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Killer-like receptors and GPR56 progressive
expression defines cytokine production
of human CD4+ memory T cells
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All memory T cells mount an accelerated response on antigen reencounter, but significant

functional heterogeneity is present within the respective memory T-cell subsets as defined by

CCR7 and CD45RA expression, thereby warranting further stratification. Here we show that

several surface markers, including KLRB1, KLRG1, GPR56, and KLRF1, help define low, high,

or exhausted cytokine producers within human peripheral and intrahepatic CD4+

memory T-cell populations. Highest simultaneous production of TNF and IFN-γ is observed in

KLRB1+KLRG1+GPR56+ CD4 T cells. By contrast, KLRF1 expression is associated with T-cell

exhaustion and reduced TNF/IFN-γ production. Lastly, TCRβ repertoire analysis and in vitro

differentiation support a regulated, progressive expression for these markers during CD4+

memory T-cell differentiation. Our results thus help refine the classification of human

memory T cells to provide insights on inflammatory disease progression and immunotherapy

development.
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CD4+ helper T cells coordinate the immune response
against invading pathogens and malignancies1–5. How-
ever, they also play a pathological role in the development

of various inflammatory and/or autoimmune disorders6,7.
In association to their differentiation state, CD4+ T-cell

populations vary in their migratory behavior, cytokine produc-
tion, and proliferative capacity, as well as effector function8,9.
Naive T cells (TN) upon primary antigen encounter in secondary
lymphoid organs exert only delayed effector functions10,11. In
contrast, memory T cells show an accelerated and intensified
response to antigen re-encounter resulting in rapid antigen
clearance. However, the functional repertoire of memory T cells is
manifold and subpopulations vary in their location, protection
capacity, and longevity10,11. Therefore, researchers have urged to
identify phenotypic properties that help to distinguish memory
T-cell subpopulations12,13. Based on the expression patterns of
lymph node homing receptors (CD62L or CCR7) and
CD45 splice variants, CD8+ and CD4+ T cells have been clas-
sified into CD45RA+CCR7+ naive (TN), CD45RA−CCR7+ cen-
tral memory (TCM), CD45RA−CCR7− effector memory (TEM),
and CD45RA+CCR7− terminally differentiated effector memory
(TEMRA) cells14–16. TCM being CCR7+, such as TN cells, circulate
between blood and lymphoid compartments, and have a high
proliferative and self-renewal capacity. Both CCR7− TEM and
TEMRA subsets are excluded from lymphatic organs and migrate
via the blood to peripheral tissue15,16 where they elicit an
immediate cytokine-driven cytotoxic immune response against
re-occurring infections9,17. Although TEM cells show generally
high cytokine production potential, contrasting findings have
been published for TEMRA cells, reporting either high or low
cytokine production potential; the latter being attributed to an
exhausted state with characteristics of end-stage differentiation,
showing acquirement of killer cell lectin-like G1 (KLRG1) and
CD57 but loss of CD28 and CD27 expression9,18–21. Similar
findings suggesting multifunctionality within a subset have also
been observed for TEM cells21,22. Thus, TEM and TEMRA popula-
tions defined by the CD45RA/CCR7 classification seem to
represent a pool of cells, which are functionally and phenotypi-
cally heterogeneous. This is particularly true for CD4+ memory
T cells.

Due to their high pro-inflammatory cytokine production
potential, CD4+ memory T cells are key promoters of chronic
inflammation when physiological regulatory circuits fail. There-
fore, it is not surprising that increased proportions and absolute
numbers of TEM and also TEMRA cells have been observed in
patients suffering from chronic inflammatory diseases23,24.
However, due to high intra-subset heterogeneity and possible
partial functional overlap of TEM and TEMRA, it seems likely to be
that T cells with high cytokine secretion properties might be
driving chronic inflammation irrespective of their CD45RA/
CCR7 phenotype.

Therefore, in this study we aim for further characterization of
functional heterogeneity of human CD4+ T-cell subsets at the
single-cell level, including the identification of reliable surface
markers correlating with their cytokine production properties.
Here we perform bulk and single cell gene expression profiling of
purified human CD4+ TN, TCM, TEM, and TEMRA cells from the
peripheral blood of healthy individuals and identify different
combinations of the surface markers KLRB1, KLRG1, GPR56,
and KLRF1 to be suitable to describe the development of human
CD4+ memory T cells with varying cytokine production poten-
tial. Expression of KLRB1, KLRG1, and GPR56 is associated with
high tumor necrosis factor (TNF)/interferon (IFN)-γ co-
expression potential, whereas acquisition of KLRF1 expression
during terminal differentiation results in a reduction of the
cytokine production capacity. This KLR and GPR56-based

classification allows for a more precise definition of functional
states of TNF/IFN-γ producers as compared to the classical TEM

or TEMRA gating, respectively. Importantly, this correlation
between marker expression and cytokine production is also
validated in blood and intra-tissue CD4+ T cells from patients
with inflammatory liver diseases. Our data thus support a human
CD4+ memory T-cell classification scheme that is more precise
than the CD45RA/CCR7-based categorization.

Results
Overlapping gene signatures of CD4+ TEM and TEMRA cells. To
gain more insights into common vs. different phenotypic and
functional properties of CD4+ TEM and particularly TEMRA cells,
we performed comparative gene expression profiling of sorted
CD4+ TN, TCM, TEM, and TEMRA cells from the peripheral blood
of healthy individuals. We focussed on genes encoding cell sur-
face proteins, in order to identify phenotypic markers associated
with distinct functional properties (e.g., cytokine production
potential) of TEM and especially TEMRA cells. Therefore, we per-
formed an intersection analysis as explained in Methods between
TEMRA/TEM vs. TN, or TEMRA/TEM vs. TCM cells (Fig. 1a), and
TEMRA vs. TN, TEMRA vs. TCM, or TEMRA vs. TEM (Fig. 1b), to
identify genes that were highest expressed in TEMRA cells (Fig. 1b)
but also significantly increased in both CD4+ TEM and TEMRA

cells (Fig. 1a) compared with CD4+ TN/TCM or with TN cells only
(see also Supplementary Table 1). Among the top-ranked genes
upregulated in both CD4+ TEM and TEMRA cells were genes
previously shown to be highly expressed in more differentiated
T cells (e.g., FASLG) as well as genes encoding various Toll-like
receptors or HLA-DR beta chains, but especially genes associated
with natural killer (NK) cells. Among those NK cell genes were
members of the killer-like receptor family (e.g., KLRG1 and
KLRF1, NKG7, CD300A, and CD300C). In addition, genes
encoding proteins regulating cell migration and adhesion such as
S1PR5, CX3CR1, and ADGRG1 (also known as GPR56) were
highly upregulated. Furthermore, the microarray analysis identi-
fied genes whose expression was specifically increased in TEM

cells, such as genes encoding c-Kit or the killer-like receptor
KLRB1 (see also Supplementary Table 1). Taken together, we
could identify a set of genes encoding surface markers, which
were significantly higher expressed in more differentiated human
CD4+ TEM and TEMRA cells.

