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Abstract

Individuals create and consume more diverse data about themselves today than any time in history. 

Sources of this data include wearable devices, images, social media, geo-spatial information and 

more. A tremendous opportunity rests within cross-modal data analysis that leverages existing 

domain knowledge methods to understand and guide human health. Especially in chronic diseases, 

current medical practice uses a combination of sparse hospital based biological metrics (blood 

tests, expensive imaging, etc.) to understand the evolving health status of an individual. Future 

health systems must integrate data created at the individual level to better understand health status 

perpetually, especially in a cybernetic framework. In this work we fuse multiple user created and 

open source data streams along with established biomedical domain knowledge to give two types 

of quantitative state estimates of cardiovascular health. First, we use wearable devices to calculate 

cardiorespiratory fitness (CRF), a known quantitative leading predictor of heart disease which is 

not routinely collected in clinical settings. Second, we estimate inherent genetic traits, living 

environmental risks, circadian rhythm, and biological metrics from a diverse dataset. Our 

experimental results on 24 subjects demonstrate how multi-modal data can provide personalized 

health insight. Understanding the dynamic nature of health status will pave the way for better 

health based recommendation engines, better clinical decision making and positive lifestyle 

changes.
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1 INTRODUCTION

“To live effectively is to live with adequate information.”

-Norbert Weiner, 1950

A century ago, the largest contributor to mortality and morbidity was infectious disease. 

Infection is an episodic problem, where a categorical diagnosis (i.e. malaria) is made after a 

patient feels unwell and arrives at a medical care facility (where the data is gathered to 

confirm the disease). Treatment is usually prescribed based on evidence based rules to solve 

the problem, and the patient is not monitored anymore. Globally, chronic diseases have 

emerged as the 21st century major contributor to health burden. When compared to 

infectious disease, there are fundamental differences. There is no single event that leads to 

the disease, rather slow changes in the operating function of the body. If we are to apply 

some type of control input to keep people on a healthy trajectory via feedback loops in 

cybernetic systems, we must be able to continuously estimate this state. Hence there is a 

clear distinction between the classification versus quantified estimation problem in health. 

Due to this reason, there is compelling need for progress in health state estimation.

To illustrate this need we describe the situation of hypertension (high blood pressure). First, 

patients are unable to feel the disease as it slowly builds up over time, and thus do not even 

know they are being affected. Second, the diseases stem from both daily actions and 

environmental exposures, not just a single source. Third, these diseases are not truly 

categorical in nature, but are rather declines in organ function over time. In the example of 

hypertension, clinical practice uses cutoff thresholds to decide when to change the labeled 

blood pressure status of an individual, when in reality, the average pressure is increasing 

over time as shown in Figure 2. Ultimately, individuals, clinicians, and in general cybernetic 

systems (Figure 1), make decisions based on the method of determining health state. What 

we measure is what we control.

Individuals create diverse data streams about themselves on a daily basis. Much of this data 

can be leveraged to provide perpetual insight into the health of individuals. Fitness devices 

and wearable sensors, ambient sensors, images, video, audio, digital human computer 

interactions, and IoT devices provide a plethora of data that is routinely collected, but so far 

has been difficult to use for common real world health applications. Because people are 

unable to feel their health change over time from the multitude of factors affecting them, we 

need to develop methods to quantify and report health status using continuously collected 

multi-modal data sources. If we are able to track changes before permanent organ 

dysfunction, we may be able to correct course and prevent or delay onset of chronic 

diseases. Finally, medical practice needs to shift from using episodic categorical definitions 

of health status, to a continuous quantitative measurement.

With the rapidly increasing availability of low cost sensors in the last decade, there has been 

an explosion in the amount of continuously collected multi-modal data. This is especially 

relevant in field of health with the advent of wearable, IoT, and ambient sensors. Many of 

these low cost sensors such as accelerometers, light sensors, microphones, heart rate 

monitors, and barometers, to name a few, produce continuous streams of data usable in a 
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wide range of scenarios. While this allows measurement of the user state continuously, the 

downside of these sensors is that the measurements are either very noisy, produce 

information overload, produce non-actionable metrics, or are not directly related to the 

attribute we want to measure. These limitations have so far proven to be a barrier in using 

low cost sensors for real world decision making for health.

