adaptations that lead to weight regain in weight-reduced subjects (209).

The weight regain period following hypocaloric diets may represent a specific scenario 

during which an ad libitum high-CHO diet does promote more weight gain than a low-CHO 

diet. A recent study showed that weight loss was not different in men consuming low-calorie 

diets containing either a high glycaemic load (65% of energy as CHO with a high glycaemic 

index) or lower glycaemic load (50% of energy as CHO with a low glycaemic index) (210), 

in agreement with the conclusions from the meta-analyses cited above (184,185). However, 

during the follow-up 3-week overfeeding period, the same men consuming 150% Ereq as the 

high-CHO/high-glycaemic-load diet gained 1 kg more body weight than the men consuming 

150% Ereq as the low-CHO/low-glycaemic-load diet (210). Fat regain among all subjects 

was inversely associated with fasting fat oxidation (210). Two other investigations in weight-

reduced subjects provide evidence that high-CHO/high-glycaemic-load diets promote 

greater weight regain (211) or lower energy expenditure (212) than lower-CHO/lower-

glycaemic-load diets.

Energy restriction and weight reduction are associated with improved insulin sensitivity 

(213,214). However, with cessation of energy restriction, it may be possible that the 

augmented insulin secretion caused by high-glycaemic-load diets selectively impairs insulin 

sensitivity in muscle while maintaining it in white adipose tissue, thus resulting in lowered 

fat oxidation and increased fat storage. This mechanism, lowered muscle insulin sensitivity 

and increased adipose sensitivity, has been well documented in rodents exposed to 
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hyperinsulinaemia (215–217), including in a rat model of weight recovery (218). 

Conversely, it was demonstrated that mice lacking insulin receptors in adipose tissue had 

normal whole-body glucose metabolism, but the insulin-stimulated glucose uptake in their 

adipocytes was reduced by 90%. This resulted in mice with reduced adipose tissue mass and 

increased longevity (219,220).

Other conditions associated with positive energy balance and lowered insulin sensitivity in 

skeletal muscle relative to adipose tissue could also lead to a disproportional gain in fat mass 

in response to a high-glycaemic-load diet. One example may be physical inactivity, which 

specifically lowers muscle insulin sensitivity (221). In support of this, young healthy men 

displayed lowered whole-body glucose utilization during a hyperinsulinaemic euglycaemic 

clamp after 10 d of bed rest than before bed rest (222). This suggests decreased insulin 

sensitivity primarily in their skeletal muscle. In contrast, the glucose uptake in their 

subcutaneous abdominal adipose tissue was increased after bed rest (222). Lowered insulin 

sensitivity in skeletal muscle relative to adipose tissue may also occur in metabolically 

healthy obesity (223), a transient state (224) that may be explained by high adipose insulin 

sensitivity promoting adipose expansion over ectopic lipid deposition (225).

Conclusions—At comparable levels of energy restriction, high-CHO/low-fat weight loss 

diets do not impede fat loss compared with low-CHO/high-fat diets. More well-controlled 

trials lasting at least 1 year are needed to determine the effects of ad libitum high-CHO/low-

fat diets compared with ad libitum low-CHO/high-fat diets on energy balance. Emerging 

evidence suggests that, following weight loss on energy-restricted diets, ad libitum 
consumption of a high-CHO/high-glycaemic-load diet may, via increased insulin exposure, 

decrease insulin sensitivity in muscle and increase insulin sensitivity in adipose, thus 

increasing susceptibility to weight regain. More clinical studies are needed to test this 

hypothesis, but also to investigate other strategies that may affect weight regain following 

otherwise successful non-surgical weight loss.

High-carbohydrate/high-glycaemic-load diet and metabolic status: Arne Astrup

A recent publication provides evidence to suggest that susceptibility to weight gain on a 

high-CHO diet may be influenced by the metabolic status of the individual (226). The 

investigators reanalysed data from three dietary intervention studies in which diets that 

differed in CHO content (227,228) or glycaemic load (192) were compared for their effects 

on weight loss or weight regain. The reported effects of diet group on body weight in the 

total population of individuals with obesity were quite small (weight-reduced subjects on 

low-glycaemic-load diet regained 1.9 kg less than those on the high-glycaemic-load diet 

over 6 months (192)) or undetectable (227,228). However, when the subjects were divided 

into subgroups based on their baseline fasting glucose and insulin levels, consistent and 

more pronounced effects of the different diets were detected (226). In all three studies, 

participants with high baseline fasting glucose and low fasting insulin exhibited a greater 

loss of body weight on the diets with a low CHO content or glycaemic load than participants 

with the same glucose and insulin profile on diets with higher CHO content (Fig. 4A) or 

glycaemic load (Fig. 4B). These analyses suggest that insulin-resistant obese individuals, 
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with a low capacity to increase insulin secretion and overcome the resistance, achieve more 

satiety and weight loss on lower-CHO/lower-glycaemic-load diets.