Heterogeneity in gene expression of TEMRA and TEM cells. We
used the identified CD4+ TEM− and TEMRA-specific genes to
investigate whether their expression was homogeneous or could
be attributed to certain cell subsets within CD4+ TEM and TEMRA

cells. For this, we applied single-cell separation combined with
gene candidate-specific quantitative reverse-transcriptase PCR
(qRT-PCR) in separated CD4+ TN, TCM, TEM, and TEMRA cells, as
well as CD4+CD25highCD127low regulatory T cells (Treg) from
healthy individuals. In addition to the expression of our identified
gene candidates, we also analyzed expression of TBX21, GATA3,
EOMES, RORC, FOXP3, SELL, and CD45RA (see Supplementary
Table 2 for complete gene list). We performed an unsupervised
hierarchical cluster analysis of all genes giving a signal in at least
ten cells and showing no cross-reactivity with genomic DNA.

Nearly all of the TEMRA and the majority of the TEM cells
clustered separately from the other T-cell subsets, which was in
part due to the inclusion of lineage-specific genes such as EOMES
(Fig. 1c). Also, as expected, Treg cells clustered separately in a
highly homogeneous cluster, underlining the clear separation of
this immunosuppressive subset from all other pro-inflammatory
subsets. A high proportion of TEM but also TEMRA cells
transcribed EOMES and also GATA3, whereas RORC was only
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expressed by a minor fraction of TCM, TEM, and Treg cells but not
by TEMRA cells (Supplementary Table 3).

Single-cell quantitative PCR (qPCR) analysis not only validated
the selective expression pattern of most of the gene candidates
observed in bulk analysis but also revealed that only a few CD4+

TEM- and TEMRA-specific genes such as NKG7, GPR56, or KLRG1
were expressed by nearly all TEM and TEMRA cells (Fig. 1c, d and
Supplementary Table 3). The majority of genes showed a more

heterogeneous expression pattern with only a fraction (e.g.,
KLRB1, KLRF1, CMKLR1, and ADRB2) or sometimes even a
minority of CD4+ TEM or TEMRA cells transcribing the genes (e.g.,
S1PR5, CADM1). The variability in NK cell-associated marker
expression (Fig. 1d) was especially apparent.

As we were particularly interested in understanding hetero-
geneity associated with variations in functionality and differentia-
tion status of the T cells, we investigated the heterogeneously
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Fig. 1 Specific mRNA expression profile and heterogeneity of CD4+ TEM and TEMRA cells. a, b Heatmaps of genes with significantly increased expression
in a TEM/TEMRA compared to TN/TCM cells and b TEMRA compared with TN/TCM/TEM cells identified by an intersection analysis. Gene expression was
determined in human CD4+ TN, TCM, TEM, and TEMRA cells sorted from peripheral blood of healthy subjects (n= 3–8, each consisting of 1–3 pooled sorted
samples). The scale of both heatmaps is identical. c Single-cell profiling of TEM- and TEMRA-specific gene expression shown as unsupervised hierarchical
cluster analysis of 16 gene candidates (red) and additional genes (black) in single blood CD4+ TEMRA (n= 226), TEM (n= 199), TCM (n= 186), TN (n= 94),
and Treg cells (n= 178) from four healthy donors. d Unsupervised hierarchical cluster analysis of single-cell gene expression results from identified natural
killer cell-associated markers in blood CD4+ TEM (n= 260) and TEMRA (n= 276) cells of five healthy individuals. Classification as expressing and non-
expressing cells based on individually defined limit of detection (LoD) Ct values. Data are provided with the Source Data file
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expressed genes in more detail at protein level. We concentrated
on KLRB1, KLRG1, GPR56, and KLRF1 as we wanted to include
markers with homogeneous and those with heterogeneous
expression as well. We achieved reproducible high-resolution
antibody staining in flow cytometry.

We detected a progressive increase in expression of all four
markers starting from TN to TEMRA cells (Fig. 2a) with
upregulation of KLRB1 at an early memory stage (central
memory stage). In contrast, expression of the other three markers
increased later during memory/effector cell development: KLRG1
was expressed by ~50% of the TEM and nearly all TEMRA cells,
whereas GPR56 and especially KLRF1 were particularly upregu-
lated in even later stages of differentiation with only TEMRA cells
displaying a relatively high expression of these markers (Fig. 2a).

Thus, we could validate the selective expression pattern of
killer-like receptors and GPR56 in TEM and TEMRA cells. In
concordance with the single-cell mRNA expression analysis, the
expression patterns were still heterogeneous and not all of the
TEM and TEMRA cells stained positive for these four markers.

In addition, we studied expression of co-inhibitory receptors
known to become upregulated during T-cell differentiation or T-
cell dysfunction/exhaustion such as PD-1 and TIGIT. Of interest,
expression of both receptors was highest in TEM or TCM cells,
respectively, but reduced in TEMRA cells (Fig. 2a). Our analysis of
other co-inhibitory receptors such as TIM-3 and LAG-3 revealed
rather high surface expression on TN and TCM, and low
expression on TEM and TEMRA cells (Supplementary Fig. 1A),
whereas, in contrast, mRNA expression of LAG-3 was only
upregulated in TEMRA cells and, to a lesser degree, TEM cells
(Fig. 1b). Supplementary Table 4 summarizes the expression
pattern of previously defined and our proposed surface markers
on human and murine CD4+ and CD8+ T cells that distinguish
between activated, memory, and dysfunctional/exhausted states.

When comparing single-cell expression data on mRNA to
respective data on protein level, we observed nearly identical
frequencies of GPR56- and KLRG1-expressing cells (Fig. 2b). In
contrast, proportion of KLRF1 and especially KLRB1-positive
cells varied significantly for TEMRA cells pointing to fluctuations
in gene transcription.

KLR and GPR56 expression-associated cytokine production.
Next, we tested a potential correlation between cytokine pro-
duction of CD4+ T cells and surface marker expression of
KLRB1, KLRG1, GPR56, and KLRF1 each. For this, peripheral
blood mononuclear cells (PBMCs) of healthy individuals were
short-term stimulated using phorbol 12-myristate 13-acetate
(PMA)/Ionomycin, followed by staining of the respective surface
markers and intracellular cytokines, namely TNF, IFN-γ, inter-
leukin (IL)-4, and IL-17. We observed a general trend of KLRB1+,
KLRG1+, and GPR56+ T cells displaying high potential to pro-
duce cytokines, with especially the KLRG1+ group of cells con-
taining a particular high frequency of TNF and IFN-γ producers
(Fig. 3a). In contrast, IL-4 production showed no association with
expression of KLRs and IL-17A production was mostly observed
within KLRB1+ cells (Supplementary Fig. 2A) as previously
described25. With single KLRB1-expressing CD4+ T cells mainly
residing within TCM cells, we detected only IL-17A expression in
TCM but not in TEM or TEMRA cells (Supplementary Fig. 2B).
However, total proportion of IL-4 or IL-17A producers was rather
low within peripheral CD4+ T cells of healthy controls.