Furthermore, enabling data assimilation will require intelligible understanding of how sensor 

information relates to the health status. Existing medical and biological scientific domain 

knowledge must be used to guide the data assimilation and conversion matrices from signal 

to state. Intelligibility is also an important attribute for developing health estimation systems. 

Knowing why an individual has a certain health status will be paramount to explanation, 

recommendation, and treatment. Data driven methods can be components in a large system, 

but will have difficult time explaining the reason for the classification. This is why other 

complimentary methods need to be used that take advantage of domain knowledge.

To summarize, we believe that cross-modal health state estimation will be a fundamental 

centerpiece for the following needs of future:

• Early Detection: Insight into health status changes in theprodromal state, where 

health state can be readily altered towards wellness.

• Continuous Monitoring: Understanding and assisting the individual in all 

aspects of life, everyday.

• Quantitative Real-Time Assessment: Shifting health assessment to a dynamic 

quantitative measurement rather than categories of normal versus abnormal.

• Reduced Cost: Through trickle down technology, we anticipate more data types 

available through devices, reducing the barriers and cost for health assessment.

Clinical need for measuring cardiorespiratory fitness (CRF) is in high demand, but at the 

moment it is only captured in high need care through expensive lab tests. In 2013, the 

American Heart Association and the American College of Cardiology jointly released 

guidelines for the prevention and treatment of coronary artery disease stating CRF is a 

leading risk factor for cardiovascular disease, the most significant cause of death in humans. 

Flatly stated by the AHA, “It is currently the only major risk factor not routinely assessed in 

clinical practice” [35]. The reason for not measuring this value for patients is due to the 

burdensome cost in time, inconvenience, and resources to gather this data directly. We take 

this as motivation to see if we can use lower cost wearable devices to accomplish this task. 

We compare how different wearable devices can provide observability into our own bodies. 

CRF levels change throughout our lives from effects of our lifestyle. A more refined and 

accurate reflection of cardiovascular health state would take into account additional 

information like the environment, stress, and genetic background. We address this challenge 

through adding additional data sources such as images and geospatial sensors.

For the aforementioned reasons, we focus the scope of our work on cardiovascular health 

state estimation by studying the following research questions:
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• Research Question 1 (RQ1): What is the quality of CRF estimation via the 

combination of multi-modal data and domain knowledge from different wearable 

devices?

• Research Question 2 (RQ2): What total cardiovascular health information can 

we elucidate from images, wearables, surveys, social media, Internet of Things 

(IoT), and environmental sensors? How can we assimilate this data in a useful 

way for individuals and health providers?

At the time of writing, there have been no investigations we found about cardiovascular 

health state measurements in the multimedia research community. Broadly, the motivation 

for this work in the Brave New Ideas track is to open the frontier into personalized health 

state estimation from multi-modal data. Further rigorous research in this field will look into 

expanding to other health domains, improve quality metrics, tackle performance issues, and 

much more. We hope ultimately to create research opportunities that allow us to effectively 

be informed about our health throughout life.

2 RELATED WORK

Health state estimation and tracking has been an important field in medical literature and 

computer science. There has been a strong call by the medical science community to use 

continuous multimodal data for tracking individual health [29, 30, 36, 43, 48]. Most modern 

metrics that are used to understand patient health were derived from longitudinal studies of 

large cohorts to see what led to morbidity and mortality. Outcomes of these studies were 

then retrospectively analyzed with linear regression to predict future outcomes for new 

patients. Modern epidemiology efforts are beginning to use modern data collection tools 

such as social multimedia and wearable devices [14]. These efforts include the United States 

Precision Medicine Initiative led by President Obama [16], Mobile Sensor Data to 

Knowledge [23], and Alphabet’s Verily division [12]. These research efforts may take 

decades before we have data available for meaningful insight, as they largely depend upon 

outcomes of mortality before they become sufficiently powerful.

