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Abstract

Quantitative systems pharmacology (QSP) is an emerging discipline that aims to discover how 

drugs modulate the dynamics of biological components in molecular and cellular networks and the 

impact of those perturbations on human pathophysiology. The integration of systems-based 

experimental and computational approaches is required to facilitate the advancement of this field. 

QSP models typically consist of a series of ordinary differential equations (ODE). However, this 

mathematical framework requires extensive knowledge of parameters pertaining to biological 

processes, which is often unavailable. An alternative framework that does not require knowledge 

of system-specific parameters, such as Boolean network modeling, could serve as an initial 

foundation prior to the development of an ODE-based model. Boolean network models have been 

shown to efficiently describe, in a qualitative manner, the complex behavior of signal transduction 

and gene/protein regulatory processes. In addition to providing a starting point prior to quantitative 

modeling, Boolean network models can also be utilized to discover novel therapeutic targets and 

combinatorial treatment strategies. Identifying drug targets using a network-based approach could 

supplement current drug discovery methodologies and help to fill the innovation gap across the 

pharmaceutical industry. In this review, we discuss the process of developing Boolean network 

models and the various analyses that can be performed to identify novel drug targets and 

combinatorial approaches. An example for each of these analyses is provided using a previously 

developed Boolean network of signaling pathways in multiple myeloma. Selected examples of 

Boolean network models of human (patho-)physiological systems are also reviewed in brief.
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Introduction

At the turn of the 21st century, there has been a paradigm shift, from a reductionist viewpoint 

of biology, in which the characteristics of individual components are studied in isolation, 

back towards one that is holistic and aims to understand how the complex interactions 

amongst components give rise to emergent properties of biological systems [1]. In order to 

understand such complexities, the integration of experimental and computational methods is 
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sine qua non in systems science [2]. Advances in experimental methods, such as genomics, 

proteomics, and metabolomics, have enabled the comprehensive assessment of drug-induced 

alterations in signaling pathways. Systems pharmacology is an emerging discipline that 

integrates principles from systems biology and pharmacology to study the effects of drugs 

on biological systems. To gain a quantitative understanding of how a biological system 

responds to drug exposure, pharmacokinetic/pharmacodynamic (PK/PD) and systems 

biology models can be combined to form quantitative systems pharmacology (QSP) models 

[3,4]. Although QSP is still in its infancy, this field has great potential to impact drug 

discovery, development, and utilization. QSP models require vast amounts of data in order to 

characterize the complex dynamics of system components, which are multi-scale (i.e., 

temporospatial differences from molecular to physiological scales) and often unavailable or 

highly variable. Therefore, a mathematical framework that does not require knowledge about 

kinetic parameters, such as Boolean network modeling, could provide an initial foundation 

for the development of QSP models.

The major challenge in biological network modeling is to map how system components 

interact amongst each other to give rise to physiological functions, disease processes, and 

variable responses to therapy. There are several types of biological networks, such as gene 

regulatory, protein-protein interaction, metabolic, and signal transduction networks, which 

differ based upon how nodes (vertices) and edges are defined. Nodes often represent genes, 

proteins, or other biological components, and edges between nodes reflect regulatory 

relationships (stimulatory/inhibitory). The principles of graph theory can be used to model 

the interactions of intracellular components as a network [5], and topological analyses, such 

as centrality measures and clustering techniques, can identify important components and 

functional modules [6]. Network-based analyses serve to evaluate disease and drug effects 

on the entire system, rather than individual components, which can lead to the identification 

of novel drug targets, improvement of therapeutic efficacy, and minimization of toxicity [7]. 

Conceptual biological networks can be converted to dynamical models through the 

incorporation of a mathematical formalism that allows the concentration or activity of 

components to change over time. Time is defined as discrete, represented as finite time 

steps/intervals, or continuous, and the state of components can be qualitative or quantitative. 

Although quantitative and continuous mechanistic models are preferred [8], most interaction 

networks have not been studied in such detail, and qualitative logic-based models may 

provide key insights into systems in the absence of rich quantitative measurements [9]. 

Boolean networks, originally described by Kauffman in 1969, are the simplest type of 

discrete dynamic models [10]. Nodes occupy a state of either 1 or 0, which indicates 

whether the concentration/activity is above or below an activation threshold. The state of 

each node is governed by the previous states of its regulating nodes through a set of logical 

functions. Boolean networks have been applied to model signal transduction, gene 

regulation, and cellular differentiation for several types of physiological and 

pathophysiological systems, such as the immune system and related diseases [11–23], breast 

cancer [24–29], gastrointestinal cancers [30–32], hepatic cancer [33,34], lung cancer [35], 

and several others [36–40]. In oncology, Boolean network modeling can provide a 

framework for studying system trajectories under pathophysiological conditions and in 

response to drug treatment. A network state space contains all possible combinations of 
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states for which nodes of the network can reside, and an attractor is a stable set of states that 

other states evolve towards, manifesting as cellular phenotypes and fates [41,42]. 

Waddington, inspired by dynamical systems theory, proposed the concept of an “epigenetic 

landscape” and described a metaphor of a ball traversing a landscape of cellular 

differentiation processes [43]. Considering network state space, the ball would correspond to 

an initial set of states, and valleys would correspond to basins of attraction that lead to 

attractors. Figure 1 is an adaptation of Waddington’s epigenetic landscape showing a normal 

cell trajectory (blue) and an abnormal trajectory (red), in which a cell becomes cancerous 

through the accumulation of mutations. In this diagram, a pharmacological intervention 

(purple) could shift the abnormal trajectory towards one that is favorable, whether it falls 

back to the normal trajectory or into an apoptotic attractor. Quantifying the frequency at 

which initial states reach an attractor identifies the relative importance of each attractor and 

its associated biological phenotype, underscoring the utility of performing attractor analyses 

on Boolean networks.

In this review, we highlight the applications of Boolean network modeling in systems 

pharmacology as well as provide examples of various analyses using a previously published 

Boolean network of signaling pathways in multiple myeloma [23]. The process of Boolean 

network development is described, which includes construction of an interaction network, 

conversion of an interaction network into a Boolean framework, determination of initial 

conditions, network validation, and reduction. Types of Boolean network analyses useful in 

drug discovery and development are covered, such as dynamic simulations, attractor 

analysis, and minimal intervention analysis. Finally, a brief overview is provided of 

previously developed Boolean networks of human intracellular physiology/pathophysiology 

and their various applications.

Network Development

In this section, steps involved in the development of Boolean network models are covered, 

which consists of constructing an interaction network, adding Boolean logic, determining 

initial conditions, and network validation. In addition, network reduction techniques are 

reviewed for deriving smaller networks for certain applications.

Constructing and Analyzing an Interaction Network

Network construction begins with compiling a list of nodes relevant to the biological 

outcome of interest. The type of network is determined according to how vertices (nodes) 

and edges are defined. Nodes typically represent different biological components, such as 

DNA, RNA, proteins, and metabolites. The regulatory interactions between these 

components, either stimulatory or inhibitory, are modeled through the incorporation of 

edges. The network may contain several different types of regulatory relationships, such as 

protein-protein interactions observed in signal transduction and DNA-protein interactions in 

transcriptional and translational processes. Network components are often derived from the 

literature and supplemented with experimental data. If a pre-existing model is available (also 

referred to as a prior knowledge network), then the network could be expanded for a specific 

purpose, such as to include the mechanism of action of a drug or a pathway of interest. 
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There are two main approaches for identifying nodes and pathways to include in the 

development of interaction networks. First is a bottom-up knowledge-driven approach that 

consists of an extensive literature evaluation and the use of biological pathway databases 

(e.g., KEGG and Reactome) and text mining software (e.g., Chilibot) [44–46]. Second is a 

top-down data-driven approach, which identifies differentially expressed components (i.e., 

genes, proteins, and/or metabolites), from omics-based analyses and bioinformatics 

resources (e.g., DAVID and IPA), to perform functional annotation and biological pathway 

mapping [47]. A knowledge-driven approach is time intensive, whereas a data-driven 

approach is more resource intensive. Nodes and pathways that are important to the 

biological system may be missed with each of these approaches. Developing a network 

based primarily on information in the literature may overlook an important feature of the 

system or require selecting between conflicting results. For the data-driven approach, an 

important system component may not appear to be differentially expressed depending upon 

the nature of the experimental design, statistical methods, the time of measurement, and the 

magnitude of biological variability. Ideally, a hybrid knowledge/data-driven approach should 

be used to identify important components for the construction of an interaction network. 