In another study, 90 participants who consumed the New Nordic Diet (more calories from 

local and wild countryside plant foods, more seafood and seaweed from local seas and lakes 

and fewer calories from meat (229)) for 6 months lost 3 kg more body weight than 56 

participants who consumed the average Danish diet (230). Subsequent analysis showed that 

participants with high fasting glucose/low fasting insulin lost 6 kg more body weight 

consuming the New Nordic Diet than participants with the same glucose and insulin profile 

consuming the average Danish diet (226). It is important to note that food records suggest 

that the two groups consumed comparable amounts of available CHO, but the New Nordic 

diet group consumed 15 g d−1 more fibre (230) and more whole grain. This suggests that the 

glycaemic index/load (not assessed in the study, but likely lower in the New Nordic diet due 

to the fibre and whole grain) rather than CHO content is involved in the body weight 

differences between the participants with high fasting glucose/low fasting insulin on the two 

diets. However, a recent report from the study investigators also suggests an influence of gut 

microbiota on diet response (231). Faecal samples were collected from a subgroup of the 

subjects before starting the New Nordic or average Danish diets, and the ratio of the relative 

abundance of Prevotella spp. to Bacteroides spp. (P/B) was determined. Previous reports 

have identified Prevotella and Bacteroides as two typical bacterial clusters present in humans 

(232), with the relative abundance of Prevotella associated positively with host diet 

(vegetarian and fibre) (233,234) and negatively with cardiometabolic risk factors (234). 

Among individuals with a high P/B ratio, the New Nordic Diet resulted in a 3.2 kg larger 

body fat loss compared with the average Danish diet, while no difference in body fat loss 

was observed between the Nordic diet and average Danish diet among individuals with low 

P/B. Among individuals on the New Nordic diet, those with a high P/B ratio lost 

significantly more body fat than those with a low P/B ratio, while body fat loss was not 

different between high-P/B and low-P/B groups consuming the average Danish diet (231). 

Recently, dietary-fibre-induced improvements in postpran-dial blood glucose and insulin 

were found to be positively associated with the abundance of Prevotella (235). Therefore, the 

importance of baseline fasting glucose and insulin (i.e. insulin sensitivity) for diet response 

with regard to weight loss may be linked to gut microbiota and dietary fibre content (231).

Grouping subjects by a combination of fasting glucose and fasting insulin was found to be 

superior to other various indices of insulin resistance, such as the 30-min response to a 

glucose dose, for detecting group-by-diet interactions. A good prediction is also achieved 

when using fasting glucose alone. Patients with T2D or with three or more CVD risk factors 

were assigned to consume a low-fat Mediterranean diet or a Mediterranean diet with extra-

virgin olive oil, and after 5 years, the weight loss difference between the two diet groups was 

less than 0.5 kg (39). However, when regrouped by fasting glucose, the subjects with higher 

glucose levels on the Mediterranean diet lost ~2 kg more body weight than the subjects with 

higher glucose levels on the lower-fat diet.

Conclusions—Emerging evidence suggests that high-CHO diets, or more specifically, 

high-glycaemic-load/low-fibre diets may promote weight gain or impede weight loss in 

subjects with impaired glucose metabolism/insulin resistance. Pretreatment fasting glucose 
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and insulin measurements could be useful for identifying individuals who would benefit 

most from a low–glycaemic-load/high-fibre diet that may improve their weight loss and/or 

weight maintenance success.

Non-nutritive sweeteners: Allison Sylvetsky

Because NNSs such as aspartame, sucralose, saccharin, acesulfame K and steviol glycosides 

such as rebaudioside A (extracted from the stevia plant) contain zero or negligible calories, 

they do not directly contribute to the energy intake side of the energy balance equation. 

However, it has been suggested that NNS consumption, through several potential 

mechanisms, may indirectly affect energy balance (236–238). A meta-analysis of nine 

prospective cohort studies of adults and children demonstrated a positive association 

between NNS consumption and BMI (0.03 kg m−2, 95% confidence interval: 0.01, 0.06) 

(239). Epidemiological studies have also shown positive associations between NNS and 

metabolic syndrome (240–242) and T2D (241,243–248). These studies do not demonstrate 

causation and are limited by the possibility of residual confounding and reverse causality. 

Specifically, individuals with higher BMI who are concerned about their weight or patients 

with T2D may then choose to consume NNS instead of caloric sweeteners. However, studies 

in which rodents gained more weight (249,250) or exhibited inflammation (251) or glucose 

intolerance (252) consuming NNS compared with rodents consuming glucose (249) or 

sucrose (250) provide support for potential cause and effect relationships.

Mechanisms such as sweet taste receptor activation, disturbance of the expected relationship 

between sweetness and calories, changes in taste preferences and alteration of gut 

microbiota may explain these associations (236–238). It is also possible that caloric 

compensation occurs, negating calories ‘saved’ by using NNS. This compensation could be 

psychological, whereby one’s knowledge of consuming a lower-calorie NNS-containing 

alternative may lead to giving oneself permission for greater calorie ingestion at subsequent 

meals. Compensation could be physiological, in which consumption of lower-calorie NNS-

containing alternatives promotes heightened hunger and subsequently higher calorie intake.