Within the field of cardiology, the Framingham study laid the foundation for most modern 

clinical guidelines by the American Heart Association (AHA) and American College of 

Cardiology [18, 50]. AHA has also called for the specific metric of CRF as the most 

powerful predictor of cardiovascular health that is not routinely measured (mostly due to 

cost of expensive and laborious lab testing) [35]. Technically speaking, activity which 

measures general movement patterns (such as through wearable accelerometers) is a 

different risk factor than aerobic exercise work capacity (which is CRF). CRF has a much 

stronger established relationship with true cardiovascular health [49]. Widespread use of 

standard wearable accelerometers that measure steps or higher semantic activities like 

walking, jogging, biking are indicative of activity only, hence the need for wearables that 

can give estimates of CRF.

Wearable devices have been used to estimate energy expenditure through various 

computational approaches such as deep learning [51], knowledge based regression [25], and 

data filtering and segmentation techniques [1]. Energy expenditure provides insight into the 
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total amount of activity performed by an individual, but does not provide maximal work 

output to estimate CRF.

Computational research in CRF prediction began in the 1970’s with the formulation of 

exercise stress scoring metrics based on then newly available chest strap based heart rate 

monitors [7, 8]. Recently, contextual understanding improved the performance of heart rate 

based CRF estimation, and were further refined by calibrating custom algorithmic 

parameters for a particular user [2, 3]. Heart rate data has also been used to derive additional 

features, such as vagal tone (commonly referred to has heart rate variability) and respiratory 

rate, to provide regression analysis more features for prediction [41]. Improvements in 

accelerometer based CRF prediction have been achieved through body placement 

optimization [34]. The only known research at this point that has attempted use of 

multimodal data for CRF prediction has been done by Firstbeat Corporation which uses both 

heart rate and speed information with a proprietary algorithm to filter periods of heart rate 

that are indicative of steady state metabolism [15].

Multifactorial cardiovascular health risks have been investigated in many of the large 

epidemiologic studies such as the Framingham study. Conclusions from these large studies 

are used in current clinical practice through the AtheroSclerotic CardioVascular Diease 

(ASCVD) calculator [18]. This pooled cohort algorithm was based on linear regression 

analysis for four separate cohorts of individuals female blacks, male blacks, female whites, 

male whites. Other than ethnicity and gender, they take into account age, systolic and 

diastolic blood pressure, cholesterol (Total, HDL, LDL), smoking history, diabetes (binary 

field: yes or no), medication history (hypertension, statin, aspirin only), and is only 

applicable for patients in the age range of 40–79. The limitations of this calculator include 

the requirement of invasive blood data and non-consumer based lab processing. No 

integrations of environment, lifestyle, social determinants, or biological parameters that test 

real world function such as CRF are used in any clinical setting at the moment. Individual 

parameters such as local air and noise pollution have established as risks, but are not shown 

in any relevant way to clinicians. Wearable devices are not used in any clinical setting for 

cardiovascular disease presently.

3 CYBERNETIC HEALTH STATE ESTIMATION

In the simplest terms, cybernetics is about setting goals and devising action sequences to 

accomplish and maintain those goals in the presence of noise and disturbances [31]. This is 

enabled by the availability of sensors that can estimate the system state from observations to 

perpetually feed this information back to the system. This generates new control signals as 

required to move toward the desired goal or destination. Cybernetic in health has 4 main 

components: Measurement, Estimation, Guidance, Action as shown in figure 1 [20]. These 

four parts synthesize how we can produce a navigational system for improving health.

The mathematical model in classic systems theory states that:

X[k + 1 ] = A[k]X[k] + B[k]U[k]
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Y[k] = C[k]X[k] + D[k]U[k]

Where X, U, and Y are the system true state, inputs, and measured output vectors 

respectively. A, B, C, and D are matrices that provide the appropriate transformation of these 

variables at a given time k. Human health can be described by a state system, and the 

previous state and the inputs into the system play a role in determining health at time k+1. 