Components of the physiological system of interest could be compiled using a knowledge-

based approach and integrated with differentially expressed measurements from a data-

driven method. Lastly, the addition of endpoint nodes, representing a biological phenomenon 

of interest, should be incorporated. For example, networks of cancer typically contain nodes 

that represent cell proliferation and apoptosis; other endpoint nodes of interest could be 

DNA damage, epithelial-mesenchymal transition, and metastasis.

Once network components have been complied and edges between them have been defined 

as either having an activating or inhibiting relationship, a topological analysis could be 

performed to obtain information about the system. Although this review is focused on 

dynamical analyses, a brief overview of the graph-theoretical analyses that can reveal nodes 

of high importance in biological networks is provided, which include measures of closeness, 

betweenness, degree, and bridging centrality. Closeness centrality of a given node is 

calculated as the inverse sum of minimal distances between that node and all other nodes 

[48]. In essence, a central node is one that is, on average, close to other nodes. Betweenness 
centrality, on the other hand, is the sum of proportions of times that a node is present in the 

shortest paths between any pair of nodes [49]. Therefore, betweenness indicates the flux of 

information that is being relayed through a specific point in an active network and reveals 

the degree to which a node can influence the flow of information in a system [50]. In other 

words, betweenness centrality allows assessment of functional importance of a node in a 

wide context of the entire network. If a vertex with high betweenness centrality falls 

inoperative due to a mutation, the communication between near and distant sites of a 

network may become less likely or cease completely. Degree centrality is based on the 

notion that central nodes are ones with the most connections. Node degree refers to the 

number of edges that a node shares with other nodes, which can be divided into the number 

of edges that lead to the node (in-degree) and edges that originate from the node (out-

degree). These measures are not necessarily correlated. Joy et al. examined a yeast protein 

interaction network and discovered a wide occurrence of proteins with high betweenness but 

low connectivity [49]. These proteins may act as essential bridges between various modules 
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within a network, and their presence could be explained by adaptive evolutionary 

mechanisms or inherent system constraints. Assessments of bridging centrality can pinpoint 

elements of the system that might cause network failure if disrupted, and this property may 

be particularly useful for identifying targets in drug discovery [6]. Aside from centrality 

measures, clustering analysis can determine the tendency of vertices to create tightly packed 

regions with dense links, and this tendency is referred to as a clustering coefficient. Global 

clustering coefficients give an overall indication of the clustering within a network based 

upon three connected nodes [51]. In contrast, a local clustering coefficient reflects the local 

density of single nodes [52]. Compared to random networks of equivalent size and degree 

distributions, nearly all known real networks exhibit high clustering, which gives rise to 

functional modules [5]. Although topological analyses allow for the identification of 

important network nodes, an interaction network needs to be converted into a dynamical 

form in order study how components respond to perturbations and evolve over time.

Converting an Interaction Network to a Boolean network

After an interaction network has been constructed, the next step is to use Boolean logic to 

describe regulatory interactions amongst species of the network. A Boolean network G(V, F) 

contains a set of nodes, V = {x1, …, xN} and a list of Boolean functions, F = (f1, …, fn). A 

Boolean function is assigned to each node f i xi1
, …, xik

, where k is the in-degree of a node. 

The spatiotemporal dynamics of Boolean networks are discrete, and the state of each node is 

binary, xi ∈ {0,1}, i = (1, …, N). Nodes of the network are updated based upon the states of 

its regulators at the previous time-step:

xi(t + 1) = f i xi1
(t), xi2

(t), …, xik
(t) (1)

The state of a node can be either zero (OFF) or one (ON) by solving the Boolean function 

assigned to that node. Updating nodes for multiple time steps, in a synchronous manner (all 

nodes are updated at the same time), generates an arbitrary time-course for the dynamics of 

each node. Other updating methods include asynchronous, probabilistic, and continuous 

approaches, which are described in detail later. Boolean functions represent the relationships 

between a node and its regulators through the incorporation of Boolean operators, such as 

AND (∩), OR (∪), and NOT (~). The NOT operator is used to describe an inhibitory edge. 

For example, if B inhibits A, then the Boolean function assigned to node A would be A = 

~(B). The AND and OR operators are used when a node is regulated by at least two nodes. 

For example, if A is activated only when both B and C are present, then the Boolean 

function assigned to node A would be A = (B ∩ C). If either B or C activates A, then the 

expression is A = (B ∪ C). The combination of Boolean logic operators to describe complex 

interactions between biological components provides a simplistic yet robust framework to 

model the qualitative dynamics of biological systems.

The Boolean operator that best represents the complex interactions between a node and its 

multiple regulators can be determined through experimental studies. Gene knockout or 

pharmacological inhibition studies are useful for determining which Boolean operator to 
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assign. For cases in which there are multiple regulators and insufficient experimental data to 

justify an AND relationship, one approach is to assume an OR relationship for stimulatory 

edges and AND NOT relationships for inhibitory edges. Flobak et al. describes the 

application of this approach in the development of a Boolean network for cell fate decisions 

in gastric cancer [30]. A signaling component is active if any of its regulatory activators are 

active, while at the same time none of its regulatory inhibitors are active. For example, if 

node A is affected by activators (B, C, and D) and inhibitors (E, F, and G), then expression 

of A would be:

A = (B ∪ C ∪ D) ∩ (E ∪ F ∪ G) (2)

Multiple Boolean networks could also be generated in order to select the best network that 

describes experimental findings. CellNOptR (CellNetOptimizerR) is an R package 

developed for logic-based model selection that utilizes a prior knowledge/interaction 

network, to identify logic functions to describe an experimental data set [53]. For each node 

with multiple regulators, CellNOptR generates all possible logic gates and evaluates each 

against high throughput experimental data in order to determine the most appropriate 

Boolean network. Saez-Rodriguez et al. (2011) applied this approach to generate 

approximately 1038 Boolean networks of immediate-early signal transduction pathways in 

order to compare signaling networks between primary hepatocytes and four hepatocellular 

carcinoma (HCC) cell lines [33]. Boolean networks that best characterized normal and 

transformed hepatocytes were determined by minimizing an objective function (θ) based on 

the sum of the mean squared error between experimental data and model predictions and a 

penalty for increasing model size:

θ = 1
nE

∑k = 1
s ∑l = 1

m ∑t = 1
n Bk, l, t

M − Bk, l, t
E 2 + α 1

vS
e
∑e = 1

r vePe (3)

with Bk, l, t
M ∈ 0, 1  and Bk, l, t

E ∈ 0, 1  as model predictions and discretized observed data. 

The function is summed across endpoints (m), time points (n) and experimental conditions 

(s) and is weighted by the total number of data points (nE). The penalty for model size is 

calculated by weighting each solution (Pe) by the number of regulating nodes (ve) for each 

hyperedge (r), where hyperedges are defined as edges that allow multiple inputs and have 

one output. This accounts for the fact that AND gates have multiple inputs and should carry 

a greater penalty. Hence, an AND gate with two inputs will carry the same penalty as two 

regulating nodes with an OR operator. The size penalty is also normalized to the total 

number of tail nodes in the network ve
S = ∑e = 1

r ve  and is multiplied by a tunable parameter 

(α), which was fixed to 0.0001. This optimization algorithm resulted in several models that 

differed slightly in structure but had nearly the same value of the objective function. Models 

that best fit the data and differed by 1% in goodness of fit were grouped together and 

retained as a family of models representing either primary hepatocytes or HCC cells. On 

comparison, several pathway differences in signaling networks were identified amongst 

primary hepatocytes and HCC cells. The existence of a new interaction between Jak-Stat and 
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NFκB signaling was inferred, which was found to arise from the polypharmacology of an 

IκB kinase inhibitor rather than a new protein-protein interaction. This application illustrates 

an automated approach to converting an interaction network to a Boolean model. To address 

identifiability concerns the incorporation of several high throughput data sets with multiple 

perturbations as well as novel model-selection criteria could aid in the identification of a 

unique model.

