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Development of a step counting
algorithm using the ambulatory
tibia load analysis system for tibia
fracture patients
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Abstract

Introduction: Ambulation can be used to monitor the healing of lower extremity fractures. However, the ambulatory

behavior of tibia fracture patients remains unknown due to an inability to continuously quantify ambulation outside of the

clinic. The goal of this study was to design and validate an algorithm to assess ambulation in tibia fracture patients using

the ambulatory tibial load analysis system during recovery, outside of the clinic.

Methods: Data were collected from a cyclic tester, 14 healthy volunteers performing a 2-min walk test on the treadmill,

and 10 tibia fracture patients who wore the ambulatory tibial load analysis system during recovery.

Results: The algorithm accurately detected 2000/2000 steps from simulated ambulatory data. During the 2-min walk

test, step counts derived from the algorithm and treadmill showed a strong correlation (r2>0.98) to the visual (‘‘actual’’)

step count. Applying the algorithm to continuous data from tibia fracture patients revealed qualitative differences in gait

between the initial and later stages of recovery. Additionally, a relatively large standard deviation (�3000 steps) in

the daily average step count indicated a variety of patient ambulatory behaviors.

Conclusion: The algorithm reported in this study can assess the ambulatory activity of tibia fracture patients during the

recovery period.
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Introduction

The tibia is the most commonly fractured long bone.1

Tibia fractures can be caused by both low impact (i.e.
walking, fall from standing) and high impact mechan-
isms of injury (i.e. sports injury, motor vehicle
accident).2 Complications such as delayed healing or
non-union occur in 13–60%3,4 of cases and place add-
itional burden on the patient because they prolong the
recovery period and are associated with significant
pain.5 It is well known that fracture healing is highly
dependent on the mechanical environment,6 which is
the magnitude and type of load experienced by the
fractured bone. Under-loading has been shown to
result in impeded bone formation and over-loading

conditions have resulted in dislocation of the bone frag-
ments.7–9 In order to promote bone healing, the stand-
ard of care instructs patients to gradually increase load
applied to the injured limb from no-load to full-load
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conditions,10 during recovery which typically lasts 6–12
weeks or more.11 Moreover, the ability of a patient to
bear weight on the injured limb is a commonly used
clinical factor to assess fracture healing.12

One method to analyze the ability of a patient to
bear weight is through the assessment of gait.13 In gen-
eral, ambulation is a basic component of various daily
activities and quantification of ambulation can provide
important information regarding an individual’s func-
tional capacity. In 2012, Macri et al.13 used video
assessment to grade the gait of tibia fracture patients
on a scale of 1–4 and found that a patient’s ability to
ambulate was correlated to the healing stage of the
fractured bone. Patients with a higher score were able
to ambulate normally, while patients with a lower score
had difficulties ambulating. However, this qualitative
measure of ambulation is time consuming, limited by
subjectivity, and requires clinical visits for data points.
An objective, out-of-clinic method to quantify ambula-
tion may provide clinicians with a more practical tool
to monitor fracture healing. However, monitoring pro-
gress in fracture healing outside of the clinical environ-
ment has been difficult due to unknown patient
behaviors such as the number of steps taken,14 the
actual amount of loading15 and time spent wearing a
rehabilitative boot. The lack of a reliable method to
continuously monitor the type and magnitude of load-
ing is one of the main reasons why quantifying the
mechanical environment experienced by lower extrem-
ity fractures has been difficult.

In an attempt to quantify the mechanical environ-
ment experienced by an injured lower extremity, several
technologies have been developed. One set of devices is
underfoot load monitoring systems which measure
force underneath the foot. These systems have been
limited by inadequate sensor performance including
hysteresis, non-linearity, drift, short recording time
(< 24 h), and/or high cost.16–19 These limitations have
led to a paucity of continuous, out-of-clinic underfoot
load data from lower extremity fracture patients. Apart
from underfoot load monitoring systems, several spe-
cialized research tools such as implantable microelec-
tromechanical sensors and instrumented internal
fixators have been developed.20–22 However, these
tools are limited to certain fracture types, are invasive
due to the need for surgical implantation and retrieval
and some require clinical visits for data acquisition.