However, it has been questioned whether any of the above mechanisms occur in humans and 

whether they occur consistently in rodents. Based on a systematic review, it was reported 

that in 62 of 90 animal studies, NNS did not increase body weight (253), and a more recent 

meta-analysis of 12 prospective cohort studies did not support an association between NNS 

consumption and BMI (0.002 kg m−2; 95% confidence interval: −0.009, 0.005) (253). 

Further-more, two separate meta-analyses consisting of 10 (239) and eight (253) RCTs both 

indicated that substituting NNS for sugar resulted in a modest weight loss in adults. Findings 

also favoured weight loss when NNS was compared with water, but this meta-analysis only 

included three trials (253). Because the benefits of substituting NNS for sugar is a very 

different question than the benefits of substituting NNS for water, more studies comparing 

NNS and water are warranted. This is especially true for the sucralose, saccharin, 

acesulfame K and steviol glycosides, which have been much less studied than aspartame. 

Aspartame was utilized in nine of the studies included in the meta-analyses (239,253), and 

three of these nine studies administered aspartame in commercially available beverages, 

consistent with the manner in which aspartame is frequently consumed (254).
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It does not appear that any of these RCTs revealed adverse effects of NNS consumption on 

risk factors for cardio-metabolic disease (255). Therefore, NNS may be a useful tool for 

increasing adherence to behavioural weight loss regimens. The longest intervention study 

conducted to date included 163 obese women who were randomly assigned to consume or to 

abstain from aspartame-sweetened foods and beverages during 16 weeks of a 19-week 

weight reduction programme (active weight loss), a 1-year maintenance programme and a 2-

year follow-up period. The aspartame group lost significantly more weight overall and 

regained significantly less weight during the 1-year maintenance and the 2-year follow-up 

than the no-aspartame group (256). During a more recent study in which 303 men and 

women who habitually consumed diet (NNS) beverages participated in a weight loss 

programme that included a randomized assignment to either stop drinking NNS beverages 

and consume 24 oz (710 mL) of water or to continue drinking NNS beverages daily for 1 

year (257), those in the NNS beverage group lost more weight. These results should be 

interpreted with caution as those randomized to NNS beverages were essentially continuing 

their usual beverage intake, while those who were assigned to switch to water were required 

to implement and sustain a behaviour change. Furthermore, consuming NNS in the context 

of an intensive weight loss programme focused on calorie reduction may promote more 

weight loss than NNS use in the general population. Nevertheless, several studies that were 

not conducted as part of weight loss programmes also showed no effects of NNS to increase 

body weight (125,128,258,259). This includes the 6-month intervention cited above in 

which overweight/obese subjects consumed 1 L of sucrose-sweetened cola, isocaloric 

amounts of low-fat milk or 1 L of aspartame-sweetened cola or water per day. There were no 

significant differences between the effects of aspartame-sweetened cola and water on body 

weight, visceral adiposity, liver fat and metabolic risk factors including blood TGs, HDL, 

total cholesterol, fasting plasma glucose, fasting plasma insulin, HOMA-IR and uric acid 

(124,128). Indeed, there are no clinical intervention studies involving chronic NNS exposure 

in which NNS induced a weight increase relative to sugar, water or habitual diet (253).

While studies investigating effects of NNS on weight in children are limited, the largest 

study to date included 641 normal-weight children, aged 4–11 years, who were randomized 

to groups consuming 8 oz of sucralose-sweetened beverage or SSB daily for 18 months 

(260). Compared with SSB consumption, consumption of sucralose-sweetened beverage 

reduced weight gain and fat accumulation. However, this study did not include an 

unsweetened control. Because children gain weight due to growth over an 18-month period, 

without a water or attention control group, it cannot be determined whether the sucralose-

sweetened beverage had no effect on body weight or just less effect than the SSB.

Conclusions—Randomized controlled trials consistently demonstrate that consumption of 

NNS may promote decreased energy in-take, particularly when used as part of 

comprehensive weight loss programmes. Additional well-controlled RCTs are warranted, 

most specifically for saccharin, acesulfame K and steviol glycosides, which have been 

studied less frequently than aspartame and for periods no longer than 16 weeks. More 

studies in children and more studies assessing metabolic and health outcomes beyond body 

weight, such as effects on glucose tolerance and inflammation, are needed.
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Responses in brain regions associated with reward to the palatable Western diet: Eric 
Stice

Palatable, high-sugar and/or high-fat foods, major components of the typical Western diet, 

can indirectly affect the energy-in side of the energy balance equation through activation of 

brain regions associated with reward that promotes overeating. Importantly, it is not the 

greater reward region response to the tastes of palatable food that predicts future weight 

gain, but rather the greater reward region response to images of palatable foods (including 

advertisements) and visual cues (eg. Golden Arches™) that signal impending tastes of 

palatable foods. Both animal (261,262) and human (263) experiments indicate that after 

repeated pairings of cues (cartoon picture of chocolate milkshake (263)) that predict 

palatable food tastes and actual palatable food tastes, dopamine signalling increases in 

response to predictive cues but decreases in response to actual food tastes. Therefore, 

excessive caloric intake that results in weight gain is associated with reduced caudate (one of 

the brain structures that compose the reward system) response to tastes of high-sugar/high-

fat foods (264) and an increase in reward region response to visual cues that suggest 

impending tastes of these foods (265). An apparent result of this process is that exposure to 

food cues prompts eating in the absence of hunger, which contributes to excessive weight 

gain. Indeed, prospective studies show that elevated reward responses to television 

advertisements depicting palatable foods that are high in dietary fats and sugars (266) or to 

food cues (267) predicted weight gain in adolescent girls and boys (266–268), young women 

(269) and adults (270) over periods ranging from 6 months to 3 years. Furthermore, 

interventions that reduce reward region responses to food cues, either through food response 

training (271,272) or blockage of sweet taste receptors (272,273), promoted weight loss or 

reduced intake of high-sugar foods.