Extensions of classic Boolean networks have been implemented in order to address certain 

limitations. Shmulevich et al. developed probabilistic Boolean networks (PBNs) for gene 

networks to overcome the deterministic rigidity of classic Boolean models [54]. PBNs are 

defined as a collection of Boolean networks in which a constituent network governs the 

states of nodes for a random period of time until another randomly chosen constituent 

network takes over. In PBNs nodes, V = (x1,…, xn), are assigned a set of possible Boolean 

predictor functions, Fi = f 1
(i), f 2

(i), …, f l(i)
(i) , where f j

(i) 1 ≤ j ≤ l i  is a possible function 

determining the value of node xi and l(i) is the number of possible Boolean predictor 

functions assigned xi. Thus, if l(i) = 1 for all i = 1, n, then the PBN reduces to a standard 

Boolean network. For each time step the probability of choosing f j
(i) as the predictor 

function is c j
(i), where 0 ≤ c j

(i) ≤ 1 and ∑ j = 1
l(i) c j

(i) = 1. A realization of the PBN at a given 

instant of time is determined by randomly selecting a vector of Boolean predictor functions, 

where the ith element of the selected vector contains the predictor function for node xi. A 

PBN consisting of N possible realizations, constituent networks, contains N vectors of 

Boolean predictor functions, f1, f2, fN of the form, for f k = f k1
(1), f k2

(2), …, f kn
(n) , for k = 1, 2, 

…, N, 1 ≤ ki ≤ l(i) and where f ki
(i) ∈ Fi(i = 1, …, n). The vector function f k: 0, 1 n 0, 1 n

acts as a transition function that represents a possible realization of the PBN. Each of the 

possible N realizations can be viewed as a standard Boolean network responsible for 

transitioning the network through its state space prior to randomly switching to another 

network to drive the updates. In other words, at every state x(t) ∈ {0,1}n, one of the N 

Boolean networks is chosen and used to transition to the next state x(t + 1) ∈ {0,1}n. 

Assuming the selection of Boolean functions for each gene are independent of each other, 

the number of possible realizations is N = ∏i = 1
n l(i) and the probability of selecting the kth 

Boolean network is defined as Prk = ∏i = 1
n cki

(i). At each update, a decision is made to switch 

the constituent network based upon a binary random variable (λ). If λ = 0, then the current 

network is retained, whereas with λ = 1, a constituent network is randomly selected from 

amongst all constituent networks according to its probability distribution 

ck k = 1
N , ∑k = 1

N ck = 1. The switching probability q = Pr(λ = 1) is a system parameter. When 

q = 1, a switch of constituent networks is made, and the PBN is said to be instantaneously 
random. Whereas if q < 1, the current constituent network is used for transitions until a 

switch is called for (λ = 1), a case termed as context sensitive. The dynamics of PBNs can 

be framed within the theory of Markov chains, with or without perturbations. Probabilistic 

Boolean models can be developed and analyzed using the Matlab-based toolbox BN/PBN 

(https://code.google.com/archive/p/pbn-matlab-toolbox/) or the R-package BoolNet [55]. A 
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Matlab-based toolbox (optPBN) has been developed for the generation and optimization of 

probabilistic Boolean networks [56]. Overall, this framework introduces stochasticity to 

overcome the deterministic rigidity of original Boolean networks and enables a different 

analysis of the systems attractors since state transitions are random. Determining the steady-

state probability distribution for nodes in a network provides quantitative insights into the 

long-term regulation of gene expression [57]. Methods have been developed to solve and 

approximate the steady-state probability distribution of PBNs [58,59]. The application of 

PBNs for describing and analyzing complex biological systems has been reviewed [60]. 

PBN modeling has been used as a mathematical framework to describe cancer-specific 

intracellular signaling of deregulated platelet-derived growth factor in gastrointestinal 

stromal tumors and the differential regulation of L-plastin phosphorylation by genes of the 

ERK/MAPK pathway across four breast cancer cell lines [31,61].

To address the spatial limitations of Boolean network modeling, multi-state models can be 

developed. In a three-state model, nodes may take on three different values, such as x ∈ 
{0,1,2} or x ∈ {−1,0,1}. These states represent underactive (downregulated), normal activity, 

and overactive (upregulated). For example, Flobak et al. constructed a logical network of 

gastric cancer and allowed two output nodes (i.e., Prosurvival and Antisurvival) to take on 

four values (0, 1, 2, or 3), and their immediate upstream nodes could take on three values (0, 

1, or 2) [30]. The software packages GINsim and CellNetAnalyzer both support the 

construction and analysis of multi-state logical models [62,63].

For temporal limitations of Boolean networks, the discrete time scale can be converted into a 

continuous one. Odefy is a matlab-compatible toolbox that has been developed to convert 

Boolean networks into a system of ODEs [64]. For example, Chudasama et al. converted a 

Boolean network of signaling pathways in multiple myeloma to a system of ODEs to 

simulate the dynamics of species for select inhibitors as well as to ensure the dynamics are 

consistent between the full and reduced networks [23]. Another method known as the 

standardized qualitative dynamical systems method (SQUAD) can convert a Boolean 

network into a continuous dynamical system [65]. This method was used to convert a B cell 

regulatory network into a continuous dynamical model, which enabled the identification of 

additional fixed point attractors that could be viewed as intermediate unstable transition 

states in the differentiation process [14]. The benefit of this approach is that it enables the 

construction and analysis of species dynamics, in a continuous manner, despite the lack of 

kinetic information. The conversion of a Boolean network into a series of ODEs could 

provide an initial framework for the development of quantitative systems pharmacology 

models [23].

Determining Initial Conditions

Once an interaction network has been converted to a Boolean network, the next step is to 

determine the initial condition of the network, which will be further denoted as the control 
attractor. The control attractor represents the initial states of nodes in the network when the 

biological system is at rest, which can be difficult to determine since there is not a 

formalized method to identify this initial resting state. Quantitative information for each 

node regarding the basal level of expression and a threshold concentration or activation 
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required to activate/inhibit a downstream component would be ideal. If the concentration or 

activity of a species at resting conditions, prior to perturbations, is below a threshold of 

activation, then the initial state of the node would be 0. In contrast, if concentrations are 

above an activation threshold, then the initial state would be 1 [66]. Thus, the definition of 

the initial states should not be confused with the absence or presence of a component. Since 

quantitative information for all of the processes within a complex system is often unknown, 

a combination of known a priori information about the baseline activity of biological 

components along with sampling the network state space can be used to determine the 

control attractor. Determining the initial conditions of network components has been 

reviewed before [66]. Here we have provided a stepwise process that can be used as a 

guideline for obtaining initial conditions.

I. Obtain information about the resting concentration/activity and threshold of 

activation for network components.

II. Convert available a priori quantitative data of concentrations/activity of network 

components into binary qualitative states.

III. Use converted binary values to perform a logical steady state analysis in order to 

obtain a set of nodes that have fixed states.

IV. Utilize the set of nodes with fixed states to perform an attractor analysis in order 

to identify attractors in which the system resides.

V. Analyze the identified attractors in the network and select the attractor that best 

represents a known biological resting condition.

Initial states for input nodes, such as ligands and drugs, are often known. Initial states of the 

input nodes along with additional a priori information about a biological relevant resting 

state, can be used to determine the fixed states of downstream nodes via its logical steady 

state. If there are nodes that remain undefined, an exhaustive exploration of all remaining 

initial states can be performed to identify attractors. To select an attractor that represents a 

control attractor, amongst all possible attractors of the system, the attractor with the highest 

frequency of being reached or the attractor that best corresponds to a relevant biological 

phenotype can be selected. If discrepancies exist between initial states of the nodes in the 

control attractor and known information about a biological resting state, this would indicate 

a model misspecification in the networks structure or Boolean logic functions.

Network Validation

Once a Boolean network has been developed, the network should be validated by comparing 

model predictions with experimentally obtained data. Network validation is a crucial step in 

the development process in order to gain confidence in model predictions. Experimental data 

sets should include several molecular perturbations and cover a broad range of signaling 

pathways included in the model in order to avoid fine-tuning towards a specific scenario and 

enhance model predictions under new conditions. Several experimental methods can be used 

to validate components of the network. Small molecule drugs, biologics, and gene editing 

can alter the expression of specific biological components, and downstream elements can be 

measured using various immunoassays, such as Western-blots and enzyme linked 
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immunosorbent assays (ELISA). For validation, the qualitative change in expression of 

proteins or genes downstream of the perturbed target can be compared to network 

predictions. A time-course for the change in expression is desirable in order to confirm that 

the model recapitulates intermediate states as well as long-term behavior. Given the size and 

complexity of biological networks, obtaining experimental data for the behavior of every 

node under multiple perturbations is not practical with classical methods. However, 

advanced analytical approaches, such as large-scale transcriptomic and proteomic analyses, 

can provide insights in to how the entire biological system responds to individual or a 

combination of perturbations. For example, the Gene Expression Omnibus (GEO) is a public 

data repository that contains microarray, next-generation sequencing, and other high-

throughput functional genomic data that could be used for gene network validation [67].