While the aforementioned load monitoring devices
can measure the magnitude of loading, these systems
are generally not designed to measure ambulation. An
exception is the OpenGo insole which measures the
amount of active time spent by ankle fracture patients
for a duration of six weeks.23 It is unclear, however, if
the amount of time spent active, refers to dynamic or
static activities. Activity monitors that are designed for

consumer fitness and wellness tracking have also been
used to quantify ambulation with varying results. The
most popular wearable device, the Fitbit, has been
shown to underestimate the number of steps taken at
a slow, moderate, and brisk walking speeds on a tread-
mill.24 Diaz et al. reported underestimations in step
counts of up to 3% for hip worn FitBit models and
up to 23% for wrist worn FitBit models. In another
study with healthy volunteers walking both indoors
and outdoors, devices such as the Nikeþ Fuel Band,
Jawbone Up, and Tractivity showed poor accuracy at
slow walking speeds by underestimating the number of
footsteps by 35.39� 21.17%, 10.08� 8.04%, and
10.92� 16.26% respectively.25 Due to their varying
accuracies, these devices may not be appropriate to
use to accurately quantify ambulation in lower extrem-
ity fracture patients. Quantifying ambulation requires a
reliable and accurate methodology to detect foot-
steps—including footsteps during the early recovery
period where the underfoot loads are low. Therefore,
there is a need for a reliable, robust and affordable tool
to measure ambulation during recovery which may
allow for new insights into tibia fracture healing and
equip care providers with data to guide improved heal-
ing outcomes.

In previous studies by our group, a robust underfoot
load measuring device, the Ambulatory Tibia Load
Analysis System (ATLAS), was developed and shown
to overcome many of the current technological limita-
tions in long-term limb load monitoring such as sensor
linearity, drift, and duration of recording time outside
of the clinic.26 The ATLAS consists of three separate
piezoresistive pressure sensors with two sensors pos-
itioned under the medial and lateral metatarsal heads,
and one sensor under the heel.27 The sensors are inte-
grated into a controlled ankle movement (CAM)
walker, which is worn by the patient.

The goal of this study was to develop an algorithm
to count steps from underfoot load data from the
ATLAS in order to assess ambulation in tibia fracture
patients as they are recovering, both during the initial
healing phase as well as late stage healing. In this study,
we developed an automated step counting algorithm to
accurately and reliably determine the number of steps
from ATLAS underfoot loading data. Verification of
the step counting algorithm was performed in the
laboratory using a cyclic loading device and software
generated loading curves. Validation was performed
with healthy volunteers wearing an ATLAS instru-
mented CAM walker boot during a 2-min walking
test (2MWT) on a Noraxon Scifit treadmill. The accur-
acy of the step counting algorithm was compared to a
visual step count and treadmill generated step count.
Subsequently, the step counting algorithm was used to
assess ambulation in 10 tibia fracture patients.
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Materials and methods

The study was conducted at the University Orthopedic
Center and the Department of Bioengineering at the
University of Utah, according to the protocol reviewed
and approved by the University of Utah IRB. Healthy
volunteers (ref IRB 81249) and tibia fracture patients
(ref IRB 61719) provided informed written consent to
participate in these studies. Unless otherwise specified,
all software programs were run with default or recom-
mended settings from a 2.66GHz Intel Core i7
Windows OS desktop machine equipped with 16GB
of RAM.

Algorithm description

All of the data analyzed by the algorithm consisted of
the sum of the three sensors of the ATLAS. The
ATLAS continuously records underfoot loading, and
therefore the data contain information about both
ambulation and other activities, such as static loading
and momentary loading (e.g. required to maintain bal-
ance, ‘‘shuffling’’ at the early stage of recovery, etc.).
Thus, an algorithm is necessary to filter data associated
with non-ambulatory events in order to count steps.
The algorithm was developed and informed by analyz-
ing partial and full weight-bearing waveforms from the
first three patients in this study. The initial analysis of
this data revealed that steps taken by tibia fracture
patients in a walking boot often deviated from the
healthy gait, which has been previously reported in
healthy volunteers simulating partial weight bearing.28

In order to overcome the challenge of counting steps
based on irregular loading patterns, we developed an
algorithm with three conditions. The desired function
of the algorithm was to first detect the heel or forefoot
contact with the ground by looking for a maximum
load value and then detect when the foot discontinued
contact with the ground by looking for a minimum load
value. In addition, the algorithm was designed to dis-
regard quickly occurring maxima that may have
occurred due to a variety of events such as balancing
or shuffling during the numerous weeks of recording
data. Underfoot load data that met all three conditions
of the algorithm were counted as footsteps.