Inputs into the human cybernetic system can be defined as anything which changes gene 

expression or physical actions in the body (from a molecular interactions to coarse 

movements). Thus a body is continuously exposed to these inputs which may or may not be 

within the controllability of an individual. The inputs beyond the control of an individual are 

referred to as external disturbance and the rest can be viewed as controllable inputs u. The 

true health state of an individual at a time k is represented by X, which is in reality difficult 

to obtain and always estimated. What we do get are the observable output variables. The 

state estimation challenge is in interpreting the observables to understand the underlying true 

state. If we solely focus on this, the challenge of state estimation is represented in the matrix 

C, with observables as Y and our unknown state as X.

Estimating health impairment in individuals who seem to be healthy is inherently difficult 

due to: 1)poor sensing ability of developing adverse outcomes with current clinical methods 

and 2)the long lead time to developing full blown chronic disease. By the time current 

clinical measurements such as cholesterol, blood pressure, or glucose metabolism are 

beyond the normal range, the user has already been in a dysfunctional health state for quite 

some time. Capturing the change in health state earlier (before true dysfunction begins) is 

paramount to keeping people healthy and preventing them from slipping into a diseased 

state. Clinical researchers refer to this as the prodromal state. Multimedia work in 

understanding, vision, classifiers, intent, and sentiment analysis can greatly expand the 

capability for higher resolution understanding of an individuals health state. In our following 

experimental work, we focus on this specific aspect in the domain of cardiovascular health.

4 EXPERIMENTAL APPROACH

Transforming this data into semantically meaningful information is the first step in using 

data for an end goal. In the application of health, an additional step is needed to take these 

information bits into the domain of biological variables. A sufficient set of biological 

variables can provide an overview of how the human system is operating. This flow is shown 

in Figure 3.

4.1 RQ1: Estimation of CRF Bio-Variable

CRF represents the integrated biological performance of delivering oxygen from the 

atmosphere via the lungs and blood to the mitochondria to perform physical work (Work = 

Force × Distance). This essentially quantifies the functional capacity of the respiratory, 

cardiovascular, metabolic, and type-1 fiber musculature. CRF is usually measured through 

breath captured maximal oxygen consumption (VO2max) during a maximal exercise effort 

of several minutes. Because the efficiency of muscular work produced per unit oxygen 
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consumed is directly related to the physics of adenosine triphosphate synthesis and 

breakdown to adenosine diphosphate, we can use power output on bicycle ergometry to 

directly calculate VO2max [26, 27]. VO2max is measured in mL oxygen consumed / 

minute / kilogram of bodyweight and is a direct measurement of CRF. For the purposes of 

this paper, they are equivalent.

We use a multi step process to extract meaningful information from the wearable devices 

(Figure (4). Forces against a bicycle motion in real world activity are divided into three main 

components: wind, gravity, and friction. Effort by a rider can be measured by duration of 

exercise or heart rate based effort. We use three methods to estimate power output, and test 

these methods against the ground truth of known power output from device 8.

Active Time Based Training Effect - TIME: We use devices 1 and 2 and instances 

where we only have accelerometer, time, or cadence data to estimate how much time the 

user is actively exercising. We base this estimate from the increased exercise volume (time) 

leading to increased CRF [21].

Heart Rate Based Training Effect - TRIMP: Devices 4,5,6, and 7 have heart rate 

sensors we use to predict not only exercise volume, but also intensity. Intensity of exercise is 

calculated by the established Training Impulse (TRIMP) method [7].

Work Against Gravity - VAM: We use devices 3,5,6,and 7 to give us both horizontal and 

vertical velocity. Devices 3,5 and 7 use GPS to give latitude,longitude and altitude. Device 6 

uses a barometer for altitude and wheel magnet for horizontal velocity. Vertically Ascended 

Meters (VAM) is the z-axis velocity in meters/hour. For all instances where the rider is going 

uphill, we calculate the Newtonian physical work done against gravity. The horizontal 

velocity is less climbing uphill, and thus we assume a minimal component of wind 

resistance.