Prior to comparing network simulations with an experimental data set for validation, the 

initial states of the network should align with a known biological resting state. For 

anticancer chemotherapy, cancer system nodes pertaining to cell growth, proliferation, and 

survival should be ON, and nodes representing senescence or apoptosis should be OFF. 

Opposite outcomes in the control attractor would, indicate that the network structure is 

incomplete or there is an error in the Boolean logic functions. Once the control attractor is in 

agreement with the known resting condition, network simulations can be performed and 

compared against the trends of differentially expressed genes, proteins, or metabolites for a 

perturbation of interest. Here we discuss network validation using a synchronous updating 

scheme due to ease of interpretation. Simulations should be performed until an attractor is 

reached. The states of nodes in the control attractor, compared to a new attractor, indicate 

that a node is increasing (0/1 → 1) or decreasing (0/1 → 0) in expression. Since the states 

of nodes are binary, a node expressing a state of one (or zero) in both the control and new 

attractors can be viewed as either increasing (or decreasing) or remaining the same. An 

oscillatory state, as in the case of cyclic attractors, could be viewed as having a state 

between zero and one. A metric for network validity can be obtained by calculating the 

number of node states that correspond with differentially expressed components relative to 

the total number of comparisons. For semi-quantitative validation, an asynchronous updating 

scheme with random sampling or the conversion to ODEs can project a trajectory for the 

fractional activation of nodes, which can be compared with experimental measurements.

Network Reduction

Due to the complex nature of gene regulatory and signal transduction networks, network size 

can lead to problems that are computationally infeasible to solve. Therefore, in order to 

reduce complexity but maintain important system properties, a network reduction algorithm 

can be implemented to reduce the size of the network. The state space of a Boolean network 

is a finite and discrete number equal to 2N, where N is the number of nodes in the network. 

Since the network state space increases exponentially as a function of the number of nodes, 

network size can limit the ability to perform certain types of analyses. The time that an 

algorithm takes to identify attractors of the system increases exponentially with the number 

of nodes: O(2N) [68,69]. Therefore, the identification of attractors in large networks by 

searching entire state spaces can become unfeasible. To address this challenge, Boolean 

network reduction algorithms have been proposed to reduce the number of nodes and the 
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network state space. Network reduction algorithms can be applied to obtain a final reduced 

network or as an immediate step prior to further analysis. In either case, the overall goal is to 

reduce the network to a reasonable size while conserving inherent complex dynamics, 

topological features, and attractors.

Nodes that exhibit the same state throughout all attractors, initially termed stable variables/

elements, are commonly referred to as frozen nodes. Bastolla and Parisi showed that in order 

for a node to be relevant and have an effect on the dynamics of other nodes, it must be 

unstable (not frozen) and regulate another unstable node [70]. Therefore, methods have been 

developed to identify and remove frozen nodes [71,72]. Sampling only a subset of possible 

initial conditions could potentially miss attractors with a small basin size and possibly result 

in incorrectly identified frozen nodes [72]. To overcome this limitation, novel algorithms 

have been developed to find all attractors in Boolean networks [73]. Frozen nodes might also 

emerge through the introduction of constraints on the system. For example, fixing the values 

of source nodes and performing a logical steady-state analysis will identify nodes whose 

state does not change [71,74,75]. However, this simplifying assumption must be biologically 

justifiable. Similarly, Zañudo and Albert developed a network reduction approach that 

identifies motifs stabilized in a fixed state and nodes that become frozen due to their 

regulation by these stable motifs [76]. Additional topological approaches are proposed and 

non-functional nodes and edges can be removed using Boolean algebra. A common method 

is to remove mediator nodes, which are defined as nodes that have both an in-degree and 

out-degree equal to one [77,75]. These nodes are seen as non-functional as they serve only 

as an intermediate between the information flow of two other nodes. Leaf nodes, also known 

as terminal nodes, have an out degree of zero and can be removed if they are not important 

for network analyses [72]. Another method iteratively removes nodes while maintaining 

self-regulatory nodes, which likely results in an oversimplification of complex network 

dynamics [78].

A simplistic stepwise reduction method is to:

I. Remove irrelevant source (in-degree = 0) and leaf nodes (out-degree = 0)

II. Remove mediator nodes (in-degree and out-degree = 1)

III. Remove quasi-mediator nodes (in-degree or out-degree = 1)

IV. Remove frozen nodes (fixed to 0 or 1 in all attractors), if frozen nodes are 

upstream of network perturbations of interest and there are no feedback loops.

Nodes with either an in-degree or out-degree of one, or quasi-mediator nodes, can also be 

removed. However, the conservation of attractors upon the removal of quasi-mediator nodes 

has not been mathematically proven. In addition, the order in which quasi-mediator nodes 

are removed may have an impact on the final reduced network structure. Lastly, frozen 

nodes can be identified and removed, either through identifying all attractors in the network 

or by fixing source nodes followed by a logical steady-state analysis. However, since 

network perturbations can transform attractors and potentially “unfreeze” nodes, frozen 

nodes should be removed with caution. One suggestion is to only remove frozen nodes that 

are not in the path of network perturbations of interest.
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Boolean Network Analyses

In this section, a variety of network simulation and analysis techniques are introduced that 

can be used to evaluate how drugs affect the qualitative dynamics of species in the network. 

We describe and compare network simulations using synchronous, asynchronous, and 

HillCube updating methods. In addition, techniques that are useful for identifying and 

evaluating drug targets and combination therapies are described, specifically minimal 

intervention and attractor analyses.

Network Simulations

There are a wide range of perturbations that can be tested, both internal and external, such as 

small molecule drugs, biologics, and gene modifications. Boolean network simulations are 

commonly performed to determine the qualitative effects of therapeutic perturbations. For 

cancer, the dynamics of intracellular components are simulated to reveal their state in newly 

reached attractors, which are related to biological phenotypes [42], such as apoptosis, 

quiescence, differentiation, and proliferation [79]. A comparison of attractors in which the 

system resides, before and after a perturbation, may provide insight into the probability of 

therapeutic interventions. The shift from a proliferative attractor towards an apoptotic 

attractor would indicate a favorable response. In certain cancer networks, other attractors 

may exist that represent additional complex phenotypes such as the epithelial-mesenchymal 

transition, which has been described in a Boolean network model of TGFβ signaling in 

hepatocellular carcinoma [34]. In order to simulate the effect of a drug perturbation, the 

mechanism of action of the drug must be within the scope of the network, and a node for the 

drug is introduced and stimulatory/inhibitory edges are drawn from this node to all of the 

drug targets. Drugs often have multiple direct and indirect targets, and thus it is critical to 

incorporate all possible mechanisms in order to add confidence in model predictions. An 

incomplete understanding of mechanisms of drug action can create a major challenge to 

implementing Boolean networks for systems pharmacology applications. Networks for drugs 

that are promiscuous or interact with yet unknown targets are difficult to define. An option 

under such conditions is to identify drug targets through the integration of direct 

biochemical, genetic interaction, and computational inference methods [80]. Coupling gene 

expression signatures following drug exposure and computational inference methods to 

identify drug-target interactions has shown promise. For example, the Connectivity Map has 

been used to generate hypotheses about mechanisms of action of uncharacterized small 

molecule drugs by comparing their gene expression profile against gene expression profiles 

of reference compounds with known targets [81]. This comparative analysis approach was 

used to identify the mechanism of action of gedunin, an HSP90 inhibitor. Network-based 

approaches have been used to identify drug-target interactions by using gene expression 

profiles to infer the mechanisms of drug action based upon the perturbation of gene 

regulatory and protein-protein interaction networks. Detecting Mechanism of Action by 

Network Dysregulation (DeMAND) and Protein Target Inference by Network Analysis 

(ProTINA) are two network-based methods that infer drug-target interactions from gene 

expression profiles [82,83]. These two methods were compared, and ProTINA exhibited 

superiority over DeMAND for predicting known targets of drugs across three datasets: NCI-
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DREAM drug synergy challenge [84], a genotoxicity study [85], and a chromosome drug 

targeting study [86].