In order to visualize defined co-expression patterns of the
surface markers associated with TNF and IFN-γ production,
we created t-distributed stochastic neighbor embedding (t-SNE)
maps arranging all conventional CD4+ T cells (pre-gated on
CD3+CD4+ cells with exclusion of CD25highCD127low Treg

cells) according to their similarity in surface marker (CCR7,
CD45RA, KLRB1, KLRG1, GPR56, and KLRF1) and cytokine
expression (TNF, IFN-γ, IL-4, and IL-17A; Fig. 3b). The two-
dimensional shape of all t-SNE plots is based on the overall
similarities between the acquired conventional CD4+ T cells. The
color code of each t-SNE plot reflects the corresponding
distribution of marker-positive and -negative T cells, which,
e.g., allows the identification of CCR7-negative, CD45RA-
negative, or -positive TEM and TEMRA cells respectively, in the
upper left t-SNE plots (encircled black area). TNF and IFN-γ
production is common but clearly heterogeneous within the TEM/
TEMRA area, with certain subtypes being completely devoid of
cytokine expression (blue arrows). In accordance with the single-
cell gene expression results, we detected a homogeneous KLRG1
expression in nearly all cells within the TEM/TEMRA area, whereas
expression of the other marker was very heterogeneous.

Surprisingly, most cells in this cytokine-low area (blue
arrows) express all four surface markers with KLRF1 displaying
an almost exclusive expression for the TEM/TEMRA subset.
Furthermore, areas of high cytokine production (TNF+ and
IFN-γ+) contain cells that either co-express KLRB1 and KLRG1
(pink arrows) or KLRG1 and GPR56 (purple arrows). These
results from visual inspection of the t-SNE maps indicated that
different combinations of these surface markers are character-
istic for different functional states. As the acquisition or loss of
cytokine expression potential is generally linked to the
differentiation state of T cells, we wanted to analyze how the
expression of the aforementioned set of surface markers
correlates to the differentiation pathway of memory T cells
according to the CD45RA/CCR7-based classification. For this,
we applied the recently described wanderlust algorithm to
construct a trajectory for CD4+ T-cell differentiation based on
the classical surface marker CD45RA and CCR7, our surface
marker set (KLRG1, KLRB1, KLRF1, and GPR56) and cytokine
expression (TNF and IFN-γ)26. CD45RA+CCR7+ (TN) cells
were defined as initiator cells, thus determining the start point of
the wanderlust plot.

We then examined the relative expression pattern of our
selected surface markers but also levels of intracellular TNF and
IFN-γ along the developmental trajectory by plotting them
against the wanderlust axis (Fig. 3c). According to this analysis,
KLRB1 expression was the first marker to be acquired during
CD4+ memory T-cell differentiation, a result which is confirmed
by our bulk and single-cell-based gene expression analyses (Figs. 1
and 2). Subsequently, cells started to upregulate KLRG1 followed
by a nearly parallel induction of GPR56. KLRF1 expression was
only acquired at a late stage during memory T-cell differentiation.
Interestingly, simultaneous to the upregulation of KLRB1, T cells
obtained the potential to produce TNF and, with a slight delay,
also IFN-γ. Whereas KLRB1 and KLRG1 showed a nearly
constant increase in expression during differentiation, GPR56 and
KLRF1 expression followed a two-phase pattern. Late-stage
differentiated CD45RA re-expressing CD4+ T cells acquired very
high KLRG1, GPR56, and KLRF1 expression but a reduction in
KLRB1 expression concurrent with a decline in TNF and IFN-γ
production.

Combinations of KLRs and GPR56 define memory T-cell
states. The wanderlust analysis revealed a progressive acquisition
of our surface markers during memory T-cell differentiation in
the following order: KLRB1, KLRG1, GPR56, and KLRF1. Based
on this, we analyzed whether T-cell subsets defined by this
scheme would indeed recapitulate or even refine the known
correlation between cytokine expression potential and stages of
differentiation, which is currently describing TN cells as low, TEM
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Fig. 2 Heterogeneous surface expression of killer-like receptors and GPR56 in CD4+ T cells. a Exemplary dot plots of KLRB1, KLRG1, KLRF1, GPR56, TIGIT,
and PD-1 surface expression in gated CD4+ TN, TCM, TEM, and TEMRA cells from blood of healthy donors. b Comparison of KLRB1-, KLRG1-, KLRF1-, and
GPR56-positive cell frequencies obtained either from single-cell gene expression analysis (mRNA, n= 209 (TN), 260 (TCM), 396 (TEM), and 248 (TEMRA)
from four donors) or flow cytometric analysis (protein, n= 5) within CD4+ TN, TCM, TEM, and TEMRA cells. Data are shown as individual scatter plots with
median. Statistical analysis by two-way ANOVA and Sidakʼs multiple comparison test. **p < 0.01, ***p < 0.001
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Fig. 3 Progressive expression of KLRs and GPR56 is associated with cytokine production during CD4+ memory T-cell development. a Association of
surface marker expression with cytokine expression in CD4+ T cells from peripheral blood of healthy individuals shown as exemplary dot plots and
summarizing box and whisker plots (% of cytokine expressing cells within total or marker positive subset, whiskers extend to the minimum and maximum)
of n= 5. Cells were restimulated with PMA and Ionomycin. b Representative t-SNE plots showing surface marker and cytokine expression pattern of pre-
gated CD4+ T cells (excluding CD25highCD127low Treg cells) upon short-term phorbol 12-myristate 13-acetate (PMA)/Ionomycin stimulation. The
highlighted area marks CD4+ TEM and TEMRA cells identified by the absence of CCR7 and the expression pattern of CD45RA. c Wanderlust analysis based
on the trajectory of CD45RA and CCR7. Relative median surface marker and intracellular cytokine expression within CD4+ T cells from blood of five
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matched-pairs Friedman’s test with post-hoc Dunn’s multiple comparison test. *p < 0.05, **p < 0.01
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cells as high, and TEMRA cells as exhausted cytokine producers
(Fig. 4a, top row).

To this end we defined the following subsets within total CD4+

T cells: (1) KLRB1−KLRG1−GPR56−KLRF1−, (2) KLRB1+

KLRG1−GPR56−KLRF1−, (3) KLRB1+KLRG1+GPR56−KLRF1−,
(4) KLRB1+KLRG1+GPR56+KLRF1−, and (5) KLRB1+

KLRG1+GPR56+KLRF1+. We analyzed each of their IFN-γ and

TNF production (Fig. 4a, mid-row) to compare it with that of
classically gated T cells, TN, TCM, TEM, and TEMRA cells. Indeed, the
KLR/GPR56-based subset definition allowed categorization of
cytokine production potential along CD4+ memory T-cell
differentiation.