Functional magnetic resonance imaging (fMRI) is considered to be one of the best tools 

currently available for the detection of regional brain activations to specific cues or tasks 

(274). However, correlations from studies utilizing fMRI have been faulted for being 

artificially inflated mainly due to small sample sizes (275). More recent studies, though, 

have confirmed the predictive relationship between increases in reward region response to 

food cues and energy intake or future weight gain using prospective data that establish 

temporal precedence (265), split-half replication (265,267) and sample sizes of ~150 

(265,267,276). Furthermore, in these larger studies (265,267,276), healthy body weight 

(BMI > 18 and <25 kg m−2) was an inclusion criteria, thus ensuring that prior overeating or 

obesity did not contribute to the reward region response measured by fMRI at baseline 

(267,276). Collectively, these studies indicate the potential value of fMRI as a tool to study 

vulnerabilities to weight gain and also highlight food cues for their likely importance in the 

obesity epidemic (277).

Conclusions—Elevated reactivity in brain regions associated with reward in response to 

food cues predicts future weight gain. Regular in-take of palatable foods that are high in fat 

and sugar increases responses to food cues in brain regions associated with reward, further 

increasing overeating. Strategies that reduce responses to food cues in brain regions 

associated with reward may be effective for promoting weight loss and preventing weight 
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gain. This is an evolving area with high potential to increase knowledge regarding the 

development of obesity and perhaps help to curb the obesity epidemic.

Emerging evidence about sugar consumption during critical periods and in vulnerable 
populations: Michael Goran

Elevated reactivity in brain regions associated with reward in response to high-sugar-food 

cues may explain the positive associations between added sugar and SSB consumption and 

weight gain in both prospective cohort trials (278–283) and RCTs (281,283). However, it 

does not explain the emerging evidence that suggests effects of direct and indirect sugar 

exposure on body composition in very young children.

Vulnerability to second-hand sugar exposure during gestation—Gestation is a 

critical developmental period during which second-hand sugar exposure may increase 

susceptibility to obesity in the offspring. Gilman et al. recently reported that in 1,078 

mother–child pairs, maternal SSB consumption during the second trimester of pregnancy 

was positively associated with several indices of obesity in 7-year-old children, including fat 

mass measured by dual-energy X-ray absorptiometry (284). The associations were not 

attenuated when adjusted for maternal energy intake or for the number of SSB servings per 

day consumed by the children. The results also showed no association between maternal 

intake of NNS beverages and child BMI/adiposity. Both findings are in conflict with the 

results of a recent study by Zhu et al. who reported a positive association between child BMI 

z-score at age 7 and maternal intake of NNS beverages during gestation, but no association 

with maternal intake of SSB (918 mother–child pairs) (285). Study differences that may 

have contributed to the discordant results include less accurate and objective outcomes (child 

height and weight reported by the mother (285) versus height, weight and body fat via dual-

energy X-ray absorptiometry measured by study staff (284)) and less precise adjustment 

increments for the child’s intake of SSB and NNS beverages at age 7 (<1 or ≥1 serving per 

week (285) versus servings per day (284)) in the latter study (285). It is also possible that the 

association between maternal consumption of NNS beverages and child BMI z-score 

represented reverse causation. In the Zhu et al. study, pre-pregnancy BMI was higher (27.6 

kg m−2) (285) than in the Gilman study (24.6 kg m−2) (284), and it was positively associated 

with NNS beverage consumption (P < 0.001) (285). However, another recent study also 

reported positive associations between maternal consumption of NNS during pregnancy and 

risk of overweight of the off-spring during infancy and no such association with maternal 

consumption of SSB (3,033 pairs) (286). Further analyses from this study showed the 

positive associations between maternal consumption of NNS during pregnancy and risk of 

overweight were specific to male offspring and to infants who were not breastfed for at least 

6 months (286). Also, post hoc analyses revealed positive associations between maternal 

SSB, fruit drinks and fruit juice consumption and risk of over-weight in the offspring (287). 

As recently reviewed, the evidence concerning the long-term effects of NNS exposure 

during gestation, infancy and childhood is limited and inconsistent, and more investigation is 

needed (288).

