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ABSTRACT A number of enzymes reportedly exhibit enhanced diffusion in the presence of their substrates, with a Michaelis-
Menten-like concentration dependence. Although no definite explanation of this phenomenon has emerged, a physical picture of
enzyme self-propulsion using energy from the catalyzed reaction has been widely considered. Here, we present a kinematic and
thermodynamic analysis of enzyme self-propulsion that is independent of any specific propulsion mechanism. Using this theory,
along with biophysical data compiled for all enzymes so far shown to undergo enhanced diffusion, we show that the propulsion
speed required to generate experimental levels of enhanced diffusion exceeds the speeds of well-known active biomolecules,
such as myosin, by several orders of magnitude. Furthermore, the minimal power dissipation required to account for enzyme
enhanced diffusion by self-propulsion markedly exceeds the chemical power available from enzyme-catalyzed reactions. Alter-
native explanations for the observation of enhanced enzyme diffusion therefore merit stronger consideration.
INTRODUCTION
The apparent diffusion coefficients of various enzymes, as
measured typically by fluorescence correlation spectros-
copy, have been observed to increase in the presence of sub-
strate by as much as 15–80%, depending on the enzyme, at
maximal substrate concentration. Examples include F0F1-
ATP synthase (1), T7 RNA polymerase (2), T4 DNA poly-
merase (3), bovine catalase (4,5), jack bean urease (4–6),
hexokinase (7), fructose biophosphatase aldolase (7,8),
alkaline phosphatase (5), and acetylcholinesterase (9). How-
ever, the mechanisms underlying these observations remain
largely unexplained. For some enzymes, further experimen-
tation has ruled out certain potential mechanisms for
this phenomenon of enhanced enzyme diffusion (EED),
including one mediated by local pH changes (6) and propul-
sion by bubble formation (4). In a number of cases, the in-
crease in diffusion coefficient relative to baseline has been
found to be approximately proportional to the catalytic
rate of the enzyme, with a Michaelis-Menten relationship
to substrate concentration (5). This proportionality has natu-
rally led to the suggestion that the chemical reaction cata-
lyzed by the enzyme is a driver of the diffusion
enhancement. Indeed, larger, synthetic Janus particles are
propelled by the catalysis of reactions at one face of the par-
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ticle and not the other (10). Accordingly, a number of
possible mechanisms for catalysis-driven self-propulsion
of enzymes—i.e., for the transduction of the reaction free
energy into mechanical propulsion—have been proposed.
These include mechanical swimming (4,11), pressure waves
generated by exothermic reactions (5), and self-diffusiopho-
resis (12). However, these specific mechanisms of EED have
been debated (8,13), and none have been proven. Here, we
step back from specific propulsion mechanisms and instead
analyze the kinematics and thermodynamics of enzyme self-
propulsion generically.
METHODS

The degree to which translational diffusion is enhanced may be

expressed as

Dapp ¼ Dt þ DD
¼ Dtð1þ RÞ ; (1)

where DD¼ Dapp � Dt is the difference between the observed, or apparent,

diffusion constant, Dapp, and the baseline diffusion constant in the absence

of enhancement, Dt. Thus, R is the relative diffusion enhancement. We

consider an enzyme that, within each catalytic cycle, self-propels for a

time tp % tc, where tc is the enzymologic turnover time and reciprocal of

turnover rate. The magnitude of the propulsive force, F, is considered

to be constant during tp. (The consequences of a more complex time

dependence are considered in the Appendix.) For an enzyme in liquid

water, the Reynold’s number is very low. Therefore, the dynamics of

the enzyme are overdamped, and the propulsion velocity has a constant
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TABLE 1 Turnover Rates, Experimental Hydrodynamic Radii,

Minimal Thrust Speeds, and Required Reaction Free Energies

of Enzymes Reported to Show EED

Enzyme

Turnover

rate/s�1
Radius/

nm

vmin/

m $ s�1a
� DG+

req/

kJ $ mol�1b

T4 DNA polymerase 0.5 (47)c 4.6 (48) 1 � 10�2 1 � 107

Aldolase 5 (8)d 4.9 (21) 9 � 10�3 8 � 105

T7 RNA polymerase 4 (49)c 8.4 (50) 3 � 10�3 2 � 105

Hexokinase 300 (7)d 6.3 (51) 5 � 10�3 6000

ATP synthase 1000 (52)c 6.6 (1) 5 � 10�3 2000

Alkaline phosphatase 3000 (5)d 7.7 (53) 3 � 10�3 400

Catalase 10,000 (5)d 5.3 (21) 7 � 10�3 300

Urease 10,000 (5)d 7.0 (29) 4 � 10�3 100

Acetylcholinesterase 20,000 (54)c 8.8 (32) 3 � 10�3 40

For multimeric enzymes, turnover rate is of the whole multimer. Citations

are parenthesized.
aFor R ¼ 20% diffusion enhancement, using Eq. 6 with tc ¼ tp.
bFor R ¼ 20% diffusion enhancement, using Eq. 7 divided by turnover rate.
cTurnover rates of these enzymes were not reported in the publications of