In addition to external perturbations, internal perturbations of species that already exist in 

the network are useful for emulating the effects of mutations and over/under expressed 

components. For a gain of function mutation (knock-in) or gene/protein overexpression, the 

state of a particular species would be fixed to one. Regardless of the states of its regulating 

nodes, the state of the mutated node will always be one. For a loss of function mutation 

(knockout) or gene/protein repression, the state would be fixed to zero. Alternatively, the 

transient modification of a node can be incorporated to model a pharmacological 

intervention and a permanent modification of a node to model a gene knock in/out. For a 

transient effect, the state of a node could be modulated for a defined number of time-steps. 

Simulations of multiple perturbations can be performed, which enables the assessment of 

combinatorial drug regimens, drug effects in the presence of specific gene mutations, and 

variability in therapeutic response due to individual genetic differences.

Synchronous updating is the original and simplest method used to simulate the dynamics of 

Boolean networks [10]. In Equation 1, the states of nodes are updated in a time-discretized 

fashion, in which the future state of a node (t+1) is a function of the current states (t) of its 

regulators. The states of all nodes are updated at the same time, based upon their previous 

states. A limitation of the synchronous updating scheme is that it makes the assumption that 

all biological processes in the network occur at the same rate. This assumption is unrealistic 

as most biological networks include a temporal distribution of cellular processes, such as 

receptor binding, signal transduction, and gene transcription. Synchronous models are 

deterministic, and the trajectory in a network state space towards an attractor will always be 

the same given the same initial conditions.

In contrast, one node is updated at any one time interval in asynchronous updating to 

account for the fact that biological processes occur at different rates [87,88]. Asynchronous 

updating schemes include stochastic algorithms, such as random order asynchronous and 

general asynchronous, as well as deterministic asynchronous algorithms. For random order 

asynchronous models, all nodes are updated sequentially at each time step based upon a 

randomly generated order [88,89]. The state of node xi will be updated according to the most 

recently updated states of its regulator nodes:

xi(t + 1) = f i xi1
τi1 , xi2

τi2 , …, xik
τiN ∈ 0, 1 , i = 1, …, N (4)

with τij ∈ {t, t + 1} and j =1, 2, …, N. If node xj is updated before node xi, then τij = t + 1, 

otherwise, τij = t. In random order asynchronous models each node is updated only once 

during a full round of updating. In general asynchronous models, a single node is randomly 

selected to be updated at each time step and the same node can be updated multiple times in 

a row [88]. In addition, time is normalized to the number of nodes in the network. Each time 

step is 1/Nth of the time step in a random order asynchronous model. Deterministic 

asynchronous updating schemes may include fixed individual time scales and delays. Chaves 
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et al. incorporated fixed individual time scales into a deterministic asynchronous model 

where each node is assigned an intrinsic time unit and is updated at intervals of this time unit 

[90]. Deterministic asynchronous models are particularly useful when information about the 

kinetics of biological processes is known. When prior kinetic information is not available, 

time scales/delays can be randomly sampled from a time interval that is within biological 

limitations. This allows nodes associated with fast processes, such as receptor binding and 

protein phosphorylation, to be updated more frequently in comparison to slower processes, 

such as gene transcription.

Asynchronous simulations have been performed more frequently than synchronous 

simulations, as the former often offers a better representation of real biological dynamics. 

Synchronous simulations are able to transition to only one other point in a networks state 

space at each time step. Hence, the dynamics are deterministically rigid. Asynchronous 

updating allows for the transition to more than one point in network state space, and 

simulation results may be different given the same initial conditions. Therefore, multiple 

asynchronous simulations must be performed and the average state of a node, after a fixed 

time step or upon reaching an attractor, can be used to represent the node dynamics. In other 

words, performing X simulations using an asynchronous updating scheme for Y time-steps 

and calculating the fraction at which the state of a node is ON relative to the total number of 

simulations indicates how the activation of a species evolves over time. The dynamics of a 

node fractional activation can be compared with the shape of experimental time-courses. 

This is particularly useful if the goal is to compare how different perturbations affect 

outcomes of interest.

Boolean networks can be converted into a system of ODEs to transform discrete time steps 

into continuous time [64]. Odefy contains three transformation methods, BoolCube, 

HillCube, and normalized HillCube, which are all based on multivariate polynomial 

interpolation. The advantage of these techniques is that they bridge a gap between the 

qualitative dynamics of Boolean network models and quantitative modeling. Discrete 

dynamics (Eq. 1) are converted into a continuous form:

dxi
dt = 1

τi
Bi xi1, xi2, …, xiNi

− xi (5)

Which allows nodes to take on any value between 0 and 1, xi ∈ 0, 1 xi ∈ [0, 1]. The 

function Bi describes the production of species xi, and τi is a parameter that represents the 

species lifetime. For HillCubes, each species is modeled as a Hill function xi =
xi
n

xi
n + kn , 

where k corresponds to the activation threshold, and the Hill coefficient n is a measure of 

cooperativity. In normalized HillCubes, the Hill function is normalized to the unit interval. 

These logic-based mathematical formalisms have been applied in several models, such as the 

β-adrenergic signaling pathway and cell growth regulation [91,92].
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To provide an example of these different simulation methods, we performed simulations 

using a previously developed Boolean network of intracellular signaling in multiple 

myeloma (Fig. 2) [23]. We simulated the inhibition of the proteasome by bortezomib, a 

proteasome inhibitor used for the treatment of multiple myeloma, to obtain a profile for the 

dynamics of a node that represents apoptosis. We performed and compared five different 

simulation methods: synchronous (BS), general asynchronous (BA), random-order 

asynchronous (BAR), normalized HillCube with default parameters (NHC), and normalized 

HillCube with randomly sampled parameter values (NHCR) (Fig. 3a). For synchronous 

updating, one simulation was performed, whereas 1000 simulations were performed for the 

remaining methods, and the average activation of each node was calculated for every 

discrete time step. We observed that random order asynchronous (green) and normalized 

HillCube with randomly sampled parameters (blue) display a delayed and slower increase in 

apoptosis, whereas synchronous (black) and normalized HillCube (dotted black) simulations 

exhibit an abrupt increase (Fig. 3a). The comparable abrupt increase in apoptosis, between 

synchronous and normal HillCube methods, can be attributed to the large time scale used in 

the network simulations. Simulation results for all individual nodes using each method are 

displayed as heat maps in supplementary materials (Supplementary Fig. S1). Network 

simulations were compared with a published dataset of select intracellular proteins in U266 

multiple myeloma cells exposed to bortezomib (Fig. 3b) [93]. Overall, network simulations 

capture the general trends of the observed data. However, there are a few discrepancies 

between network predictions and experimental observations (e.g., Cas8, p53, and BAD), 

which indicates that the network could be missing some important mechanisms related to 

bortezomib action or cellular regulation. The Boolean network used in this case study was 

an early attempt to characterize the complex intracellular signaling dynamics in U266 

multiple myeloma cells, and this model has been refined and extended to account for cellular 

heterogeneity [94].

Attractor Analysis

An attractor is a stable set of states that other states evolve toward. Attractors represent 

stable states of the system and, with respect to cellular signaling networks, can be associated 

with a biological phenotype or cell fate. Hence, an attractor analysis, which aims to identify 

all attractors of the network and their relative importance, provides key information about 

the behavior of the biological system. The basin of attraction, or basin size, of an attractor is 

the number of initial states that converge towards the attractor. The state space of a network 

contains a landscape of attractors, where each attractor has its own respective basin of 

attraction. The network state space can be depicted as a separate network, or state transition 

graph, where nodes represent sets of states for nodes in the Boolean network and edges 

indicate the transition of these sets of states towards an attractor. Nodes in Boolean models 

can take on a value of either one or zero, and a network with N nodes will contain 2N sets of 

states in the network state space. The total number of possible initial conditions is finite (2N) 

and will eventually be repeated, indicating the existence of an attractor. Fixed points and 

limit cycles are two types of attractors in Boolean networks, which can be reached by a 

synchronous updating scheme. A fixed-point attractor is a finite point in the networks state 

space that does not change with time, meaning that the set of final states repeats indefinitely. 