Vulnerability to second-hand sugar exposure during lactation—Lactation is also 

a critical developmental period during which second-hand sugar exposure may increase 
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susceptibility to obesity in the offspring. A recent study of 25 mother–child pairs provided 

evidence that the fructose concentration in breast milk is associated with infant body 

composition, including fat mass (289). Breast milk samples collected at 1 and 6 months 

post-partum contained fructose, but at much lower concentrations than glucose and lactose 

(means = 0.0037, 0.14, and 421 mmol L−1, respectively). However, the concentrations of 

fructose were quite variable, and it was the only component of breast milk that was 

positively associated with infant body weight, fat mass, lean mass and bone mineral content 

at 6 months of age (289). While this level of fructose has been shown to enhance 

transcription factors involved in adipocyte differentiation (peroxisome proliferator-activated 

receptor γ and CCAAT/enhancer-binding protein α) and increase glucose transporter 4 

expression in preadipocyte culture (290), more research will be needed to determine whether 

it has in vivo effects in breastfed infants.

Vulnerability to first-hand sugar exposure during infancy and early childhood
—If infants are susceptible to the effects of second-hand fructose exposure during gestation 

and lactation, then it follows that they are also susceptible to direct effects of fructose 

consumption. In support of this, the prevalence of obesity in a study of 1,189 6-year-old 

children was twice as high in those who consumed SSB during infancy (0–12 months of 

age) compared with those who consumed none (17.0% vs. 8.6%) (291). Adjustment for SSB 

intake at age 6 did not eliminate this association (291). Importantly, consumption of any 

SSB during infancy also doubled the risk that these children would be consuming at least 

one SSB per day at age 6 (292).

Added sugar consumption may contribute to the susceptibility of Hispanic children to early-

onset obesity within the first few years of life. The prevalence of obesity in 1,483 Hispanic 

children, 2–4 years of age, from the Los Angeles County Women, Infants and Child 

programme, was 15% (293) compared with the average of 10% in 2–5-year-old NHANES 

children born in the same years (294). Based on caregiver reports, 18% of the Hispanic 

children consumed two or more servings of SSB per day (serving = 12 oz), 25% consumed 

one serving and 57% consumed zero SSB serving per day. Overall, this a 50% higher level 

of SSB consumption than that reported for 2- to 3-year-old children in NHANES 2003–2004 

(295). SSB consumption by the young Hispanic children was associated with BMI, with the 

prevalence of obesity exceeding 20% among children who consumed two or more SSB 

servings per day (293). On the positive side, it was also observed that the prevalence of 

obesity was reduced to 10% among the children consuming two or more SSB servings per 

day who had been breastfed for ≥1 year, resulting in a significant interaction between SSB 

intake and breastfeeding (P = 0.005) (293). More study of young Hispanic children will be 

needed to determine the contributions of added sugar consumption, socio-economic status, 

cultural factors and genetics to their high prevalence of obesity and to examine the 

mechanisms underlying the protective effects of longer-term breastfeeding.

Sugar consumption in vulnerable populations—Sugar exposure may have unique 

effects in certain populations. Hispanics for example may be particularly vulnerable to the 

adverse effects of sugar exposure because they are disproportionate carriers of the variant 

allele of the patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene. The 
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PNPLA3 variant allele has a frequency rate of about 50% in Hispanics compared with <10% 

in other populations (296). The PNPLA3 variant predisposes to NAFLD (297) and is 

associated with increased liver fat (296,298), elevated plasma alanine transaminase levels 

(299,300) and cirrhosis/advanced fibrosis (301) in the Hispanic population. Hispanic 

children with obesity, ranging in age from 8 to 18 years, also exhibited significantly 

increased liver fat as a function of PNPLA3 risk allele number, with 64% of the homozygous 

carriers having a liver fat content greater than 5.5% (302) (>5% liver fat = NAFLD).

The effects of the PNPLA3 variant allele may be exacerbated in the context of a high-sugar 

diet (303). PNPLA3 variant allele knock-in mice had normal levels of hepatic fat on a chow 

diet, but when challenged with a high-sucrose diet, their liver fat levels increased twofold to 

threefold compared with wild-type littermates consuming a high-sucrose diet (297). Obese 

Hispanic children with two copies of the PNPLA3 variant were particularly susceptible to 

increased liver fat when consuming a diet high in added sugar (302). Conversely, when 

adults homozygous for the variant allele were placed on a low-calorie, low-CHO diet, they 

lost 3 kg of body weight and reduced liver fat by 45% in only 6 d. Control subjects, who 

were homozygous for the wild-type gene and matched for BMI and liver fat, lost the same 

amount of weight, but their reduction in liver fat (18%) was significantly lower (304). More 

studies are needed to confirm a gene * diet interaction between the PNPLA3 gene variant 

and dietary sugar intake.

Conclusions—Added sugar consumption in early life is associated with higher obesity in 

childhood. More research is needed to determine if first-hand and second-hand sugar 

exposure during critical developmental periods, specifically gestation, lactation and infancy, 

is associated with higher risk of obesity. The greater frequency of the PNPLA3 gene variant 

in Hispanics and its potential interaction with dietary sugar may make Hispanic children and 

adults particularly susceptible to the negative health effects of high-sugar diets.