their EEDmeasurements, so we instead use the turnover rate when substrate

concentration equals Km, i.e, monomer kcat times number of catalytic sites

times 0.5.
dTurnover rate at R ¼ 20%, read from the corresponding publication of

EED measurements.
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magnitude v f F while the propulsion is active. The vector of the propul-

sive force and velocity is considered fixed within the enzyme’s internal

frame of reference, but it reorients continuously in the lab frame because

of the rotational Brownian motion of the enzyme. The enzyme is modeled

as a hard sphere with radius a, moving in liquid water with viscosity h, so

that the Stokes-Einstein equations may be used to estimate Dt and the rota-

tional diffusion coefficient Dr:

Dt ¼ kT

6pha

Dr ¼ kT

8pha3

: (2)

Analytical solutions of the overdamped Langevin equation for self-pro-

pelled particles have been developed by ten Hagen et al. (14) under the

assumption that the Stokes-Einstein equations hold and that rotational

and diffusional translation are not coupled to each other. In EED experi-

ments, the diffusion coefficient is measured over times much greater than

the enzyme’s turnover time, which is in turn usually much greater than

the rotational relaxation time of the enzyme, t ¼ (2Dr)
�1 ˛ [10�9 s,

10�6 s] (15). In this setting, ten Hagen et al.’s Eq. 34 applies and yields

the mean-square displacement as a function of time:

�
Dr2

� ¼ 6Dtt þ
�
4

3

a2F

kT

�2�
tp
tc

�
Drt; (3)

where the first term gives the mean-square displacement in the absence of

propulsion and the second term captures the effect of propulsion. We have

inserted the term tp/tc to account for the fact that self-propulsion acts to raise

the diffusion constant only during this fraction of the time (see Appendix).

Recognizing that Dapp ¼ hDr2i=ð6tÞ, using Eq. 2, and employing Stokes’

law, F ¼ 6phav, to replace force with velocity, one may rewrite Eq. 3 as

Dapp ¼ Dt þ v2

6Dr

tp
tc
: (4)

The first term is the contribution of normal Brownian motion, and the

second term is the contribution from self-propulsion. The enhancement

ratio, R, then is

R ¼ v2

6DtDr

tp
tc
: (5)

Thus, the propulsion speed required to achieve a given level of diffusion

enhancement R is given by

v ¼ kT

pha2

�
R

8

tc
tp

�1
2

: (6)

To determine the power required for a self-propelled particle to achieve

observed levels of enhanced diffusion, it is necessary to address the ener-

getic efficiency of the self-propulsion mechanism. Rather than make any

mechanistic assumptions here, we make the most conservative assump-

tion—i.e., the one requiring least power—by using the minimal energy

dissipation theorem. This says that, at low Reynolds number, no propulsion

mechanism is more efficient than dragging the particle by external force in a

Stokes flow (16–20). Accordingly, we consider the power to drag an

enzyme molecule in a Stokes flow at the propulsion speed required to

generate enhanced diffusion with a specific value of R. Inserting v from

Eq. 6 into Stokes’ law, F ¼ 6phav, we obtain the required power averaged

over the full catalytic cycle:
Preq ¼ 6phav2
tp
tc

¼ 3

4

RðkTÞ2
pha3

: (7)

RESULTS

We first apply Eq. 6 to estimate the propulsion speeds
needed to account for experimentally observed diffusion en-
hancements. The minimal thrust speed, vmin, that would
explain the diffusion enhancement is obtained by setting
tp ¼ tc because larger speeds are required when tp < tc.
Given T¼ 298 K, the viscosity of liquid water, and a typical
enzyme diffusion enhancement of R ¼ 0.2 (5), one
obtains vmin(m/s) ¼ 0.21a�2 (a in nm). This quantity de-
pends only on the radius of the enzyme. For catalase,
a ¼ 5.3 nm (21), so the minimal propulsion speed vmin ¼
7 � 10�3 m/s. Similar values of vmin are obtained for the
other enzymes that showed EED in experiments because
their radii are similar to that of catalase (Table 1). These
speeds, which amount to �106 enzyme radii per second,
are strikingly high. Furthermore, we anticipate that any
thrust generated by enzymatic catalysis will persist only
for a small fraction of the enzymologic turnover time; i.e.,
in all likelihood, tp � tc. As a consequence, based on
Eq. 6, even higher propulsion speeds would be needed dur-
ing the short tp intervals to explain observed values of R.