Interestingly, after primary acquisition of the initial marker
KLRB1, the expression of this marker seemed to contribute little
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to the cytokine expression potential as KLRB1+KLRG1+

GPR56−KLRF1− and KLRB1−KLRG1+GPR56−KLRF1−, as well
as KLRB1+KLRG1+GPR56+KLRF1− and KLRB1−KLRG1+

GPR56+KLRF1− subsets displayed only minor differences in
cytokine production potential. In fact, the KLRB1− subsets
(Fig. 4a, bottom row) recapitulated the progressive acquisition of
cytokine expression potential during memory T-cell differentia-
tion and terminal exhaustion with acquisition of the KLRF1
marker (Fig. 4a). Based on these results, we conclude that the
combinatory expression profile of KLRB1, KLRG1, GPR56, and
KLRF1 allows a refined classification of memory T-cell subsets
along their differentiation line and correlates to their functional
state, judging from their cytokine expression potentials (low,
medium, high, or exhausted, Fig. 4b). This refinement now
facilitates the definition of the most potent cytokine-producing
subsets; them being KLRB1+KLRG1+GPR56−KLRF1−, KLRB1−

KLRG1+GPR56+KLRF1−, and especially KLRB1+KLRG1+

GPR56+KLRF1−, which contained the highest proportion of
TNF/IFN-γ co-producing cells (Fig. 4b). Whereas no significant
differences in proportion of TNF/IFN-γ co-producing cells
between TEM and TEMRA cells could be detected, KLRB1+

KLRG1+GPR56+KLRF1− cells contained significantly more than
KLRB1+KLRG1+GPR56+KLRF1+ cells. Furthermore, this pro-
gressive change in proportion of TNF/IFN-γ co-producing cells
was not only observed upon PMA/Ionomycin stimulation, but
also apparent when Staphylococcus enterotoxin B, tetanus toxoid
(TT), or cytomegalovirus (CMV) peptides were used for re-
stimulation (Supplementary Fig. 3). Interestingly, whereas TT-
reactive T cells already accumulated in KLRB1+KLRG1−GPR56−

KLRF1− cells, CMV-reactive TNF/IFN-γ co-producing cells
were only detectable in KLRB1+KLRG1+GPR56−KLRF1− and
KLRB1+KLRG1+GPR56+KLRF1− cells, most likely reflecting the
frequency of antigen contact.

Having revealed that classically gated TEM cells contain less TNF
and IFN-γ co-producing cells as compared with the most potent
subsets of the KLR/GPR56 classification, we wondered whether
TEM cells are in fact composed of different subsets according to our
KLR/GPR56-based definition. Indeed, although the high cytokine-
producing subsets made up the majority of TEM cells, populations
with a low or exhausted functional state were also present (Fig. 4c),
which may explain the overall lower cytokine production potential
in TEM cells compared with KLRB1+KLRG1+GPR56+KLRF1−

cells (Fig. 4b). Furthermore, classically gated TEMRA cells were
composed of mainly exhausted populations (Fig. 4c) that there-
fore showed generally lower cytokine production potential (Fig. 4b).
Thus, the refined classification of memory T cells according to the
KLR/GPR56 scheme reveals functional heterogeneity in the
classical TEM and TEMRA subsets.

Inflammation shows increase in hepatic cytokine producers. In
recent years, it became clear that significant phenotypical and
functional differences exist between circulating and intra-tissue
T cells27,28. We therefore studied our newly defined memory T-
cell surface marker panel on T cells derived from human liver
tissue. First, we compared the proportions of CD4+ T cells
displaying a classical TN, TCM, TEM, and TEMRA phenotype
between blood of healthy controls, and blood and liver from
patients with inflammatory biliary and hepatic diseases. As
expected, T cells from liver samples contained the lowest pro-
portions of TN and TCM cells but highest of TEM cells (Fig. 5a).
Interestingly, and somewhat unexpected, the proportion of
TEMRA cells in some liver samples was lower than in the corre-
sponding blood samples. Second, we performed single-cell gene
expression profiling (genes listed in Supplementary Table 2) on
sorted blood- and liver-derived TCM, TEM, and TEMRA cells of

patients with inflammatory liver diseases (Fig. 5b). Unsupervised
hierarchical cluster analysis of selected candidate gene marker
expression resulted in a separation of two main clusters, which
differed in the proportion of KLRB1-, GPR56-, NKG7-, and
KLRF1-expressing cells. The left cluster contained the majority of
KLRB1-expressing cells and was dominated by TCM (blood and
liver) cells with enrichment of liver TEM and TEMRA cells. In
contrast, the majority of the blood TEM and TEMRA cells was
contained within the right cluster, which showed a strong
enrichment of GPR56-, KLRF1-, and partially KLRG1-expressing
cells. This indicated that there was a qualitative difference
between liver and blood-derived TEM and TEMRA cells. Indeed,
the proportion of GPR56-, KLRG1-, and partially KLRF1-
expressing TEM cells showed a tendency to be lower in liver
samples, whereas the opposite was true for the proportion of
KLRB1-expressing TEM cells (Supplementary Fig. 4).

These findings led us to investigate on protein level whether the
proportions of T-cell subsets defined by the KLR/GPR56-based
classification were different between blood and liver samples.
Indeed, liver samples contained less of the low cytokine-
producing T-cell subset KLRB1−KLRG1−GPR56−KLRF1− and
had increased high cytokine-producing subsets KLRB1−KLRG1+

GPR56−KLRF1− and KLRB1+KLRG1+GPR56−KLRF1−

(Fig. 5c). We also observed a reduction in the exhausted
phenotypes KLRB1−KLRG1+GPR56+KLRF1+ and KLRB1+

KLRG1+GPR56+KLRF1+ in the liver compared with blood
samples. These changes in subset composition accumulate to a
generally increased pro-inflammatory functionality of CD4+

T cells in the liver of patients compared with that in the blood.
In line with this, liver TEM and TEMRA cells showed a clear
reduction of functionally exhausted KLRF1+ subsets as compared
with their blood counterparts (Fig. 6a). Although the hepatic TNF
and IFN-γ expression in the exhausted subsets was even lower
than their blood-derived counterparts, all other subsets showed a
generally increased cytokine production in the liver compared
with the blood (Fig. 6b).

Reduced TCRβ diversity in our proposed KLR/GPR56 path-
way. In order to provide further evidence for the molecular
relationship and linear differentiation of our proposed populations,
we analyzed their T cell receptor (TCR) clonotypes by sequencing
of the TCRβ chains. Thus, we performed fluorescence-activated
cell sorting (FACS)-based enrichment of all five populations (1=
KLRB1−KLRG1−GPR56−KLRF1−, 2=KLRB1+KLRG1−GPR56−

KLRF1−, 3=KLRB1+KLRG1+GPR56−KLRF1−, 4=KLRB1+

KLRG1+GPR56+KLRF1−, and 5=KLRB1+KLRG1+GPR56+

KLRF1+) from peripheral blood of healthy individuals followed by
a TCRβ chain-sequencing analysis.

Interestingly, the frequency of TCR clones of cells belonging to
the KLRB1−KLRG1−GPR56−KLRF1− subpopulation (popula-
tion 1, Fig. 7) was rather low, whereas a progressive increase in
clonal frequency was observed for T cells belonging to the other
populations (Fig. 7a). This indicates expansion of particular
clonotypes, which is further supported by the decrease in TCRβ
diversity along our proposed KLR/GPR differentiation path
(Fig. 7b).