Contributions of the gut microbiome to diet-induced obesity: Peter Turnbaugh

Consumption of a high-fat, high-sugar Western diet may affect one or both sides of the 

energy balance equation by shifting the types of microbes found within the gastrointestinal 

tract (the gut microbiome) and their metabolic activity. Consumption of the Western diet 

results in a significant change to the gut microbiome (often increased Firmicutes and 

decreased Bacteroidetes) (305), a microbial signature that is remarkably reproducible across 

inbred and outbred mice of diverse genotypes and mice with defects in immunity and 

metabolism (306). Gut microbes from mice with Western-diet-induced obesity or from lean 

mice consuming a low-fat, plant-polysaccharide-rich diet were transplanted into germ-free 

(GF) recipients. The GF mice receiving the microbiome from mice with Western-diet-

induced obesity gained more body fat than the mice receiving the microbiome from the lean 

donors (305), demonstrating that differences in the mouse gut microbiome can affect host 

energy balance.

Human studies also support causal links between diet, the gut microbiome and host energy 

balance (307–309). Short-term dietary interventions revealed that consumption of a high-fat 

diet rich in animal products reshapes the human gut microbiome within a single day (310). 
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Transplantation of the stool microbiome from human twins discordant for obesity 

demonstrated that the mice receiving the microbiomes of the twins with obesity gained more 

body fat than mice colonized with the microbiomes of lean twins (308).

Multiple mechanisms have been proposed through which changes in the structure and 

function of the gut microbiome influence host adiposity, encompassing both sides of the 

energy balance equation (311). One possible mechanism by which gut bacteria may increase 

‘energy in’ is by liberating additional calories from the diet and/or altering the intestinal 

absorption of nutrients. Compared with lean controls, the distal gut microbiomes from obese 

mice were enriched for genes that encode enzymes that break down substrates such as plant 

polysaccharides that cannot be metabolized by human enzymes (312). Consistent with 

studies of the Western-diet-associated microbiome (305), transplantation of the distal gut 

microbiome from obese mice resulted in a significant increase in host adiposity (312). Other 

groups have identified single bacterial strains and even specific proteins that are sufficient to 

ameliorate diet-induced obesity. Colonization with the gut Verrucomicrobium Akkermansia 
muciniphila led to increased stool calories (consistent with altered intestinal metabolism 

and/or absorption), normalization of plasma lipopolysaccharide concentration and decreased 

insulin resistance and triglyceridaemia in high-fat-fed mice (313). These effects appeared to 

be partly mediated by activation of toll-like receptor 2 by a specific protein present on the 

outer membrane of A. muciniphila (313,314). Recent studies have also suggested that gut 

bacterial metabolites may increase appetite through the activation of the parasympathetic 

nervous system (315).

On the other hand, there is emerging evidence to suggest that gut bacteria can also affect 

energy output (316). An example of one potential mechanism involves microbiota-induced 

changes in bile acid composition, which can alter signalling to the bile acid nuclear receptor, 

farnesoid X receptor (FXR) (317–319). A recent study in conventionally raised (CONVR) or 

GF mice that were wild type (FXR+/+) or FXR knockout (FXR−/−) suggested that the gut 

microbiota impacts diet-induced obesity via FXR signalling. While consuming a high-fat 

diet for 10 weeks, CONVR FXR+/+ mice gained more body weight and had higher levels of 

liver fat than CONVR FXR−/− mice, GF FXR+/+ mice or GF FXR−/− mice (320)). Previous 

studies in mice treated with an FXR inhibitor have shown that the decreases in liver fat were 

accompanied by unaffected energy intake and increased energy expenditure (321).

Conclusions—Consumption of a processed high-fat, high-sugar diet alters the structure 

and function of the mouse gut microbiome (322). Data from animal models suggest that the 

gut microbiome can shape both sides of the energy balance equation, altering energy intake 

and expenditure. More research is needed to better understand the mechanisms responsible, 

the role of diet-induced changes to the gut microbiome in the pathophysiology of 

cardiometabolic disease and the translational relevance of these findings for the treatment of 

human obesity.

Overall conclusions

The overall purpose of the 2017 CrossFit Foundation Academic Conference was to address 

the following question: are all calories equal with regard to effects on cardio-metabolic 
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disease and obesity? It was the first objective of the conference to consider whether certain 

dietary components, specifically fat and sugar, increase risk for cardiometabolic disease by 

metabolic mechanisms that are not mediated solely by positive energy balance and fat gain. 

Although this is a complex area involving the need to account for many inter-related factors, 

including the challenges related to manipulating and/or documenting dietary intake in 

human research subjects, the authors agree on the following points:

• Evidence suggests that consumption of n-6 fatty acids results in lower 

cardiometabolic risk factors/risk compared with isocaloric amounts of SFA. 

However, differences exist between individual SFA, and the food matrix needs to 

be considered; e.g. dairy foods such as cheese and yogurts are associated with 

reduced cardiometabolic risk. More research is needed to clarify the differences 

among the individual SFA and SFA-containing foods.

• Evidence strongly suggests that consumption of fructose-sweetened, HFCS-

sweetened or sucrose-sweetened beverages increases cardiometabolic risk 

factors/risk compared with isocaloric amounts of starch. More research is needed 

comparing the metabolic effects of SSB versus sugar in solid food and sugar in 

solid food versus refined or whole grain starch.