Although implausibly high propulsion speeds would be
needed to account for EED by self-propulsion, this analysis
remains consistent with the observation that larger particles,
e.g., Janus particles, can achieve substantial enhancements
of diffusion via self-propulsion (10). This is because, for
larger particles, a given propulsion velocity leads to higher
Biophysical Journal 116, 1898–1906, May 21, 2019 1899
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values of R, mainly through the dependence of Dr on size.
Intuitively, the longer the rotational correlation time, the
greater the effect of propulsion on the root mean-square
displacement. Thus, self-propulsion is much more effective
at enhancing the diffusion of large particles than that of
small particles, such as enzymes.

We now turn to the power required to explain EED and its
relation to the chemical energy available from catalysis,
which is approximated by the standard free energy of
reaction, as explained in the third part of the Appendix.
For catalase, with a ¼ 5.3 nm, the result is Preq ¼ 3 �
106 kJ $ s�1 $ mol�1. The turnover rate of catalase is about
104 s�1 under conditions that yield an R ¼ 20% (5), so
this power requirement corresponds to a minimal required
reaction free energy of DGo

req ¼ � 300 kJ$mol�1. This is
well above the standard free energy of reaction, DG� ¼
�95 kJ $ mol�1, computed from the standard free energies
of formation of the reactant and products (22). For enzymes
with lower turnover rates, the required reaction free
energies range up to 5 � 106 kJ $ mol�1 (Table 1). These
required reaction free energies are far larger than what is
available from the free energy of the chemical reactions
catalyzed by the enzymes. For example, for alkaline
phosphatase, DG� ¼ �8.5 kJ $ mol�1; for urease, DG� ¼
�20 kJ $ mol�1; and for acetylcholinesterase, DG� ¼
�17 kJ $ mol�1 (23). The magnitudes of the reaction free
energies in Table 1 may be put into perspective by consid-
ering that the standard free energy of hydrolysis of ATP,
the cell’s energy currency, is only about �32 kJ $ mol�1

(24). Furthermore, as detailed in the Discussion, the power
requirements derived here are conservative, and the actual
power requirements probably exceed what is available by
an even larger margin. Thus, it is unlikely that experimental
observations of EED can be accounted for by catalysis-
driven self-propulsion.
DISCUSSION

We now critically examine the approximations and assump-
tions used in this theory and consider the results in light of
recent relevant experimental studies.

Three key assumptions in this analysis are conservative,
in the sense of lowering the estimate of the power required
to achieve a certain level of enhanced diffusion. First, we
used the minimal energy dissipation theorem, based on the
assumption of a Stokes flow around the enzyme, to estimate
the minimal power required for a given propulsion velocity.
Any real propulsion likely generates a non-Stokes flow field
around the enzyme, resulting in higher viscous dissipation
integrated over whole space than in the ideal Stokes flow
and hence lower efficiency than assumed here. (Intuitively,
if one replaces the enzyme by a bacterium, we computed
the dissipation associated with pulling it through the water
with an optical trap, rather than the greater dissipation asso-
ciated with its using flagellae to swim at the same speed.)
1900 Biophysical Journal 116, 1898–1906, May 21, 2019
Indeed, a bacterial propulsion mechanism, which, unlike a
nonmotor enzyme, has been optimized during evolution,
was found to have only �1% of the maximal propulsion ef-
ficiency associated with pure Stokes drag (18). Additionally,
a propulsion mechanism might rely on local chemical gradi-
ents, imposing an additional entropy production term as the
chemical gradients spontaneously dissipate. Thus, although
we have used the maximal efficiency assumption, the true
efficiency of any enzyme propulsion mechanism is probably
orders of magnitude lower. This makes it even less probable
that the required power could be provided by the available
chemical energy.

Second, we assumed that the propulsion mechanism in-
creases the apparent translational diffusion coefficient
without increasing the enzyme’s rotational diffusion coeffi-
cient,Dr. We are not aware of any experiments that report on
the rotational diffusion rates of enzymes undergoing transla-
tional EED, but any translational propulsion mechanism
would probably also increase the rate of rotational diffusion.
This is because there is no reason to expect that a propulsive
force will not also exert a torque and thus drive rotation. In
fact, the rotational diffusion coefficient of 30 nm Pt-Au
Janus particles increases by up to 70% when they are cata-
lytically active and undergoing enhanced translational diffu-
sion (10). This is relevant here because, as is evident from
Eq. 4, increasing Dr would further increase the velocity v
needed to achieve a given level of Dapp. Therefore, even
more power would be required, again making EED harder
to explain on the basis of catalysis-driven self-propulsion.
In addition, any chemical energy expended in driving rota-
tional motion would become unavailable to drive transla-
tional motion.