Furthermore, the proposed subpopulations do not differ-
entiate completely independent from each other, as TCR
profiles overlapped especially between the late populations 4
and 5, but also 3 (Fig. 7c), and TCR clones dominating in the
late-stage differentiated populations 4 and 5 can be found in the
early-stage populations 1 and 2 (Fig. 7d). Taken together, these
results further provide evidence for a linear differentiation
along and molecular relationships between the proposed
populations.
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In vitro differentiation supports KLR/GPR56-based pathway.
Our results indicate that during human CD4+ memory T-cell
differentiation changes in TNF and IFN-γ production are a result
of progressive acquisition of KLRB1, KLRG1, GPR56, and KLRF1
expression.

To further validate our proposed differentiation pathway, we
performed in vitro experiments by sorting the first four
subpopulations (1=KLRB1−KLRG1−GPR56−KLRF1−, 2=
KLRB1+KLRG1−GPR56−KLRF1−, 3=KLRB1+KLRG1+GPR56−

KLRF1−, and 4=KLRB1+KLRG1+GPR56+KLRF1−) from the
peripheral blood of healthy individuals followed by polyclonal
stimulation with anti-CD3/CD28 antibodies. Unfortunately, the
cell number of the fifth population (5=KLRB1+KLRG1+

GPR56+KLRF1+) was too low to perform in vitro stimulation
experiments.

The majority of the cells from the sorted populations kept their
initial marker expression profile for 48 h, meaning that, e.g., only
2% of KLRB1+KLRG1−GPR56−KLRF1− cells (starting popula-
tion 2) became KLRB1- or that 20% of KLRB1+KLRG1+GPR56+

KLRF1− cells (starting population 4) lost GPR56 expression
(Fig. 7e). In contrast to the other populations, subset 3 (KLRB1+

KLRG1+GPR56−KLRF1−) did show a higher degree of plasticity
with ~40% of the cells becoming KLRB1+KLRG1−GPR56−

KLRF1−. However, most importantly, the investigation revealed
that the populations differentiate even further along the proposed
path with, e.g., KLRB1+KLRG1+GPR56−KLRF1− cells (starting
population 3) acquiring GPR56 but also KLRF1 expression.

In addition, we analyzed and compared the intracellular TNF
and IFN-γ expression of the in vitro differentiated subsets (Fig. 7f).
Due to cell number limitations upon FACS-based enrichment, the
experiments could be only done with the starting populations 1, 2,
and 3. Upon in vitro differentiation, the subpopulations display
the expected increase in proportions of TNF and IFN-γ double
producers along the KLR/GPR56 pathway. The highest frequency
was observed for KLRB1+KLRG1+GPR56−KLRF1− and KLRB1+

KLRG1+GPR56+KLRF1− cells, whereas a decline was observed
upon acquisition of KLRF1 expression.

Taken together, our findings introduce a surface marker
classification scheme for CD4+ memory T cells, which recapi-
tulates their differentiation pathway and more precisely links
quantity of TNF and IFN-γ production to each subset compared
with the classical CCR7/CD45RA-based index. This might be of
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Fig. 5 Decreased proportions of KLRF1-expressing CD4+ memory T cells in the liver. a Frequency of TN, TCM, TEM, and TEMRA cells within CD4+ T cells of
blood from healthy controls (HC-B, n= 8) as well as blood (LD-B, n= 8) and liver (LD-L, n= 11) of patients with inflammatory liver diseases. Whiskers
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*p < 0.05, ****p < 0.0001. b Unsupervised hierarchical cluster analysis of candidate gene expression results at single-cell level in five blood and five liver
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Source Data file. c Proportions of CD4+ TEM and TEMRA cells and subsets according to KLRB1, KLRG1, GPR56, and KLRF1 protein expression within CD4+

T cells from blood (n= 6) and liver (n= 6) of patients. Data are shown as individual scatter plots with median. Statistical analysis by one-way non-
parametric Friedman’s test with post-hoc Dunn’s multiple comparison test. *p < 0.05
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particular interest for the characterization of T cells from diseased
tissues, in which specific functional subsets might play an
essential role for the pathophysiology and maintenance of disease.

Discussion
Ever since the first categorization of CD4+ or CD8+ T cells into
populations defining their differentiation status based on CD45RA
and CCR7 expression, discussions arose around the overall
validity9. Indeed, recent findings on functional classification of
CD8+ memory T cells have revealed that categorization based on
CD62L or CCR7 expression, and thus lymph node homing
properties, is not sufficient29. Therefore, it is not surprising that it
was questioned whether the thereby defined subsets indeed
represent homogeneous populations or whether individual cells
differed greatly in their functional state30–35, which for CD4+

T cells is mainly defined by their cytokine expression potential.
We here addressed these questions for human CD4+ memory

T cells and assessed cellular heterogeneity on single-cell level
within classically gated CD4+ memory T lymphocytes from blood
as well as from liver tissue of patients. As expected, we found
pronounced heterogeneity within each subset on the overall
transcriptional level, but also on the functional level assessed by
single-cell cytokine secretion measurements. From these data, we
developed a subset classification system based on the progressive
acquisition of surface expression of the NK-cell-associated

proteins KLRB1, KLRG1, GPR56, and KLRF1. We show that this
classification thoroughly mirrors the memory differentiation line
and is superior in indicating the cytokine production potential of
the individual subsets compared with the classical CD45RA/
CCR7-based system.

Our findings on the progressive expression of multiple KLRs
and GPR56 with final acquisition of KLRF1, resulting in a decline
of cytokine production potential, is in line with published reports
on murine CD8+ and CD4+ memory T cells. Analysis of phe-
notypic properties of murine CD8+ and CD4+ exhausted
memory T cells revealed a correlation between decreased TNF/
IFN-γ co-production potential and progressive expression of
multiple inhibitory receptors, such as PD-1, LAG-3, 2B4
(CD244), and CD160 or PD-1, CTLA4, CD200, and BTLA,
respectively.36,37. However, investigations on human memory
T cells and in particular CD4+ memory T cells have been not
performed so far.

Furthermore, the investigations on murine memory T cells
were limited to the characterization of T cells with high effector
function or non-functional exhausted T cells, and did not allow
following the complete memory T-cell development. Incorpor-
ating single-cell gene expression profiling, Wanderlust analysis
and TCRβ chain sequencing enabled us to propose an alternative
path of human CD4+ memory T-cell development defining
populations with low, medium, high, and finally exhausted
functional states. In our screen, expression pattern of KLRB1,
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KLRG1, GPR56, and KLRF1 appeared to be most informative.
Although PD-1 expression is described to be associated with T-
cell exhaustion38 and thus terminal differentiation of T cells, our
initial RNA microarray analysis did not reveal a significant
enrichment of PD-1 transcription within CD4+ TEM and TEMRA

cells, as we also observed transcription in TCM cells. Furthermore,

our PD-1 protein expression analysis revealed a high expression
in TCM and especially TEM cells but a reduction in TEMRA cells.