We test these estimation methods to compare performance in prediction of CRF with 

different situations of sensor derived information. First, we use a global prediction model by 

using a subset of 50% of subjects. We use an individual model for instances where a user 

would be given a calibration device of a power meter for a given period of time, and measure 

how well we can model future CRF prediction after the calibration device was removed. For 

both instances we use 70% of the data for training.

4.2 RQ2: Multi-Factorial Approach to Health

The true state of the cardiovascular system will depend upon many different controlled 

inputs and disturbances. In this section we provide an example of how varied these sources 

can be, and how they may be integrated to provide a dashboard of the cardiovascular state to 

a user or health expert. The total state of cardiovascular health may be summarized into 

some sub-states such as circulation, metabolism, stress, vascular perfusion, electrical 

activity, and valvular function for example. As shown in Figure 3, these sub-states are 

composed from evidence based relationships with bio-variables. We describe the methods 

used to gather and extrapolate these data relationships below:

Nag et al. Page 7

Proc ACM Int Conf Multimed. Author manuscript; available in PMC 2019 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Images of the user were used to derive several biological features.

We use OpenCV facial landmarks detection to determine width-to-height ratio as shown in 

Figure 5 [32]. We calculate a proxy for genetic testosterone levels through this ratio [24]. 

Higher testosterone levels are positively correlated with better cardiovascular circulation and 

metabolism [33]. We also use the images for ethnicity detection and gender identification.

Location of living for each user was determined through histograms of GPS coordinates at 

the beginning of the activities. These locations were mapped to zip codes in the United 

States.

Environmental Zip code and county based average income, cardiac deaths, community 

crime risk [45], air [44], light[47], and noise pollution [46] data were then mapped to each 

user. Established relationships that affect cardiovascular health have been reported for 

PM2.5 air pollution [42], light pollution and noise pollution [28].

Circadian light exposure during exercise were derived from physics based models of earth 

rotation to determine natural light exposure. Patterns of weekly variability in exercise habits 

and time zone changes were also calculated from user data, and light pollution at the living 

location. Circadian disruption has been shown in humans to cause cardiovascular 

impairment [37].

Social Media networks were used to not only gather the images, but also professional status 

and educational attainment of the user from LinkedIn. The combination of education, 

professional status, and zip code average income was used to estimate financial status [6]. 

Education links to cardiovascular disease as a proxy for other risk factors have been studied 

[11, 22].

Surveys were given to users to obtain their age, smoking status, height, weight, and waist 

circumference. These measurements can also be automated with IoT devices, such as 

connected weight scales. Body Mass Index (BMI) [50] and Waist-to-Height Ratio (WHR) 

[4] were derived from these values.

Wearables (specifically device 8) from RQ1 were used to estimate bio-variables that have 

relationships with cardiovascular disease and heart functionality. These bio-variables include 

heart rate recovery [9], heart left ventricle stroke volume [5], heart rate drift[10], kilojoules 

of work [19] in addition to the CRF, TRIMP, and active time.

Inherent ASCVD risk was calculated from a combination of established risk factors due to 

ethnicity, age, basal testosterone, and smoking status. This is an established risk of potential 

for a hard cardiovascular event [18] within the next 10 years for that individual. We define 

high friction risk as factors that require dramatic life change to alter (such as moving to a 

new home or acquiring a higher educational degree). In our case this relates to the variables 

of education attainment and income in addition to factors related to living location which 

include crime, local incidence of cardiac death, air, noise, and light pollution. Circadian 

Rhythm Disruption is a normalized sum of light pollution in living location, time zone 

changes (hours changed relative to GMT in last 4 weeks), and exercise habit variability 
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(average exercise start time difference from previous day in last 4 weeks). Circulation 

capability of the heart is a normalized sum of CRF, HRR, SV, TRIMP in the last 4 weeks. 

These factors capture the ability of the heart to pump blood throughout the body. 

Metabolism summary was calculated as the normalized sum of exercise work (in kJ), HRD, 

active time, BMI and WHR. These factors capture the ability of the individual to maintain 

high resting basal metabolic rate and resist fatigue. These summaries does not reflect any 

absolute risk, just relative risk to others in our sample subjects. They are meant to observe 

how an individual’s health status is longitudinally changing over time, or as a cross-sectional 

comparison to others in the same subject population. The overall heart score is an equal 

weighted average of both these relative metrics and the inherent ASVCD risk.