Third, we assumed that the thrust speed v is constant dur-
ing the interval tp. Using Fourier analysis, we show in the
Appendix that allowing v to be time-varying during tp could
only increase the thrust speed and power required to achieve
a given degree of diffusion enhancement. The Appendix
furthermore proves a more implicit but intuitive assumption
we have used, that diffusion enhancement and power re-
quirements scale linearly with the duty ratio tp/tc. This is
found to hold as long as any significant high-frequency
components in the thrust velocity are slow relative to the
rotational diffusion time of the enzyme. Intuitively, if a
high-frequency component of the thrust speed reverses di-
rection before the enzyme has had time to reorient, the mo-
tion due to this component can be canceled in the lab frame,
leading to a minimal contribution to the net translational
displacement. In contrast, if the enzyme has time to rotate
before the thrust component reverses, the reversed compo-
nent will act in a different direction in the lab frame, leading
to less cancellation and more net displacement.

Several other assumptions also deserve comment. Our use
of the Stokes-Einstein equations with stick boundary condi-
tions is justified by several considerations. First, changing to
slip boundary conditions would merely replace the factor of
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1/6 in the Stokes-Einstein equation by a factor of 1/4, which
would not change our conclusions. Additionally, simula-
tions of spherical macromolecule-sized particles in solution
yield translational diffusion coefficients that are bracketed
by the results of the Stokes-Einstein equation computed
with stick-and-slip boundary conditions, using the geomet-
ric radii of gyration of the solutes (25). And if one assumes
stick boundary conditions in mapping from measured trans-
lational diffusion coefficients of proteins in water to effec-
tive radii and then from radii to the predicted rotational
diffusion coefficient, the results agree with experiments to
within �50% (21). Interestingly, the actual rotational diffu-
sion constants tend to be higher, rather than lower, than
those predicted by Eq. 2 (26). Correcting in this direction
would only strengthen our conclusions because increasing
Dr means that even more power is required for a given value
of R. Finally, treating the enzymes for which enhanced
diffusion has been observed as spherical is reasonable for
these globular proteins; highly nonspherical, (e.g., rod-
like) proteins may deserve further analysis.

Additionally, we have treated each enzyme molecule’s
motion as independent of the motions of the other enzymes
in solution. We tested this assumption by applying the hy-
drodynamic interaction model of Mikhailov and Kapral
(27) to the case of enzymes at the very low concentrations,
�10 nM, used in typical EED measurements. The resulting
hydrodynamic interactions are found to be negligibly
small.

It is worth considering this analysis in the context of
recent, high-resolution experimental studies of EED. In
two elegant studies, Jee et al. combined stimulated emission
depletion microscopy with fluorescence correlation spec-
troscopy to study enzyme diffusion at very high spatial res-
olution (9,28). Intriguingly, when urease in the presence of
urea was studied with a small beam waist (50–250 nm), a
fast component of translational motion was revealed. The
authors interpreted the fast component as being the result
of propulsive motion powered by the urease reaction and
argued that this self-propulsion could explain enhanced
diffusion of urease. Perhaps the chief reason for the differ-
ence in their conclusion relative to ours is that their rota-
tional diffusion time of 2.9–5.6 ms corresponds to a
hydrodynamic radius a ¼ 10–12 nm, which is considerably
larger than the value of 7.0 nm reported in a prior experi-
mental study (29) and used here. The smaller hydrodynamic
radius used here is further supported by our analysis of the
hexameric biological unit of urease (30) with the program
HYDROPRO (31), which yields translational and rotational
diffusion coefficients corresponding to hydrodynamic radii
of 6.6 and 6.7 nm, respectively. In addition, one may infer
the hydrodynamic radius of urease from the baseline trans-
lational diffusion coefficient of 29 mm2/s reported by Jee
et al; the result is 7.5 nm, which is close to the value we
used. Based on Eq. 7, going from a radius of 10–12 nm
to the more plausible value of 7 nm used here leads to a
three- to fivefold increase in the power requirement for a
given degree of diffusion enhancement R. Given that Jee
and co-workers’ estimated value of the free energy required
for each catalytic cycle, 25 kJ $ mol�1 (28), is already
slightly higher than the reaction free energy of this enzyme,
20 kJ $ mol�1 (23), an upward adjustment based on this
consideration makes it difficult to support the hypothesis
that catalytic self-propulsion explains EED in urease. Inter-
estingly, their reported rotational diffusion time of 44–46 ms
for the enzyme acetylcholinesterase corresponds to a hydro-
dynamic radius of �25 nm, which is about three times the
experimentally determined hydrodynamic radius of the
largest globular form of this enzyme (32,33). One may spec-
ulate that the abnormally low rotational reorientation rates
inferred by Jee et al. could reflect extrinsic perturbations
of the enzymes, such as fluid flows, varying on a timescale
of about 10 ms.
CONCLUSIONS