Our four identified surface markers, KLRB1, KLRG1, GPR56,
and KLRF1, were all first described in relation to their high
expression in NK cells17,39–42, indicating similarities between NK
cell differentiation and memory/effector T-cell development.
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The C-type lectin KLRB1, also known as CD161, has been
shown to be expressed by CD4+ and CD8+ T cells. For CD4+

T cells, KLRB1 expression was mainly ascribed to IL-17-
producing Th17 cells25. However, other recent publications
identified also broader KLRB1 expression across different T-cell
lineages expressing, e.g., IL-17 or TNF/IFN-γ, which is in
agreement with our findings43–45. For NK cells, KLRB1 ligation
was long thought to trigger only inhibitory signals43. However, a
recent report revealed pro-inflammatory functions of KLRB1+

NK cells46. Also, for T cells inhibitory and costimulatory roles
have been proposed43. Indeed, our results also revealed a sig-
nificant increase in cytokine-producing CD4+ memory T cells
with acquisition of KLRB1 expression. Interestingly, we did
observe differences between KLRB1 transcription and protein
expression. Whereas KLRB1 transcription was mainly limited to
TCM and TEM cells, protein expression was observed for TCM,
TEM, as well as TEMRA cells. In addition, TEMRA cells (Fig. 2a)
positive for KLRB1 and the most exhausted KLRB1+KLRG1+

GPR56+KLRF1+ cells showed reduced KLRB1 expression
per cell.

The KLRG1 is a marker for T-cell senescence, as expressing
cells have limited proliferative capacity18,20. However, KLRG1-
expressing T cells are not exhausted, as they display cytokine
production and cytotoxic potential47. KLRG1 expression is sup-
posed to be limited to tissue-homing and thus TEM and TEMRA

cells8,28,48–50. Our own data showed that also a significant pro-
portion (≈22 %) of CCR7-expressing TCM cells were KLRG1+.
These findings are in agreement with other published reports
showing that also TCM cells can express KLRG1, which was
associated with increased production of effector cytokines35.
Indeed, our results also revealed a dramatic increase of cytokine
production potential as soon as the T cells acquired KLRG1
expression.

Already in the first report describing the NK cell triggering
activity of KLRF1, also known as NKp80, its expression on a
subset of T cells was observed42. In addition, it was shown that
NKp80 ligation can augment CD3-stimulated degranulation and
IFN-γ secretion by effector memory CD8+ T cells51. This is
contradictory to the here described results, as KLRF1 acquisition
was associated with a decline in cytokine production potential.
However, our investigations were performed on CD4+ T cells
and, at least in mice, different properties for CD4+ in comparison
with CD8+ T cells were recently described37. It remains to be
investigated whether KLRF1 plays an inhibitory role for human
CD4+ memory T-cell activation. Nevertheless, KLRF1 expression
was able to identify CD4+ memory T cells with reduced cytokine
production potential regardless of cohort (healthy control vs.
patient) or tissue-type origin.

GPR56 was shown to be expressed by cytotoxic NK and T
lymphocytes including CD8+, CD4+, and γδ+ T cells41. For NK
cells, an inhibitory role for GPR56 in controlling steady-state
activation by associating with the tetraspanin CD81 was
revealed52. Similar to KLRF1, the role of GPR56 for stimulation-
dependent production of cytokines by human CD4+ T cells is
unknown and needs to be investigated in further studies. In
support of our findings, a recent report by Tian et al.53 also
showed that CD4+ TEMRA cells are heterogeneous and can be
subdivided into at least two subpopulations based on their GPR56
expression. In their publication, the authors focussed on the
cytotoxic potential and did not study the cytokine production
potential in greater detail. Furthermore, our results now show
that GPR56 in conjunction with expression of KLRs is not limited
to reveal functional heterogeneity of TEMRA cells in blood but also
of TEMRA and TEM cells residing in the liver.

Our results on successful induction of, e.g., KLRG1 and GPR56
or even KLRF1 expression upon in vitro stimulation of sorted

subsets further supports our hypothesis on progressive expression
of killer-like receptors and GPR56, describing an initial increase
and final decline in cytokine production potential. This is also in
line with our previous findings on linear differentiation from
TCM, via TEM, and towards TEMRA cells54. There we detected a
progressive change in the epigenome of the cells, which could
explain the progressive expression pattern described here.

Finally, our results with increased TEM but decreased or equal
TEMRA frequencies in the liver in comparison with that in the
blood is in agreement with recent descriptions on spatial mapping
of human T-cell compartmentalization11. Although the authors
did not investigate liver tissue, they did report increased TEM

frequencies within intestinal and lung tissues compared with that
in the blood, whereas TEMRA frequencies did not vary. However,
the here reported combinational expression pattern of KLRs and
GPR56 challenges the usefulness and gain of analyzing overall
TEM and TEMRA frequencies, as analysis of KLR/GPR56 compo-
sition seems to be superior in discriminating between high and
exhausted cytokine-producing cell subsets, with the exhausted
subsets being decreased in intrahepatic CD4+ TEM and TEMRA

cells in comparison with their blood equivalents.
In summary, our data reveal that identifying human CD4+

memory T-cell populations based on the expression pattern of
KLRB1, KLRG1, GPR56, and KLRF1 enables a better definition of
functional states especially in peripheral tissues as compared with
the classical CD45RA/CCR7-based categorization. These findings
improve understanding of CD4+ memory T-cell development
and function, and thus might have implications for clinical
diagnostics and development of more target-specific immune
therapies. It will be interesting to see whether the here described
combinational expression profile and functional subsets might aid
in improving prediction of disease progression in inflammatory
diseases or in therapeutic efficacy upon vaccination or checkpoint
inhibition.

Methods
Samples. Heparinized blood and liver samples were collected from patients with
written consent undergoing partial liver resection or hepatectomy followed by liver
transplantation. Patients included suffered from following diseases: liver cirrhosis,
hepatocellular carcinoma, liver metastases, and cancerous diseases of the biliary
tract, including Caroli disease, gall bladder carcinoma, cholangiocellular carci-
noma, and Klatskin tumor. Median age of the patients was 68 years, ranging from
52 to 81 years. Liver samples were taken from non-cancerous and non-necrotic
parts of the resected liver tissue and were preserved in Hank’s balanced salt
solution (HBSS, Gibco, Thermo Fisher Scientific, UK). Heparinized blood from
age-matched healthy individuals was collected. All samples were processed within
an hour after retrieval.

Sample collection was performed following the Declaration of Helsinki, the
European Guidelines on Good Clinical Practice, with permission from the relevant
national and regional authority requirements and ethics committees (EA2/044/08,
EA1/116/13, EA2/020/14, EA1/290/16, EA1/291/16 & EA1/292/16, Ethics
Committee of the Charité Berlin). All patients gave written consent.

Isolation of PBMC cells. PBMC cells were isolated at room temperature by density
gradient centrifugation (Biocoll, Biochrom, Germany) of heparinized blood diluted
1:2 in phosphate-buffered saline (PBS, Gibco, Thermo Fisher Scientific, UK). Cell
number was determined using a hemocytometer. Isolated PBMCs were directly
used for sorting, stimulation, or cryopreservation.