Multi-modal data assimilation and visualizations have been used extensively to maintain the 

health state of jet engines and other mechanical devices [40]. By placing various sensors on 

the engine, engineers and pilots are able to monitor the status of an engine in real-time and 

understand when to take precaution or perform an action to ensure the safety and longevity 

of the engine. We present a similar view of health data in Figure 9 for individual use and 

Figure 10 for professional/expert use.

5 EXPERIMENTAL RESULTS

The dataset used in the experiments includes sensor data streams at one second resolution 

from eight wearable devices collected on 24 male cycling athletes over an average of 5 years 

in the United States. Athletes also had strain gauges installed on their bicycles to measure 

physiologic true power output. The total dataset includes 31,776 activities and 70,178 hours 

of exercise data. Social media outlets of Instagram and LinkedIn were also used to gather an 

image dataset of 50 images per athlete and general demographic background information. 

Environmental data was sourced from government or open source databases.

5.1 RQ1: CRF Bio-Variable Estimation

Per second power output values collected from the strain gauges were used as ground truth 

in our experiments for bio-variable estimation. We used a rolling average of maximum 4 

minute power output per day over 42 days to generate the ground truth for our ex periments. 

We trained two sets of linear regression models for each feature, a global model and a 

personal model. The global model was trained using the data collected from a subset of 

subjects and tested on the remaining subjects. The personal model for each individual was 

trained on a 70% training subset for the subject and tested on the remaining 30% subset.

VAM models are trained to predict average power output (normalized by body weight) in 4 

minute windows in an activity using the VAM in the time window, and the maximum 

estimated power output is then used to compute a continuous daily estimate for VO2 Max. 

We trained models with varying slope thresholds to identify the impact of slope on estimate 

accuracy. As the slope increases, the effect of other resistance factors (such as wind, rolling 

resistance) decreases and the model performs better (Table 1). We choose which model to 

use based on the maximum slope observed in the 4 minute windows, for example if in a ride 

the maximum slope observed in a 4 minute interval is 5.3%, we would choose the model 

trained on intervals where slope is greater than 5%. Since we are predicting body weight 
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normalized power using VAM, none of the two metrics are greatly influenced by individual 

parameters. This is reflected in similar global and individual model performances for VAM 

(fig 8).

TRIMP captures the work done by an individual’s heart in the last 42 days. We trained 

linear regression model to predict an individual’s VO2 Max value based on their total 

TRIMP score in past 42 days. This metric proved to be more effective in a personal model 

than a global model as different individuals have different heart rate response to same 

exercise intensity (fig 8).

Active time is the actual amount of time the individual was actively putting in effort in past 

42 days. We obtained this metric using cadence values collected at per second resolution. We 

trained linear regression model to predict an individual’s VO2 Max value based on their total 

activity time in past 42 days. Similar to TRIMP, this metric performs better in a personalized 

model than in global model as different individuals would have a different response to the 

same exercise volume (fig. 8).

Combination models have outperformed their constituent models in all our experiments as 

shown by the error plots in fig. 8. The estimates from the previous models were combined 

using a weighted average, where weights for a model estimate are inverse of the model’s 

training error. The error in estimates for these models are reported in fig. 8 and discussed in 

this section. We can see from the plot that the best model in terms of average error and 

variance in error utilizes all available data streams.

We also performed an experiment to find out the optimum time to be considered for 

aggregating the metrics while estimating CRF values. We plotted the test error for the global 

models utilizing one metric in fig. 7. We can see that while there is some variation in mean 

error, the 95% confidence intervals overlap for all time windows and we cannot find an 

optimum time window to use in our experiments based solely on the data. Therefore we have 

used the clinically recommended period of 42 days to aggregate the past exercise events.