Our analysis shows that the propulsion speeds required to
explain experimentally observed levels of EED by the
mechanism of catalytic self-propulsion are implausibly
large. More fundamentally, the power levels needed to ac-
count for observed levels of diffusion enhancement by cat-
alytic self-propulsion are greater than those available from
enzyme-catalyzed chemical reactions. For most enzymes,
the power requirement is orders of magnitude too great,
and even for the faster enzymes, the power required is still
considerably larger than that afforded by the reaction. More-
over, the power actually required to generate observed levels
of diffusion enhancement is probably greater than our esti-
mates because we have used conservative approximations
that lead to lower estimates of the required power. However,
because the power required for a given level of diffusion
enhancement decreases sharply with increasing particle
size, our results remain consistent with experimental obser-
vations that self-propulsion of micron-scale particles with
surfaces coated with a metallic catalyst (10) or with immo-
bilized enzymes (34) leads to significantly enhanced trans-
lational diffusion. The propulsion direction of larger
particles randomizes more slowly, so the contribution of
propulsion to translational diffusion is increased. We
conclude that enhanced diffusion of enzymes cannot easily
be explained by self-propulsion powered by the chemical
energy of the catalyzed reactions.

It is of interest to consider other explanations for EED.
One possibility is an increase in normal, thermally driven
translational diffusion. This could result from a decrease
of the mean hydrodynamic radius of the enzyme in the
course of the catalytic cycle, as recently noted (8,35). Alter-
natively, it has been proposed (36) that the catalytic cycle
might raise the temperature of nearby solvent enough to in-
crease the enzyme’s diffusion constant, through h and T in
Eq. 2. However, the viability of this explanation appears
Biophysical Journal 116, 1898–1906, May 21, 2019 1901
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to rely on use of the thermal conductivity of air rather than
water (36) because the effect becomes negligible when the
thermal conductivity of water is used. Global heating of
the solution due to release of chemical energy is also insuf-
ficient to explain observed diffusion enhancement (5,37). It
is worth noting, too, that exothermicity, and even chemical
catalysis itself, is not required for at least some reported in-
stances of EED (2,8).

Thus, the mechanisms of EED remain obscure. Further
experimental studies may help solve this puzzle. It has
been suggested (13,38) that fluorescence correlation spec-
troscopy measurements may be subject to experimental
artifacts, such as subunit dissociation and fluorophore
quenching, so that further controls, such as those employed
by Jee and co-workers (9,28), are of high value. Because the
turnover rate is needed to convert the power requirement
(Eq. 7) to DG+

req and compare with standard thermodynamic
data, it would also be helpful if the turnover rate of the en-
zymes being studied could be measured under the precise
conditions of each diffusion study to avoid uncertainties
that may result from literature data measured under different
conditions and from reliance on an assumption of Michae-
lis-Menten kinetics. Alternative technologies for measuring
diffusion enhancement may also provide different perspec-
tives. For example, although fluorescence correlation spec-
troscopy studies of aldolase demonstrated EED (7,8),
aldolase did not show enhanced diffusion when studied by
dynamic light scattering (39) or by NMR (40). On the other
hand, an electrochemical experiment has provided support-
ing evidence of catalase EED (41). Intriguingly, a study in
which enzyme molecules were confined to an �2D region
to enable single-molecule tracking showed strong enhanced
diffusion, though we note that interpretation of these data is
complicated by the fact that the baseline diffusion coeffi-
cients were markedly reduced relative to their 3D values
(42). Further direct tracking studies (43) could be useful
both to confirm the phenomenon of EED and to provide de-
tails that might bear on mechanism.
APPENDIX: FOURIER ANALYSIS OF TIME-
VARYING THRUST—GENERAL ANALYSIS

The derivation in the main text treats the self-propulsion thrust as constant

during an interval tp within each catalytic cycle of duration tc R tp. Here,

we examine the consequences of a more general time-varying thrust.