A fixed-point attractor is depicted as a node with a self-loop in the state transition network. 
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A limit cycle attractor is a set of points in the network state space through which transitions 

repeat. In a state transition network, n-limit cycle attractors are depicted as simple loops with 

n transitions. Fixed point attractors typically correspond with static phenotypes/processes, 

such as differentiated cell types or activation of apoptosis, whereas limit cycles correspond 

to oscillatory behaviors, such as calcium signaling, cell cycle, and circadian rhythms. In 

synchronous Boolean networks, a set of states is able to transition to only one other set of 

states due to the nature of this updating scheme. In asynchronous Boolean networks, a set of 

states is able to transition to more than one other set of states. Therefore, different attractors 

may arise due to differences in the updating scheme between synchronous and asynchronous 

Boolean networks. In addition to fixed points and limit cycles, asynchronous Boolean 

networks may also exhibit complex attractors. Complex attractors are sets of states that 

oscillate irregularly amongst each other.

Analyzing the state space of a network in order to identify attractors is referred to as an 

attractor analysis. In essence, an attractor analysis consists of multiple dynamic simulations 

with different initial conditions in order to observe the frequency of reaching each attractor 

and to determine its basin size. To perform an attractor analysis a networks state space must 

first be sampled by selecting initial sets of states. An exhaustive search, where all possible 

initial conditions (2N) are sampled, is often desired. However, due to computational 

limitations, simulating all possible initial conditions is unfeasible for large networks. 

Approaches have been developed to bypass this limitation that are capable of identifying all 

attractors in a network via model checking, but they are unable to provide any knowledge 

about the basin size of each attractor [73]. If the basin size of attractors cannot be identified 

owing to network size limitations, the fraction at which node x is activate across all 

attractors (Sx) can be calculated:

Sx =
∑i = 1

nATotal xi
nATotal

xi ∈ 0, 1 i = 1, …, nATotal
(6)

with Sx as the relative fractional activation of node x across all attractors and nATotal
 is the 

total number of attractors in the network. In the case where an attractor is cyclical, the state 

of a node throughout each transition can be averaged. We performed an exhaustive state 

space search for the multiple myeloma Boolean network to identify all attractors in the 

network, in the absence of external perturbations and in the presence of bortezomib. This 

particular algorithm is limited to synchronous updating [73]. In the absence of external 

perturbations, a total of 210 attractors were identified, which consisted of 68 fixed points 

and 142 limit cycles. In the presence of bortezomib, the 210 attractors of the network 

reduced to eight fixed-point attractors. In addition to identifying attractors, we calculated the 

fractional activation of each node in the absence and presence of bortezomib (Fig. 4). The 

fractional activation of the apoptosis node, across all attractors, shifted from 0.114 to 1 in the 

presence of bortezomib, indicating that proteasome inhibition results in the activation of 

apoptosis throughout all eight attractors. In addition, the fractional activation of growth 

across all attractors decreased from 0.914 to 0.5 in the presence of bortezomib. We also 
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determined the fractional activation of each node across attractors when a random number of 

initial conditions were selected (n = 105) for both synchronous (Fig. 5) and general 

asynchronous (Fig. 6) updating schemes. Similar to the synchronous updating algorithm, 

there was an increase in the fractional activation of apoptosis across attractors when 

bortezomib was present. In the normal condition (absence of proteasome inhibition), the 

asynchronous updating scheme results in a greater activation of apoptosis than the 

synchronous updating scheme (0.352 vs. 0.202). This is likely due to the merging of 

attractors by the asynchronous updating scheme and the introduction of attractors as an 

artifact of the synchronous updating scheme [95]. In support of this hypothesis, the 

asynchronous updating scheme only identified the same 68 fixed-points that where identified 

by the synchronous updating scheme. Indicating that all 142 limit cycle attractors have 

merged into fixed-point attractors or formed complex attractors. In the presence of 

bortezomib, both updating schemes resulted in the same 8 apoptotic fixed-point attractors. 

The exhaustive state space search (Fig. 4) exhibits similar results to the random state space 

search (Fig. 5), despite the vast difference in the sample sizes between these two analyses 

(265 (approximately 1018) compared to 105). The synchronous random state space search, in 

the absence of external perturbations, identified 119 of the 210 attractors in the Boolean 

network. The fractional activation of apoptosis is smaller in the exhaustive vs. random state 

space search (Fig. 4a vs. 5a; 0.1143 vs. 0.2017), which indicates that the missed attractors 

likely have a small basin size and apoptosis in the OFF state. As the number of starting 

initial states increase, the number of identified attractors will approach 210 and the fractional 

activation of apoptosis will approach 0.1143. Overall, incorporating the effects of 

bortezomib on the network has shifted the attractors towards those that are representative of 

apoptosis. Biologically this can be interpreted as proteasome inhibition drives multiple 

myeloma cells towards an apoptotic fate.

A basin of attraction reflects the importance and robustness of a particular cellular state 

associated with an attractor. Attractors that have large basin sizes tend to be more robust to 

perturbations and represent the predominate phenotype of the system. There are two possible 

ways to gain information about the basins of attraction in large networks: (1) apply a 

network reduction technique that decreases network size to make simulations 

computationally feasible, or (2) sample a random finite set of initial conditions to use for 

simulations. When the network is sufficiently small, an exhaustive state space search can be 

performed to simulate all 2N initial conditions, identify every attractor, and determine the 

basin size for each attractor. If the network is too large for an exhaustive search, one can 

sample a finite number of random initial conditions to obtain the basins of attraction for each 

attractor. When the basins of attraction are known, the relative frequency of attractors and 

relative activation frequency of nodes can be determined. The relative frequency (vA) at 

which an attractor (A) is reached can be calculated:

vAi
=

BSi

∑i = 1
nA BSi

i = 1, …, nA ∑i = 1
nA vAi

= 1 (7)
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with vAi
 and BSi as the relative frequency and apparent basin size of attractor Ai. If initial 

states are randomly selected, BSi is an apparent basin size, not the exact basin size of 

attractor Ai, since the entire state space is not sampled and the same initial state can be 

sampled more than once. Note that nA represents the total number of attractors identified via 

the state space search, which can be less than the total number of attractors in the network, 

nA ≤ nATotal
 For an exhaustive state space search, where all possible initial conditions are 

sampled ∑i = 1

nATotal BSi = 2N, BSi will equal the basin size of attractor Ai, and the relative 

frequency of an attractor will equal its probability: Pr Ai = vAi
. When the limit of the 

number of randomly selected initial states approaches infinity, the relative frequency of an 

attractor will be equal to its probability: Pr Ai = lim
Σi = 1

nA BSi ∞
vAi

.

The relative frequency of an attractor may shed light on the importance of a certain 

phenotype to the biological system, since attractors can be associated with biological 

phenotypes [96]. When multiple attractors exist, they can be binned into groups that relate to 

a specific phenotype. To give a theoretical example, consider a Boolean network of cell 

signaling pathways for a type of cancer. This network contains 1 attractor when no drug is 

present and 10 attractors when an anticancer agent is present. For the control condition, let 

us denote the only attractor when no drug is present as proliferation. Hence, 100% of the 

cancer cells are in a proliferative state in the absence of drug. When drug is introduced, the 

system divides into 10 attractors. Of the 10 attractors, five, three, and two attractors are 

associated with apoptosis, proliferation, and cell cycle arrest, respectively. The relative 

frequencies of the attractors, in each group, can be summed and directly related with the 

overall frequency of that particular cellular fate. For simplicity, let us also assume that the 

basin size of each attractor is the same, which results in a relative frequency of 0.10 for each 

attractor. Therefore, the overall frequency for apoptosis is 0.50, proliferation is 0.30, and cell 

cycle arrest is 0.20. In a biological context, 50% of the cancer cells would undergo 

apoptosis, 30% would continue to proliferate, and 20% would enter a state of cell cycle 

arrest. Quantifying the relative frequency of attractors in biological networks has been 

applied to identify potential therapeutic targets in T-cell large granular lymphocyte leukemia 

and breast cancer, evaluate outcomes of molecularly targeted cancer therapies, and describe 

B-cell differentiation [17,29,97,14].

Frequently, cell fates or other phenotypes of interest, are modeled as nodes in the network. 