• Under the second objective of the conference, it was considered whether all 

calories were equal with regard to their potential to promote fat gain and obesity. 

More specifically, evidence was presented suggesting that certain dietary patterns 

or components have the potential to promote fat gain via mechanisms that are in 

addition to their specific contribution of calories to the ‘energy in’ side of the 

energy balance equation. The authors agree on the following points:

• There is currently insufficient evidence that a high-CHO diet affects weight gain 

or weight loss to a different extent than a high-fat diet. Susceptibility to weight 

gain when consuming diets high in refined CHO/glycaemic load may be affected 

by the metabolic status of the individual (i.e. glucose tolerance/insulin 

sensitivity). More studies focused on strategies to prevent weight regain in 

weight-reduced subjects are needed.

• RCTs ranging from 4 weeks to 3 years in duration demonstrate that consumption 

of aspartame does not promote body weight gain in adults. Well-controlled and 

long-term RCTs in adults are warranted to assess the effects of saccharin, 

acesulfame K and steviol glyco-sides on body weight and other health outcomes. 

More studies to assess the effects of all types of NNSs in children are needed.

• Continued research on the following topics could provide important insights and 

strategies for slowing the obesity epidemic.

– The high-sugar, high-fat palatable Western diet could be perturbing 

both sides of the energy balance equation through effects on brain 

regions associated with reward and/or on the gut microbiome.

– Susceptibility to weight gain may be affected by exposure to sugar 

and/or NSS during critical periods of development from pre-conception 

to adult life.
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Nutrition and public health

Rates of obesity and cardiometabolic disease continue to climb globally (7,323–326). This is 

clearly a multifactorial problem that involves genetic, metabolic, behavioural and 

environmental factors, and progress towards a resolution will require consideration of all 

these factors (327). Regarding nutrition, the speakers and delegates at this conference agree 

that strategies to solve the complex problems associated with obesity should include 

consideration of the above conclusions regarding added sugar and specific high-SFA foods. 

Also, we need more research on the effects of diet in vulnerable populations and during 

critical periods of development, and the ways that responses to diet may be mediated by the 

genotype or metabolic status of the individual, by the responsiveness of brain regions 

associated with reward to food cues or by the microbiome. Such research may provide new 

strategies for attenuating the obesity crisis by developing more individual-based/precision-

based nutrition approaches. Therefore, the search for solutions must include support for 

research to promote the potential of these new strategies and to fill knowledge gaps. And, 

finally, they also agree that the scientific evidence related to any single food or 

macronutrient or mechanism is less likely to impact the global epidemics of obesity and 

cardiometabolic disease as significantly as solutions related to the following:

• Prevention: The food environment needs to be improved. Food policies that will 

improve the availability and reduce the costs of healthy foods compared with 

high-calorie, palatable foods are needed. Lowering the plethora of food cues that 

may promote overeating of high-sugar, high-fat palatable foods could also be an 

effective strategy.

• Healthy dietary patterns: Strategies that emphasize the health benefits and 

palatability of dietary patterns consisting of whole grains, fruits, vegetables and 

healthy fats, rather than the negative consequences of a single food or food 

group, are likely a better approach to prevention.

• Personalized nutrition: Individual variability needs to be considered when 

defining the healthy diet. For example, the optimal diet composition for weight 

control may depend on the individual’s glucose metabolism. In addition, 

genetics, the microbiome, life stages (pregnancy, infancy and early childhood), 

culture, dietary preferences and weaknesses (i.e. ‘Is the brain reward region more 

activated by sweet candy bars or salty potato chips?’) should all be considered 

when determining the optimal diet pattern for an individual or susceptible 

segment of the population.
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Abbreviations:

apo apolipoprotein

BMI body mass index

BMIZ BMI z-score

CHD coronary heart disease

CHO carbohydrate

CVD cardiovascular disease

DNL de novo lipogenesis

Ereq energy requirement

FFA free fatty acids

fMRI functional magnetic resonance imaging

FPI fasting plasma insulin

FXR farnesoid X receptor

HDL high-density lipoprotein

HFCS high-fructose corn syrup

HOMA-IR homeostatic model assessment insulin resistance

LDL-C low-density lipoprotein cholesterol

NAFLD non-alcoholic fatty liver disease

NHANES National Health and Nutrition Examination Survey

NIH-AARP National Institutes of Health–American Association of Retired 

Persons

NNS non-nutritive sweetener

PNPLA3 patatin-like phospholipase domain-containing protein 3

P/B Prevotella spp. to Bacteroides spp.