We make the reasonable assumption that the time over which the transla-

tional diffusion constant is measured, tm, is much larger than the duration

of the catalytic cycle, tc (milliseconds to seconds), which in turn is much

larger than the rotational relaxation time thð2DrÞ�1 of the enzyme (nano-

seconds to microseconds). We address the effect of time-varying propul-

sion on translational diffusion by expanding the propulsion speed in a

Fourier series, as previously done by Lauga in the context of reciprocal

swimming (44), and extend the analysis to determine how time-variation

affects the efficiency with which propulsive power generates enhanced

diffusion.

Consider an enzyme with a time-dependent, self-propulsion speed v(t),

whose translational diffusion is evaluated from time t ¼ 0 until the end
1902 Biophysical Journal 116, 1898–1906, May 21, 2019
of some experimental time, tm. As in the main text, the direction of the pro-

pulsion is fixed in the enzyme’s frame of reference and therefore reorients

in the lab frame of reference because of rotational diffusion of the enzyme.

After periodic extension, v(t) can be expanded into a Fourier series:

vðtÞ ¼ v0

"
c0
2
þ
XN
n¼ 1

cncos
2np

tm
t þ

XN
n¼ 1

dnsin
2np

tm
t

#
: (8)

This time-varying propulsion speed generates an increment in the trans-

lational diffusion coefficient given by Lauga’s Eq. 7 (44),

DD ¼ 1

3
lim

tm/N

�R tm
0
vðtÞvðt0Þe�t�t0

t dt0
�

t

; (9)

where we have inserted missing angle brackets, indicating an ensemble

average over reference time t in the integral. This expression yields a well-

defined result because tm [ t. Substitution of the Fourier series into this

expression yields

DD ¼ v20t

3

2
6664c

2
0

4
þ 1

2

XN
n¼ 1

c2n

1þ
�
2npt

tm

�2

þ 1

2

XN
n¼ 1

d2n

1þ
�
2npt

tm

�2

3
7775: (10)

This equation decomposes the diffusion enhancement into contributions

from each Fourier component. The mean power consumption, hPi ¼
6phahvðtÞ2i, may similarly be decomposed into contributions from each

frequency component,

hPi ¼ 6phav20

"
c20
4
þ
XN
n¼ 1

c2n

�
cos2

2np

tm
t

�

þ PN
n¼ 1

d2
n

�
sin2

2np

tm
t

�#
:

¼ 6phav20

"
c20
4
þ 1

2

XN
n¼ 1

c2n þ
1

2

XN
n¼ 1

d2n

#
(11)

Here, we have used the orthogonality of the Fourier components to

eliminate cross terms and have made the substitutions hcos2ð2np=TÞti ¼
hsin2ð2np=tmÞti ¼ 1=2.

Comparing Eqs. 10 and 11 reveals that, given a set of amplitudes c0,

c1, ..., cn, d1, d2, ..., dn, higher-frequency components (i.e., ones with larger

subscripts) generate smaller contributions to the diffusion coefficient but

equal contributions to the power consumption. The efficiency of diffusion

enhancement, normalized to that for constant propulsion, is given by Eqs.

10 and 11 as xhð18pha=tÞðDD=hPiÞ. It is apparent from our analysis

that the efficiency is greatest when only the constant thrust component,

c0, is nonzero; i.e., when the thrust speed is constant during the enzyme’s

catalytic cycle, as assumed when considering the minimal thrust speed in

the main text. Any variation in thrust over time can only reduce x to

below one. Thus, ‘‘scheduling’’ the thrust cannot decrease the power needed
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for a given level of diffusion enhancement to below the power needed for

constant thrust.
FOURIER ANALYSIS OF TIME-VARYING
THRUST—SQUARE-WAVE CASE

In the main text, we assumed a square-wave thrust schedule, with constant

nonzero thrust during tp < tc and zero thrust during the rest of tc. We argued

that the diffusion enhancement and the minimal power dissipation both

scale linearly with the duty ratio tp/tc. For diffusion enhancement, it should

be apparent that this holds because the ensemble average in Eq. 9 is propor-

tional to the portion of time when v(t) is nonzero. Nonetheless, it is of in-

terest to confirm these arguments numerically within the Fourier analysis.