The relative activation frequency of individual nodes can be calculated as:

vx = ∑i = 1
nA vAi

× xi xi ∈ 0, 1 i = 1, …, nA (8)

with vx as the relative activation frequency of node x. Lu et al. calculated the activation 

frequencies of nodes in a Boolean network of colitis-associated colon cancer for a non-

inflammatory and a pro-tumor inflammatory microenvironment [32]. To simulate the non-
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inflammatory condition, states of the nodes in the pro-inflammatory microenvironment were 

set to OFF, and the dynamics were simulated using general asynchronous updating for 5000 

initial sets of states. The fractional activation of the proliferation node was plotted over time 

and eventually reached zero, indicating that the premalignant cells were unable to proliferate 

in a non-inflammatory microenvironment. The network was then simulated under a pro-

tumor inflammatory condition, which resulted in an increase in proliferation and apoptosis 

reached zero. A node perturbation analysis was then performed to observe how various 

interventions modified proliferation and apoptosis, which led to the identification of 

potential therapeutic targets and provided insight into combinatorial cancer therapies. A 

node perturbation analysis is a sensitivity analysis in which a perturbation is introduced (by 

fixing certain nodes to 0 or 1), and the change in relative activation frequency of other nodes 

is calculated. The sensitivity at which a node changes due to a perturbation can be quantified 

as a ratio of a nodes activation frequency in the presence and absence of a perturbation, 

known as a perturbation index (PI):

PI =
vx(perturbation)

vx(normal) (9)

Ruiz-Cerda et al. constructed a Boolean network of systemic lupus erythematosus and 

performed a perturbation analysis coupled with a clustering algorithm to identify potential 

drug targets, select optimal combination therapies, and identify subpopulations that may 

have a differential response to drug treatment [21]. SPIDDOR (Systems Pharmacology for 

efficient Drug Discovery On R) is an R package that can be used to perform such 

simulations, attractor analyses, and perturbation analyses with clustering of Boolean 

network models [98].

When the state space of a network is too large to characterize all attractors and basins of 

attraction, a random finite number of initial conditions can be generated and used for 

simulations. Since the number of randomly generated initial conditions can be infinitesimal 

in comparison to the entire state space of large networks, attractors with small basins of 

attraction are often missed. This raises the concern about whether this sampling approach is 

an adequate representation of the whole system. However, this approach seems adequate 

based upon the assumption that attractors with smaller basins are less important than 

attractors with large basins. In support of this conjecture, the probability of reaching an 

attractor with a small basin size is very low and will have a negligible effect on the activation 

frequencies of nodes. A concern with these sampling methodologies, both exhaustive and 

random, is that some initial conditions may be irrelevant and cannot exist because they are 

outside of natural biological constraints.

In our multiple myeloma case, 105 initial conditions were sampled and used to determine the 

relative activation frequency of each node in the presence/absence of bortezomib (Fig. 7). 

Although we observed differences in the relative activation frequencies of certain species in 

the network, there were only slight differences in the relative activation frequencies of 

growth and apoptosis between these two conditions. This could be attributed to a variety of 

factors. First, the network was not constrained by fixing components that are known to be 

Bloomingdale et al. Page 19

J Pharmacokinet Pharmacodyn. Author manuscript; available in PMC 2019 May 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



constitutively active or mutated in U266 multiple myeloma cells. There may be certain 

constitutively active species, such as growth factors, that prevent the system from evolving 

towards an apoptotic attractor. For example, apoptosis turns off when certain nodes in the 

PI3k-Akt signaling pathway are fixed (such as PIP3). This pathway is altered across several 

types of cancers and is associated with survival and growth [99]. Second, there are positive 

feedback loops in the network that can cause species to become and remain active as a result 

of randomly sampling initial conditions. Biological systems are known to be robust to 

transient perturbations, and pathways may dampen and diminish overexpression instead of 

remaining active. This phenomenon could be due to unrealistic initial conditions, missing 

regulatory components, or an artifact of the updating scheme [95]. Lastly, the model 

contains only a small portion of the entire biological regulatory network. Since the network 

has been constructed to contain pathways that lead to apoptosis in multiple myeloma cells, it 

is not surprising that sampling random initial conditions results in a high activation 

frequency of apoptosis.

Minimal Intervention Analysis

Minimal intervention analyses can be conducted to identify targets, either single or multiple, 

for therapeutic intervention. Klamt and Gilles introduced the concept of minimal cut sets for 

biochemical networks [100]. A minimal cut set was originally defined as a minimal set of 

reactions whose removal blocks the operation of a chosen objective and has been extended 

to include structural interventions (removal of nodes) [101]. Minimal intervention analysis 

identifies the least number of interventions, referred to as minimal interventions sets, 

required to satisfy a user-defined goal. For cancer, a user-defined goal could be the activation 

of apoptosis. In this case, the node for apoptosis would be defined as 1 (ON), and the 

minimal intervention algorithm searches for all possible combinations of node perturbations 

that result in the activation of apoptosis. A node intervention can represent a permanent 

activation (1) or deactivation (0), and results are based upon whether the logical steady state 

satisfies the intervention goal. Thus, interventions will only be identified when no other 

regulators are influencing the state of the node. In other words, the analysis identifies 

combinations of node perturbations that results in the node of interest becoming frozen to 

the defined value. Single or multi-node perturbations can be identified. However, for large 

networks, identifying combinations greater than three or four nodes starts to become 

computationally unfeasible. In addition, multiple intervention goals can be defined, and 

perturbations that satisfy a subset or all of these goals can be identified. CellNetAnalyzer is a 

Matlab-based toolbox that has been commonly used to perform minimal intervention 

analyses of cellular networks [62].

Two minimal intervention analyses were conducted on the Boolean network of intracellular 

signaling in multiple myeloma. In the first analysis, up to two node combinations were 

identified that result in apoptosis turning ON and growth turning OFF. The analysis 

identified 52 combinations of two node perturbations that result in apoptosis and growth 

equaling 1 and 0 (Fig. 8a; Supplementary Table S1). Thus, 52 potential drug target 

combinations may be further investigated to determine their efficacy for the treatment of 

multiple myeloma. The proteasome was the most frequently inactivated target, which was 

not surprising since proteasome inhibition is a crucial component of the current standard-of-
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care treatment for multiple myeloma. For the second analysis, we identified up to three node 

combinations that result in apoptosis turning ON and growth turning OFF. Here, in addition 

to the 52 previously identified two node combinations, we found 427 three-node 

perturbations that result in apoptosis and growth equaling 1 and 0 (Fig. 8b; Supplementary 

Table S2). Caspase-8 (Cas8) was the most frequently activated node, present in 

approximately 20% (96/479) of all perturbations. This result was intriguing since activation 

of the caspase-8-mediated apoptosis pathway is the primary mechanism of action for the 

cytotoxic effects of lenalidomide, which is another chemotherapeutic agent used in 

combination with proteasome inhibitors for the treatment of multiple myeloma [102,103]. 

Overall, this approach has led to the identification of several two-drug combinations and a 

vast number of three-drug combinations, which may be useful for the treatment of multiple 

myeloma. Although minimal intervention analysis is a useful tool to narrow down and 

identify potential drug combinations, information regarding prioritization and differences in 

efficacy amongst these combinatorial treatments remains unknown. Therefore, performing 

minimal intervention analyses to identify combination therapies can be seen as a high 

throughput method, which would subsequently warrant further investigations through in 
silico quantitative analyses, such as the development of a QSP models, and experimental 

qualifications [9].

In addition to minimal intervention analysis, other network-control methodologies have been 

used to identify points of intervention. A stable motif is a set of nodes that achieves a single 

cellular state irrespective of input by the rest of the network. Such a motif, can be used to 

identify stable motif control sets, which are sets of nodes whose states are able to drive the 

dynamics of the network towards a specific attractor [104]. In essence, the states of nodes in 

a control set are able to provide insights into the behavior of the system, and perturbing 

specific nodes of a control set can guide the behavior toward one that is favorable. This 

stable motif-control methodology has been applied to identify control sets in an epithelial-

mesenchymal transition (EMT) network model that drives the system towards an epithelial 

steady state [105]. Steinway and colleagues identified seven individual targets (all related to 

E-cadherin transcription), and three targets in combination with SMAD complex inhibition, 

that were able to suppress EMT. Select targets were then verified to suppress EMT using an 

in vitro cell migration assay. As a comparison, minimal intervention analysis identifies 

targets that lead to a specific predefined outcome of select nodes (a steady-state); whereas, 

network motifs enable the identification of targets that drive the system towards a desired 

attractor and considers network dynamics as opposed to steady states.