5.2 RQ2: Cross-Modal Heart Health State

Even while referencing established bioscience research we still have no way to validate 

ground truth until decades into the future when people die. So comparisons are not the best 

way to experimentally validate this question. Performance comparisons for this type of 

experiment will need to be validated through large scale data collection and monitoring in 

prospective studies as mentioned in the related works. This research question largely poses a 

beginning for how multi-factorial health states can begin to surface for use.

Using the approach described in section 4, we assimilate various biological parameters for 

each of the 24 subjects as shown in Figure 10. We find that even though most of these 

subjects are all cycling athletes, they have a wide range in both their bio-variables and 

environmental exposures. Current day primary care doctors would not be able to see this 

when a patient visits.
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This data assimilation can be used inform personal health state as shown in Figure 9. The 

combination of sensors, IoT devices, and environmental data connections can provide a rich 

experience to interact with meaningful health insights. This can be for individual use, or for 

use in when a user visits a health care provider. One step further would be to link this with 

their electronic medical record system. Looking at this data panel across the subject pool, we 

discover some interesting trends in Figure 10. As expected, as the age increases the overall 

heart health state decreases, since age is a large factor of cardiac health (age range in panel is 

18–57). As age increases, we also see a reduction in crime and noise pollution, suggesting 

that older individuals live in safer and quieter neighborhoods. We also see circadian rhythm 

disruption maximally in the middle ages (20–29), suggested a more erratic lifestyle for those 

in their twenties. Circulation and metabolism scores also trend (including VO2 Max / CRF) 

lower as age increases. Although this is a small sample size to make any strong conclusions, 

we can begin to see the power of using this cross data analysis for health.

6 CONCLUSIONS

In this paper we propose an approach to leverage cross-modal data to estimate a needed 

health variable or health state in the context of cybernetics. Specifically in the focus of 

cardiovascular health, we estimate CRF from various wearable devices. From our 

experimental results we can see that increasing the number of data streams provide increased 

performance characteristics in achieving this goal. Furthermore, we show that total health of 

an individual is much greater than any single biological variable, and that we need to 

integrate a diverse array of data types to more better understand the total health state of a 

particular individual or organ system. Ideally we have some actionable or semantically 

meaningful dashboard as shown in Figures 9 and 10, which a user or a health expert can 

reference to get an “engine check” of the health state in real time.

Implications:

The proposed utility of this work is to open the concept of using a diverse array of data 

streams to improve health state estimation. In the ideal case, this also lowers the cost for 

instantaneous health assessment, and provides increased value for individuals to purchase 

sensors like wearables and IoT devices. Individuals may be more motivated to track their 

health state, especially if it will be used in professional clinical decision making or 

influencing daily actions. This also provides the user with instant feedback with results from 

their lifestyle modification, medicine, environment and more. Perhaps this may be used as a 

tool to encourage healthy habits, or to avoid dangerous environments.

Limitations:

Estimation in its initial iteration may not be accurate, but it is assumed to improve over time 

with refining of equations, algorithms, feature extraction methods, learning methods, as well 

as with improvements in hardware technology. We use linear methods in this paper as a 

starting point for obvious further advancement with advanced learning and predictive 

methods. Baseline comparisons are also difficult when studying individual subjects, and will 

require statistical methods for n of 1 studies [13, 17, 38, 39]. Wearable devices and similar 

low cost sensors are currently better used as a screening tool to identify if a user is at risk or 
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their health state is changing, but clinical gold standard testing (which is more expensive) 

might be used to confirm the true state of the user if the situation is critical. More work will 

need to be done to ensure the robustness of the estimations are good enough to use alone for 

important clinical decisions from more validated clinical and biomedical research. This work 

at the current stage cannot give a validated prediction window of when an adverse event (eg. 

myocardial infarction) may happen.