To do this, we consider the speed to be v(t) ¼ v0 when t˛ð� ðtp=2Þ;
ðtp=2ÞÞ, and v(t) ¼ 0 elsewhere in t˛ð� ðtc=2Þ;ðtc=2ÞÞ. The corresponding
Fourier series is

vðtÞ ¼ v0

"
c0
2
þ
XN
n¼ 1

cncos
2np

tc
t

#
; (12)

tp

c0 ¼ 2

tc
; (13)

2
Z tc

2 2np 2
�

t
�

cn ¼
tc �tc

2

vðtÞcos
tc

tdt ¼
np

sin np
p

tc
: (14)

Inserting these expressions into Eq. 10, with t/tc ¼ 0.01, which corre-

sponds to the case of urease, yields the expected linear variation of DD

with tp, as shown in Fig. 1.
FIGURE 1 Numerical evaluation of the diffusion enhancement given by

Eq. 10 confirms the linear relationship between the ratio tp/t and the diffu-

sion enhancement for a square-wave thrust schedule. The enhancement is

plotted relative to the case tp¼ tc. The value of tc and t correspond to urease

from Table 1. To see this figure in color, go online.
We next examine the efficiency, x, for this square-wave thrust schedule:

x ¼
c20
4
þ 1

2

XN

n¼ 1

c2n
1þ ð2npt=tcÞ2

c20
4
þ 1

2

XN

n¼ 1
c2n

: (15)

For constant speed with tp ¼ tc, this yields x ¼ 1. The loss in efficiency

when tp < tc then is given by

1� x ¼
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where we have used Parseval’s theorem to evaluate the denominator and

then inserted Eq. 14. For given values of t and tc, the maximal drop in ef-

ficiency is expected to happen when tp is much smaller than tc because this

increases the weight of the high-frequency components of the thrust veloc-

ity. Focusing, then, on this low-efficiency limit, we can approximate the

summation with an integral and then evaluate the integral using the residual

theorem:
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FIGURE 2 Relationship between efficiency x, and the ratio tc/t, plotted

for three values of tp/t. To see this figure in color, go online.

Feng and Gilson
Consequently, because tp [ t is expected for most enzymes, the effi-

ciency will remain near unity, even under the extreme assumption that

tp � tc. This result supports our approximation in the main text that the

diffusion enhancement caused by a square-wave thrust schedule is propor-

tional to tp. It also shows that our assumptions are conservative because not

invoking this approximation would decrease the efficiency and further in-

crease the power requirement. The analytical result in Eq. 16 analysis of

the time-varying thrust square-wave case is elaborated by numerical calcu-

lations of the efficiency x, as drawn in Fig. 2. Here, tc/t spans the range of

this ratio found for the enzymes in Table 1, from 100 for urease to 3 � 106

for DNA polymerase. Three values for tp/t are used, subject to the require-

ment that tp < tc.

The near proportionality of both DD and hPi to tp may be understood

more intuitively by reference to Eqs. 10 and 11. Because the denominator

in Eq. 10, 1þ ðntp=2tcÞ2, is near unity except for very large n, low-fre-
FIGURE 3 Definition of DGloc via a schematiz
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quency components deviate only very slightly from the zeroth component

in efficiency. On the other hand, high-frequency components with large n

have negligible amplitudes because cn%ð2=npÞ, so they do not alter effi-

ciency either. Therefore, the diffusion enhancement and the power require-

ment both scale near-linearly with duty ratio tp/tc, leading to near-uniform

efficiency. It is of interest to note, however, that efficiency would fall if

there were significant oscillations in v(t) on the timescale of t or smaller.

In this regime, the nonzero velocity components reverse direction before

the enzyme has had time to rotate, so there is little net displacement due

to the thrust. In contrast, when the nonzero velocity components do not

reverse until the enzyme has had time to rotate, the net effect of the

time-varying thrust is to generate randomly directed displacements, which

contribute to the apparent diffusion constant.
FREE ENERGY FOR SELF-PROPULSION
AVAILABLE FROM AN ENZYME-CATALYZED
CHEMICAL REACTION

In the main text, we took the standard free energy of the reaction,DGo, to be

the free energy from an enzyme-catalyzed chemical reaction that is avail-

able to power the enzyme’s self-propulsion. A concern with this approach

may be that, when the two sides of the chemical reaction have different

numbers of solute molecules, DGo depends on the arbitrary standard con-

centration, Co, and the available free energy ought not depend on an arbi-

trary quantity. Here, we show that the standard reaction free energy is, in

fact, a good approximation to the free energy available from the combined

processes of substrate-enzyme binding, chemical reaction, and product

release, so long as the standard concentration is set to its customary value

of 1 mol/L. This section thus justifies the use of the standard concentration

in the main text while also offering insight into how more refined estimates

of the available free energy might be made.