PUFA polyunsaturated fatty acid

RCT randomized controlled trial

sdLDL small dense low-density lipoprotein

SFA saturated fatty acid
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SSB sugar-sweetened beverages

TG triglyceride

T2D type 2 diabetes

USDA United States Department of Agriculture

VLDL very-low-density lipoprotein
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Figure 1. 
The potential links between dietary patterns and components and cardiometabolic risk. The 

totality of the evidence suggests that added sugar and certain saturated-fat-containing foods 

increase risk for cardiometabolic disease by metabolic mechanisms that are not mediated 

solely by positive energy balance and fat gain. There is also evidence that certain dietary 

patterns or components can increase ‘energy in’ and/or ‘energy storage as fat’ via 

mechanisms that are not explained solely by their specific contribution of calories to the 

‘energy in’ side of the energy balance equation. The strength of the links is indicated by the 

green lines as follows. Solid green line: supported by evidence from animal studies and 

clinical observational and dietary intervention studies. Dashed line: evidence from 

prospective cohort studies and/or clinical dietary intervention studies suggests heightened 

risk during critical developmental periods and in persons with compromised glucose 

tolerance or insulin sensitivity. Dotted line: supported mainly by evidence from 

observational and/or animal studies only. Dotted line w/X: evidence from 100% of the 

clinical dietary intervention studies do not support the evidence from the observational and 

animal studies.
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Figure 2. 
Established paradigm by which positive energy balance promotes the development of the 

metabolic syndrome. Positive energy balance leads to fat accumulation and larger and more 

insulin-resistant adipocytes (a). The insulin resistance increases lipolytic activity and 

circulating free fatty acids (FFA) (b). While lipolytic activity is higher in visceral adipose 

tissue than subcutaneous adipose, upper body subcutaneous adipose is a major contributor to 

the increased levels of FFA (328,329). High levels of FFA can mediate muscle (c) (330) and 

liver (d) (331) insulin resistance. Hepatic uptake of FFA leads to increased liver lipid (e), 

which is associated with liver insulin resistance (f) (332) and promotes very-low-density 

lipoprotein (VLDL) production/secretion (g) and dyslipidaemia (h) (328,333). Increased 

exposure to circulating triglyceride promotes intramyocellular lipid accumulation (i) (334), 

which is associated with insulin resistance (j) and type 2 diabetes (332). Inflammatory 

factors released by insulin-resistant visceral adipose tissue (k) may also promote hepatic 

insulin resistance (l) and lipid accumulation (m) (119).
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Figure 3. 
Potential mechanisms by which consumption of fructose promotes the development of 

metabolic syndrome The initial phosphorylation of dietary fructose in the liver is largely 

catalysed by fructokinase C (a), which is not regulated by hepatic energy status (122,123). 

This results in unregulated fructose uptake and metabolism by the liver. The excess substrate 

leads to increased de novo lipogenesis (DNL) (b) (117,127). DNL increases the intra-hepatic 

lipid supply directly (127–129), via synthesis of fatty acids (c), and indirectly by inhibiting 

fatty acid oxidation (d) (120,127). Increased intra-hepatic lipid content promotes very-low-

density lipoprotein (VLDL) production and secretion (e) (130). This leads to increased 

levels of circulating triglyceride (TG) and low-density lipoprotein particles (dyslipidaemia) 

(f) (131), risk factors for cardiovascular disease (CVD) (g). Increased levels of hepatic lipid 

may also promote hepatic insulin resistance (132) by increasing levels of diacylglycerol, 

which may activate novel protein kinase C and lead to serine phosphorylation (serine P) of 

the insulin receptor and insulin receptor substrate 1 and impaired insulin action (h) (335). 

Because of selective insulin resistance, DNL is even more strongly activated in the insulin 

resistant liver (i) (336), which has the potential to generate a vicious cycle (circular arrows) 

that would be perpetuated by sustained fructose consumption. This cycle would be expected 

to further exacerbate VLDL production and secretion via increased intrahepatic lipid supply 

(130). Hepatic insulin resistance also promotes VLDL production/secretion (j) by increasing 

apolipoprotein B availability (337,338) and apolipoprotein CIII synthesis (339) and by up-

regulating microsomal TG transfer protein expression (MTP) (336). This exacerbates and 

sustains exposure to circulating TG, leading to intramyocellular lipid accumulation (k) 

(334), impaired insulin signalling and whole-body insulin resistance (l) (332). The 

fructokinase-catalysed phosphorylation of fructose to fructose-1-phosphate, which results in 

conversion of adenosine triphosphate to adenosine monophosphate and a depletion of 

inorganic phosphate, leads to uric acid production via the purine degradation pathway (m) 

(121,123–125). High levels of uric acid are associated and may contribute to increased risk 
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for development of fatty liver (n) and CVD (o) (340–342). Fructose exposure in the intestine 

(p) (134,135) and liver (q) (136) and fructose-induced increases of visceral adipose (r) may 

promote inflammatory responses (117,343) that further promote liver lipid accumulation (s) 

and/or impair hepatic insulin signalling (t) (119).
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Figure 4. 
(A) Reanalysed results from the NUGENOB Study: subjects with obesity, prediabetes and 

low fasting insulin lost more weight on a high-fat vs. low-fat diet. (B) Reanalysed results 

from the DioGenes Study: subjects with obesity, prediabetes and low fasting insulin regained 

three to four times less weight on a low–carbohydrate (CHO)/low-glycaemic-index (GI) diet 

than subjects with normal glycaemia and obesity. *P < 0.05 from zero; #P < 0.05 between 

glycaemic/insulinaemic groups. Fasting plasma insulin (FPI). Modified from Hjorth et al. 
(226).
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