Isolation of intrahepatic lymphocytes. Liver tissue was dissected into 1 mm3

fragments and digested with agitation (75–80 r.p.m.) at 37 °C for 30 min in a
digestive solution containing 2% fetal calf serum (FCS, Biochrom), 0.6% bovine
serum albumin (BSA), 0.05% collagenase type IV (Sigma-Aldrich, Germany), and
0.002% DNAse I (Sigma-Aldrich, Germany) per 1 g tissue and 10 ml. Undisso-
ciated tissue was pressed through a steel sieve and dissolved in same solution.
Dissociated tissue in solution was centrifuged at 500 × g. Tissue components were
diluted in HBSS. Tissue suspension was centrifuged at 30 × g to separate and dis-
card the hepatocyte-rich matrix. Still undissociated tissue was removed by filtration
through 100 µm nylon mesh, leaving a cell suspension. Hepatocytes were removed
using a 33% Biocoll density gradient centrifugation. Cells were washed with HBSS
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and red blood cell lysis was performed using distilled water. Isolated intrahepatic
lymphocytes (IHLs) were cryopreserved in liquid nitrogen.

Surface staining and T-cell subset sorting. CD4+ T cells were enriched
by magnetic activated cell sorting (MACS) using 20 µl of anti-CD4 MicroBeads
(anti-CD4 microbeads, human, Miltenyi Biotec, Germany) and 80 µl MACS buffer
(PBS with 0.5% BSA and 2mM ethylenediaminetetraacetic acid) per 107 cells.
CD4+ T cells were stained for surface expression in MACS buffer at a con-
centration of 2 × 108 cells/ml. Cells were washed and stained with 4′,6-diamidino-
2-phenylindole (1:250) and then sorted using the flow cytometer BD FACSAria II
(BD Biosciences, Germany) into the following CD4+ T-cell subpopulations: Treg
(CD25highCD127low) and non-Treg: TN (CD45RA+ CCR7+), TCM (CD45RA-
CCR7+), TEM (CD45RA− CCR7−), and TEMRA (CD45RA+ CCR7−).

Antibodies used for surface staining were anti-CCR7 (GO43H7, 1:50), anti-
CD25 (M-A251, 1:100), anti-CD45RA (HI100, 1:50), anti-CD127 (A019D5, 1:100),
anti-CD3 (UCHT1, 1:200), anti-CD4 (OKT4, 1:200), anti-PD-1 (EH12.2H7, 1:20),
anti-TIGIT (A15153G, 1:20), anti-TIM-3 (F38–2E2, 1:20), and LAG-3 (11C3C65,
1:20) from BioLegend, and anti-KLRB1 (191B8, 1:10), anti-KLRF1 (4A4.D10, 1:50),
and anti-KLRG1 (REA261, 1:10, 1:50 since 2018/06 due to more concentrated
formulation) from Miltenyi Biotec. See also Supplementary Fig. 5 for the pre-gating
strategy.

RNA microarray analysis. Total RNA from sorted T-cell populations was isolated
using TRIzol (Thermo Fisher Scientific, Bremen, Germany). RNA quality and
integrity were determined using the Agilent RNA 6000 Nano Kit on the Agilent
2100 Bioanalyzer (Agilent Technologies). RNA was quantified by measuring light
absorbance at 260 nm on a spectrophotometer (NanoDrop Technologies).

Sample labeling was performed as detailed in the One-Color Microarray-Based
Gene Expression Analysis protocol (version 6.6, part number G4140–90040).
Briefly, 10 ng of each total RNA samples was used for the amplification and
labeling step using the Agilent Low Input Quick Amp Labelling Kit (Agilent
Technologies). Yields of cRNA and the dye-incorporation rate were measured with
the ND-1000 Spectrophotometer (NanoDrop Technologies).

The hybridization procedure was performed according to the One-Color
Microarray-Based Gene Expression Analysis protocol (version 6.6, part number
G4140–90040) using the Agilent Gene Expression Hybridization Kit (Agilent
Technologies). Briefly, 1.65 µg Cy3-labeled fragmented cRNA in hybridization
buffer was hybridized overnight (17 h, 65 °C) to Agilent Whole Human Genome
Custom Oligo Microarrays 4 × 44 K (AMADID 014850) using Agilent’s
recommended hybridization chamber and oven. Following hybridization, the
microarrays were washed once with the Agilent Gene Expression Wash Buffer 1 for
1 min at room temperature followed by a second wash step with preheated Agilent
Gene Expression Wash Buffer 2 (37 °C) for 1 min. The last washing step was
performed with acetonitrile.

Single-cell gene expression analysis. The C1 Single-Cell Auto Prep System
(Fluidigm, South San Francisco, CA, USA) was used for single-cell isolation and
pre-amplification to prepare separate single-cell cDNA in a 5–10 µm C1 Single-Cell
PreAmp Integrated Fluidic Circuit (IFC) within a C1-Chip. For single-cell isola-
tion, a cell suspension of at least 660,000 cells/ml was used, which enabled at least
2000 cells to enter the C1-chip. Visualization of cell loading (empty, single,
doublets, or debris) was done using a light microscope. Single-cell capture rates
were documented. Cell lysis, reverse transcription, and pre-amplification were
performed on the C1-chip. cDNA of each cell was collected for qRT-PCR pre-
paration. cDNAs and 48 TaqMan gene expression assays (Thermo Fisher Scien-
tific), including B2M (beta-2-microglobulin) and an RNA spike-in (spike 1) as
control values, were applied to the BioMark Gene Expression 48.48 IFC for gene
expression analysis. Information on all TaqMan gene expression assays used are
listed in Supplementary Table 2. Detailed workflow can be found in the Fluidigm
Real-Time PCR User Guide (PN 68000088).

Cell stimulation and intracellular cytokine staining. Freshly isolated or
thawed PBMCs or IHLs (5 × 106) were stimulated with phorbol myristate acetate
(50 ng/ml, Sigma-Aldrich, Germany) and ionomycin (1 µg/ml, Biotrend, Germany)
for 6 h, Tetanus Toxid (40 LF/ml, AJ Vaccines, Denmark), or Staphylococcal
enterotoxin B (100 µg/ml, Sigma-Aldrich, Germany) and anti-CD28 (1 µg/ml, BD
Pharmingen, Germany) for 24 h (37 °C, 5 % CO2).

CD4+ T cells enriched from freshly isolated PBMCs from healthy donors (CD4
MicroBeads, Miltenyi Biotec) were sorted for indicated marker expression using a
BD FACSAria II. Sorted cells were stimulated with plate-bound anti-CD3 (1 µg/ml,
BD Pharmingen, Germany) and soluble anti-CD28 (2 µg/ml, BD Pharmingen,
Germany) in 96-well plates with 1 × 105 cells/well and treated with TGF beta RI
kinase inhibitor II (50 ng/ml, Calbiochem, Merck, Germany) for 72 h. In all
stimulation cultures, Brefeldin A (10 µg/ml, Sigma-Aldrich, Germany) was added
during the last 4 h.

Cells were washed once with PBS and stained with Zombie UV Fixable Viability
Kit (BioLegend, USA) for 15 min. Cell surface staining was performed as described
above. Afterwards, cells were fixed and permeabilized (BD Cytofix/Cytoperm
Fixation and Permeabilization Solution, BD Biosciences, Germany) for 20 min.