First, it is instructive to consider whether it would be appropriate to take

the free energy available for propulsion to be the free energy of reaction un-

der the experimental conditions at which enzyme diffusion was studied; i.e.,

DG ¼ DGo þ RTlnQ, where Q is the experimental concentration quotient,

assuming activity coefficients near unity. This approach is problematic

because it would require a physical mechanism that could couple the

macroscopic concentrations of substrate and product to the local events at

a single enzyme molecule. Instead, if one considers the entire catalytic pro-

cess, from enzyme-substrate encounter through release of product to the

bulk, the only steps that could contribute free energy to enzyme propulsion
ed thermodynamic cycle. See text for details.
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are those in which the enzyme interacts significantly with the substrate or

product. Such interactions occur only when the substrate or product mole-

cules are near the enzyme, so the free energy available for propulsion may

be termed the local free energy, DGloc.

The local free energy may be estimated with the thermodynamic cycle

shown in Fig. 3, which illustrates a case in which one substrate molecule,

S, present at concentration CS, is converted to two product molecules,

P1 and P2, present at concentrations CP1 and CP2, respectively, with a

free energy of reaction under experimental conditions of DG ¼ DGoþ
RT ln CP1CP2=ð CSC

�Þ, assuming ideal solutions. The lower route of the cy-

cle breaks the process into five steps. In the first, step, the substrate mole-

cule is, in effect, compressed into the region near the enzyme where

enzyme-substrate interactions are non-negligible, under the artificial

assumption that only steric interactions exist between the two molecules.

The volume of this region is termed Vloc, S, and the free-energy change asso-

ciated with this step is DG1 ¼�RTln(Vloc, SCS). The subsequent three steps

are those for which the free-energy change, DGloc, could contribute free en-

ergy to propulsion. Here, the nonsteric enzyme-substrate interactions are

turned on, the substrate is converted to product, and then all nonsteric inter-

actions between the enzyme and products are artificially turned off while

the products are constrained to remain in the region where these interactions

were non-negligible. For products P1 and P2, the volumes of these local re-

gions are, respectively, Vloc, P1 and Vloc, P2. Finally, the constrained products

are released to their solute concentrations with free-energy change DG2 ¼
RTln(Vloc, P1Vloc, P2CP1CP2). Closing the thermodynamic cycle now allows

one to show thatDGloc ¼DG+ � RT lnððVloc;P1Vloc;P2C
+Þ=Vloc;SÞ. Note that

if Vloc is given in units of nm3, then the 1 mol/L standard concentration

should be written as 0.6 molecules/nm3. The steps corresponding to the

local free energy have the character of a unimolecular process, and this

quantity is, accordingly, independent of the standard concentration, C�,
because any change in C� causes equal and opposite changes in DG� and

the second term ofDGloc. If the enzyme interacts with substrate and product

molecules over similar ranges, we may write all three local volumes as the

same quantity Vloc, and the local free energy takes the simpler formDGloc¼
DG� � RTln(VlocC

�). A straightforward generalization to other stoichiom-

etries yields DGloc ¼ DG� � (NP � NS)RTln(VlocC
�), where NP and NS are

the numbers of product and substrate solutes, respectively. Again, although

DG� depends on the standard concentration, this dependency is canceled by
the factors of C� in the added term.

The quantity Vloc is the volume covered by the interaction range of sub-

strate and product molecules with the enzyme. We estimate this quantity by

considering the interaction region to be a hemisphere around the enzyme

active site with a 1 nm radius typical of protein-ligand interaction ranges,

as determined frommolecular dynamics simulations (45,46). With these as-

sumptions, RTln(VlocC
o) ¼ 0.6 kJ $ mol�1. Note that this quantity is rather

insensitive to the precise choice of Vloc because of the logarithm. For ure-

ase, where one molecule of urea is decomposed into one carbon dioxide and

two ammonia molecules, NP� NS¼ 2, so DGloc¼ DGo� 2RTln(VlocC
o)¼

�20 kJ $ mol�1 � 1.2 kJ $ mol�1 ¼ �21.2 kJ $ mol�1. For acetylcholin-

esterase, where one molecule of acetylcholine is decomposed into one ace-

tic acid and one choline, NP � NS ¼ 1, so DGloc ¼ DGo � RTln(VlocC
o) ¼

�17 kJ $ mol�1 � 0.6 kJ $ mol�1 ¼ �17.6 kJ $ mol�1. Thus, the local

free energies available to drive propulsion remain close to the standard

binding free energies appropriate to C� ¼ 1 mol/L, as was to be demon-

strated. We note that this result is serendipitous because changing to

a different standard concentration would not change DGloc but would

change DG�.
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