An Overview of Boolean Network Applications

Table S3 lists a sample of previously developed Boolean networks that pertain to human 

physiology and disease. The majority of these networks focused on signaling pathways in 

cancer, and these networks are grouped based upon the type of cancer, including: the 

immune system, breast, gastrointestinal, hepatic, and lung cancers. Nodes in these networks 

are primarily gene products, with the exception of endpoint nodes. Edges represent several 

types of regulatory interactions within signaling pathways, such as protein-protein, protein-

DNA, and metabolic interactions. These networks have been constructed primarily through 

the utilization of pathway databases and extensive evaluation of the literature, and are listed 
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as knowledge-derived networks (Table S3). Networks that have been constructed based on 

large datasets, such as genomic, proteomic, and metabolomic studies, are referred to as a 

data-derived networks. In addition, a few studies have extended pre-existing networks to 

investigate specific interests. The main goals for developing Boolean networks have been to 

identify potential therapeutic strategies [106,17,18,107,25,26,28–32,34], characterize 

cellular differentiation [14,11,13,36], understand differential responses to cancer therapies 

due to mutational differences [27], understand the impact of patient heterogeneity on the 

response to drug treatments [21,35], and as an initial framework prior to the development of 

quantitative models [23]. The networks provided in this table could be potentially extended 

or repurposed for investigating additional features of interest, as opposed to starting from the 

ground up. A useful resource is the Cell Collective, which is a web-based platform that 

contains several published biological networks for users to build upon and perform 

simulations [108]. Previously developed Boolean networks can also be accessed from 

BioModels, GINsim’s model repository, and PyBoolNet’s model repository [109,63,110]. 

Additionally, there is a Consortium for Logical Models and Tools (CoLoMoTo) that 

provides useful information for logic-based modeling, such as commonly used methods and 

software tools [111]. Lastly, a tutorial on logic modeling in quantitative systems 

pharmacology has been published [112], and serves as another great resource to help guide 

the development of network-based systems pharmacology models.

Conclusions

Encoding complex biological processes into mathematical models enables the prediction of 

responses to various perturbations, which has the potential to uncover emergent properties, 

discover new therapeutics, and individualize therapy to maximize therapeutic benefits while 

minimizing adverse drug reactions. These goals can be pursued through a combination of 

quantitative experiments and mathematical analyses of biological networks. Despite the 

simplifications and limitations of Boolean network models, they have proven to be effective 

for qualitatively describing the dynamics of biological systems. Boolean network models of 

intracellular signal transduction could act as a bridge to connect drug exposure with 

physiological responses to form a hybrid multiscale model of drug action. Kirouac et al. 

developed a multiscale model of the ErbB signaling pathway with the objective of designing 

drug combination regimens for ErbB2-positive breast cancer patients [26]. The model 

contains biological processes occurring at four different time scales: Receptor-ligand 

binding (minutes), signal transduction (minutes to hours), transcription (hours), and 

phenotypic effects (days to weeks). Quantitative logic, an extension of Boolean logic, was 

incorporated in the model to describe intracellular signal transduction events and link the 

time-course of drug exposure to tumor growth dynamics. The rational for selecting a 

quantitative logic-based modeling formalism was the rapid time scale of signal transduction 

events relative to clinical phenotypes and the nature of available biochemical data. A 

combination regimen that targets both ErbB3 and ErbB2 was identified as a potential 

treatment strategy to improve therapeutic efficacy. The breadth of utility offered by a 

mathematical model that can accurately predict complex biological responses to 

pharmacological perturbations, especially for drug development, has fueled the rise of 

interest in quantitative systems pharmacology [113]. Quantitative systems pharmacology/
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toxicology models could improve drug efficacy while minimizing toxicity, reduce late-stage 

drug attrition, and aid in the movement toward precision medicine [114].

In this review, we have covered an important application of Boolean network modeling in 

drug discovery, namely the identification of drug targets and combination therapies. The 

innovation gap across the pharmaceutical industry, in which drug development costs are 

increasing exponentially while the number of new molecular entities remains relatively 

constant, is well appreciated [115]. A novel systems-level approach to drug discovery is 

needed, which focuses on a comprehensive understanding of drug effects rather than the 

modulation of a single target. Network-based systems pharmacology approaches, such as 

Boolean network modeling, may help to fill the innovation gap through the identification of 

novel drug targets and combination therapies. A quantitative systems-level understanding of 

cellular physiological responses to pharmacons is key, and novel mathematical modeling 

approaches and strategies are needed that enable better representation and analysis of 

biological systems.
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Fig. 1. 
Waddington’s epigenetic landscape from a systems pharmacology perspective. Lines 

represent the trajectories of the ball towards valleys. Valleys are represented as attractors of 

normal proliferation, aberrant proliferation, or apoptosis. The unperturbed network (right) is 

representative of a trajectory towards a healthy normal attractor (blue), whereas a network 

that has gained mutations in specific nodes (left) is representative of a trajectory towards a 

neoplastic attractor (red). Yellow bolts indicate nodes that have been mutated. A 

pharmacological intervention (purple) may shift the trajectory towards one that is favorable, 

whether it is back towards normal proliferation or apoptosis. Adapted from [43].
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Fig. 2. 
Boolean network model of cellular signal transduction in U266 multiple myeloma cells. 

Legend shown to the right of the network. Figure adapted from Chudasama et al. (2016) 

[23].
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Fig. 3. 
(a) Comparison of five Boolean network simulation methods. Simulations were performed 

for the effect of bortezomib (proteasome = OFF) on the Boolean network of signaling 

pathways in multiple myeloma [23]. The fractional activation of apoptosis is determined by 

dividing the frequency that apoptosis is activated by the total number of simulations 

(n=1000) across each time step: Synchronous (BS; black line), general asynchronous (BA; 

red line), random-order asynchronous (BAR; green line), normalized HillCube with default 

parameters (NHC; dotted line), and normalized HillCube with randomly sampled parameter 

values (NHCR; blue line). Default parameters values used for NHC simulations were: τ = 1, 

k = 0.5, and n = 3. Parameter values used for NHCR simulations were randomly generated 

from a Log-normal distribution with a mean (and standard deviation) of: τ = 1 (1), k = 0.5 
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(1), and n = 3 (1). (b) Boolean network normalized HillCube simulations compared with 

intracellular protein dynamics of U266 cells cultured with 3 nM bortezomib for 0, 12, 24, 

36, and 48 hours. Data were obtained using a multiplex immunoassay (Luminex® 

MAGPIX®) and have been described in detail elsewhere [93].
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Fig. 4. 
Attractor analysis with an exhaustive search and synchronous updating for the multiple 

myeloma Boolean network [23] for the (a) absence and (b) presence of bortezomib. The y-

axis represents the fractional activation of a node across all network attractors, and the x-axis 

represents all nodes in the network. The fractional activation of growth and apoptosis are 

represented as blue and red bars.
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Fig. 5. 
Attractor analysis with a set of random initial states (105) and synchronous updating for the 

multiple myeloma Boolean network [23] for the (a) absence and (b) presence of bortezomib. 

The y-axis represents the fractional activation of a node across all network attractors, and the 

x-axis represents all nodes in the network. The fractional activation of growth and apoptosis 

are represented as blue and red bars.
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Fig. 6. 
Attractor analysis with a set of random initial states (105) and general asynchronous 

updating for the multiple myeloma Boolean network [23] for the (a) absence and (b) 

presence of bortezomib. The y-axis represents the fractional activation of a node across all 

network attractors, and the x-axis represents all nodes in the Boolean network. The 

fractional activation of growth and apoptosis are represented as blue and red bars.
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Fig. 7. 
Attractor analysis with a set of random initial states (105) and synchronous updating for the 

multiple myeloma Boolean network [23] for the (a) absence and (b) presence of bortezomib. 

The y-axis represents the relative activation frequency of each node, and the x-axis 

represents all nodes in the network. The relative activation frequency of growth and 

apoptosis are represented as blue and red bars.
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Fig. 8. 
A minimal intervention analysis of the Boolean network of signaling pathways in multiple 

myeloma [23]. Network perturbations that result in apoptosis turning ON and growth turning 

OFF were identified for up to (a) two-node and (b) three-node interventions. The number of 

times a node was perturbed relative to the total number of intervention sets (52 and 427 

intervention sets for two-node and three-node perturbations) is shown on the y-axis, and the 

x-axis depicts the intervention targets. Red bars indicate the activation of a node (ON), and 

blue bars indicate the inactivation of a node (OFF).
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