Future Directions:

We hope to show how wearable devices, Iot, images, along with other data types can 

potentially be used in lieu of expensive sensors to estimate health status. For a single device, 

we show how multiple types of sensors improves prediction quality. Beyond a single device, 

we show that an assimilation of more diverse data with domain knowledge can further 

illustrate a wide view of health states. Additionally, privacy and security methods must 

evolve concurrently for such systems to function in the real world. Estimation is just one 

part of the cybernetic health paradigm. Ultimately, work must be done to ensure that reliable 

and useful systems are developed to guide people towards better health. Our dataset will be 

available in the public domain to encourage other researchers. We invite others to participate 

in building the foundational blocks of health state estimation and cybernetic health so that 

we can all enjoy a more informed and healthier life.
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CCS CONCEPTS

• Information systems → Multimedia information systems; Multimedia and multimodal 

retrieval; • Social and professional topics → Personal health records; • Applied 

computing → Systems biology; Consumer health; Health care information systems; 

Health informatics; Bioinformatics; • Computer systems organization → Embedded and 

cyber-physical systems; • General and reference → Estimation; • Networks → Cyber-
physical networks;
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Figure 1: 
Cross-modal measurements are essential for state estimation in cybernetic feedback systems. 

This estimation impacts the eventual guidance from the controller (physician or automated 

system) to help reach a goal state.
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Figure 2: 
True physiological average blood pressure (red dashed) vs. clinical assessment (black solid) 

show the comparison between health state assessments that are quantitative vs. categorical.

Nag et al. Page 18

Proc ACM Int Conf Multimed. Author manuscript; available in PMC 2019 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Intermediate steps of transforming cross-modal data into a bio-variables or health state (for 

cardiovascular health in this work). Research question 1 delves into taking wearable data 

streams and producing a single biological variable of VO2 Max (CRF equivalent). Research 

question 2 takes a much larger set of data streams to produce multiple biological variables 

that can then be used to approximate a health state of the individual. Unshaded additional 

data streams, information, biological variables, and health states are not addressed in detail 

but shown to demonstrate future potential.
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Figure 4: 
Wearable devices used for comparison in the experiments and respective feature extraction: 

1. Timex Ironman, 2. Fitbit Flex2, 3. Garmin VivoActive, 4. Polar FT7, 5. Suunto Spartan, 6. 

Polar RCX5, 7. Garmin Edge 520, 8. SRM- PC8 (contains all sensors and used for ground 

truth).
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Figure 5: 
Images of people provide insight into their health state. Visual features of facial width-height 

ratio used as a validated proxy for basal genetic testosterone levels.
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Figure 6: 
Visualization of various geo-spatial data sources used in our health state estimation.
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Figure 7: 
Comparison of sensor prediction performance based on changing the memory in the model 

in determining health state. Based on a p-value of 0.05, there were no statistically significant 

differences in choosing the memory value. Thus, we chose the established standard of 42 

days for our model [21].
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Figure 8: 
Comparison of sensor prediction performance. Global models are trained on all data 

collected from a subset of subjects. Individual models are trained on data collected from one 

subject. Global models can be used for estimation before the individual model for a person is 

calibrated.
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Figure 9: 
Screen 1 we show how health state can fuel recommendations. Inspired by jet engine 

dashboards, screen 2 can give a live snapshot of the health state. Screen 3 gives a 

comprehensive list of all bio-variables and health states being tracked, with a ranking system 

to provide relevant result at the top.
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Figure 10: 
Heat map of bio-variables and summary scores that affect each individual subject. This type 

of visualization integrates cross-modal data in a manner that a clinician, hospital, public 

health agency, or any expert can use to monitor health of a patient panel. Clicking on a 

certain box would pull up further insights and details.
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Table 1:

Slope based optimization of VAM models

Slope threshold (%) Test Set RMSE (Rel. Power) Training Set RMSE (Rel. Power) Training R Squared Size of training set

0+ 0.726 0.665 0.381 16810792

1+ 0.620 0.537 0.527 10728610

2+ 0.557 0.473 0.593 7952334

3+ 0.488 0.424 0.655 6236507

4+ 0.451 0.391 0.695 4884243

5+ 0.420 0.363 0.732 3509724

6+ 0.405 0.344 0.760 2294199

7+ 0.395 0.328 0.781 1400488

8+ 0.365 0.318 0.793 781841

9+ 0.347 0.317 0.797 423315
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