After washing twice with Perm/Wash buffer (BioLegend, USA), cells were stained
intracellularly for 30 min. Antibodies used for intracellular staining were anti-TNF
(Mab11, 1:200), anti-IFN-γ (4 S.B3, 1:100), anti-IL-4 (MP4–25D2, 1:50), anti-IL-
17A (BL168, 1:20), anti-CD3 (OKT3, 1:100) (all BioLegend), and GPR56 (REA467,
Miltenyi Biotec, 1:10). Samples were washed and acquired on a BD LSRFortessa
(BD Biosciences, Germany). Data analysis was performed using FlowJo software
version 10.1 (FlowJo, LLC, Ashland, OR, USA).

Bioinformatical analysis of flow cytometry data. To generate and visualize
wanderlust trajectories of developmental changes in marker expression of CD4+

T cells, we used the Matlab Cyt toolbox26. The algorithm was run on CD8− non-
Treg (exclusion of CD4+CD25highCD127low cells) pre-gated PMA/Ionomycin
stimulated samples. In order to apply Wanderlust to samples where all gradual
differentiation states are present, FCS files were selected to have a high proportion
of TEMRA cells (5 healthy individuals) and density-dependent down-sampled to a
total 50,000 cells using the R SPADE package55.

Utilizing the Cytobank viSNE tool, t-SNE maps were generated for CD8− pre-
gated T cells (w/o CD25highCD127low cells) of PMA/Ionomycin-stimulated
samples, allowing for visualization of the phenotypic and functional heterogeneity
at single-cell level56,57. CCR7, CD45RA, KLRB1, KLRF1, KLRG1, GPR56, TNF,
and IFN-γ were selected for both Wanderlust and t-SNE dimension reduction.

Bioinformatical analysis of RNA microarray data. Fluorescence signals of the
hybridized Agilent Microarrays were detected using Agilent’s Microarray Scanner
System G2505C (Agilent Technologies). The Agilent Feature Extraction Software
(FES) 10.7.3.1 was used to read out and process the microarray image files.

After quantile normalization, pair-wise t-tests were conducted between TEMRA

and TEM, TCM, and TN, and between TEM and TCM, and TN, respectively. The
intersection analysis of TEMRA vs. TN, TEMRA vs. TCM, and TEMRA vs. TEM (= TEMRA

vs. TN/TCM/TEM) included genes with an at least twofold upregulation (p < 0.05) in
the TEMRA group in each of the pair-wise comparisons. The selection TEMRA/TEM vs.
TN/TCM included genes with an at least twofold upregulation (p < 0.05) in each of the
comparisons TEMRA vs. TN, TEMRA vs. TCM, TEM vs. TN, and TEM vs. TCM. Genes
expressed on the cell surface were extracted from the human cell surfaceome
described in da Cunha et al.58.

Bioinformatical analysis of single-cell qRT-PCR results. qPCR data were
extracted by using the Fluidigm Real-Time PCR Analysis Software. R, version 3.1,
was used for the statistical and hierarchical cluster analysis (R_Core_Team. R: A
language and environment for statistical computing. R Foundation for Statistical
Computing, Vienna, Austria URL http://www.r-projectorg/ 2014). The data con-
tained the gene expression level (Log2Ex), calculated by subtracting gene Ct values
from limit of detection (LoD) Ct. Default LoD is preset to Ct 24. By analyzing the
distribution of the gene expression level of each nest for each gene, we adjusted the
LoD of certain genes to only include noise-free data. Samples with undetectable
B2m and Spike 1 expression, as well as genes expressed by <10 cells were excluded.
Heatmaps for single-cell Log2Ex data were generated using Euclidean distance
measure and Wards method for agglomerative hierarchical clustering. Binary
heatmap coloring was chosen to indicate positive and negative marker expression
according to the individual LoDs.

TCRβ chain-sequencing and data analysis. Next-generation sequencing was
performed for TCR repertoire analysis. Recombined TCR-b locus was amplified as
previously described59. Sequencing library preparation with consequent sequencing
was performed using Illumina MiSeq Technology at the Genomics Unit at Centre
for Genomic Regulation (Barcelona, Spain). Reads with an average quality score
below 30 were excluded from the analysis. The remaining high-quality reads were
processed using IMSEQ60. Each clonotype was assigned an ID including Vβ- and
Jβ-gene identity, as well as CDR3 amino acid sequence.

The similarity of the top 100 expanded clones of two populations was
determined by the Morisita–Horn similarity index61, which considers the
abundance of each sequence in each population. The index is given by:

SMH ¼ 2
PnPQ

n¼i piqiPnPQ
n¼i

pi
P2 þ

PnPQ
n¼i

qi
Q2

� �

PQ
ð1Þ

where P is the total number of sequences in one population, Q is the total number
of sequences in the second population, and nPQ is the the total number of unique
sequences in the two populations; pi is the proportion of the ith sequence in
population P; qi is the proportion of the ith sequence in population Q. The index
ranges from 0 to 1, where 0 is total dissimilarity and 1 is identical populations.

Clonal diversities of the TCRβ repertoires were evaluated for the top 100
expanded clones using Reńyi diversity profiles62:

Hα ¼ ln
Xn

n¼1

pαi

 !
1

1� α
ð2Þ

Hα being the entropy; n the total number of unique sequences; pi the proportion of
the ith sequence, and α a scaling parameter. By varying the α parameter, different
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diversity indices are calculated, such as the logarithm to the reciprocal Simpson
diversity index at α ¼ 2. At α ¼ 1, the Reńyi diversity is approximated by the
Shannon diversity index. At α ¼ 0 and α ¼ 1, the profiles provide the logarithm
of richness and the logarithm of the reciprocal to the proportion of the most
abundant sequence (Berger–Parker Index), respectively. This means that the
sample with the highest value at α ¼ 0 has the highest richness, but that the lower
value at α ¼ 1 indicates higher proportion of the most abundant sequence. A
sample with a profile that is overall higher than the profiles of other samples is
more diverse. Conversely, if the profiles cross at one point no ranking in diversity
can be performed.

Statistics. To test for differences in frequencies of T-cell subsets transcribing
(single-cell qRT-PCR) the gene marker or expressing them at protein level (flow
cytometry), a two-way analysis of variance and Sidak’s multiple comparison test
were performed. Differences in proportions of cytokine producers (paired samples)
were tested using the non-parametric matched-pairs Friedman’s test and post-hoc
Dunn’s multiple comparison test. P < 0.05 was considered statistically significant.
Statistical analyses were calculated with GraphPad Prism 6.00 or R v3.3.1.

Data availability
The TCR sequencing FASTQ data have been deposited in the European Nucleotide
Archive (ENA) with the accession code PRJEB31283. The RNA microarray data have
been deposited in the National Center for Biotechnology Information Gene Expression
Omnibus (GEO)63,64 and are accessible under the GEO series accession number
GSE102005 . All data generated by single-cell rtPCR or flow cytometry are available in
the Source Data file that contains the raw data for Fig. 1c & d, 2b, 3a, 4b & c, 5a, b & c, 6a
& b, 7e & f, Supplementary Fig. 2a, 3, and 4.
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