The first condition of the algorithm was to detect a
heel or forefoot strike by identifying local maxima based
on a threshold. From observations with our initial data,
it was quickly determined that a fixed threshold system
was unable to compensate for the dynamic nature of
weight-bearing progression over the many weeks of
using the CAM Walker. In order to determine a
dynamic threshold, we sampled data from the first
three patients in the study to determine the relationship
regarding the threshold (differences between local
maxima and minima) and the corresponding peak

loads (maxima). These variables were sampled at time
points during the early, middle, and late periods of
recovery. Linear regression analysis revealed a slope
value of 40% which indicated that differences between
maxima and minima were approximately 0.4 times the
peak load value. Thus, we set our threshold to be at least
40% of the daily average peak load. Because the average
load increases over time, thresholding with respect to
individual days allows for the capture of steps taken
from partial weight-bearing to full weight-bearing con-
ditions. Peak load values (foot strike) greater than or
equivalent to the threshold were passed on to the second
condition of the algorithm for further filtering.

The second condition of the algorithm was to disre-
gard peak loads that occurred too quickly to be asso-
ciated with ambulation. The fast gait for humans ages
20–49 is approximately 2.48� .12 steps/s.29 It is unli-
kely that a lower limb fracture patient would exceed
this rate. Therefore, the condition was set that if two
maxima occurred at a frequency faster than 1.3 steps/s,
the lower amplitude maximum would be disregarded.
This condition was designed to remove peaklets that
occurred as the recovering patients attempted to ambu-
late, balance, shuffle and perform other daily activities.
The remaining peak loads were then passed on to the
third condition of the algorithm to determine the final
step count.

Finally, the third condition of the algorithm was to
detect the swing phase of gait by detecting a local min-
imum. During normal gait, the foot strike with the
ground is preceded and followed by foot swing. This
scenario is represented in the underfoot load data by a
maximum value surrounded on both sides by two
minima values. In order to account for the irregular
gait of tibia fracture patients, we also needed to
detect abnormal steps such as when the foot begins in
the air, strikes the ground and then the patient balances
on that foot. In this case, the underfoot load data
would by represented by a minimum value followed
by a maximum value. In order to capture both of
these types of steps, the algorithm was designed to dis-
regard maxima that were not preceded or followed by a
minimum of less than 20% of patient body weight
within 1 s. Using the ALTAS system in the laboratory,
we found that the baseline value of the system could
shift up to 10% based on how tightly the walking boot
straps were fastened. To account for the variability in
strap tightness due to patients donning and doffing the
boot each day, we doubled the observed 10% value as a
safety factor.

Laboratory hardware and software verification

In order to simulate steps from patients, a cyclic load-
ing system was designed. The system consists of three
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pneumatic cylinders controlled using a National
Instruments LabView (Labview 2013, http://www.ni.
com/labview/) system programmed for step simulation.
The Labview software allows for customization of the
number of loading cycles, time loaded or unloaded, and
input waveform. In this simplified system, each strike of
the disk piston on the ATLAS represents a step.

Additionally, a test waveform was created to repre-
sent underfoot load data. A piecewise sine wave con-
sisting of four segments was programmed using
MATLAB. Each segment contained varying frequency,
amplitude, and/or offset values in order to simulate dif-
ferent walking conditions. The segments were designed
to determine whether or not the algorithm could indeed
filter miscellaneous activities in the loading data. The
equation used to construct the waveform is presented in
equation (1)
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Study procedure

A total of 14 healthy volunteers (6 males, 8 females, age
range 21–63 years) participated in the treadmill walking
validation study. Each subject was fitted with the
ATLAS instrumented CAM walker boot (right leg).
Each trial consisted of a 2MWT on a Noraxon Scifit
treadmill at a speed of 1.12m/s. This speed was similar
to speeds used in previous treadmill studies30,31 but
slightly decreased to minimize potential difficulties in
ambulation with the walking boot. While each patient
walked, treadmill and ATLAS data were recorded.
Each test was video recorded in order to collect a
manual step count for each trial. Step counts recorded
by the ATLAS and treadmill were compared to the
number of steps determined by manually counting
steps captured on the video, which was used as the
reference for each trial. Steps determined by ATLAS
were calculated by the ATLAS step counting algorithm
and step counts from the treadmill were calculated by
the Noraxon treadmill software. Each participant per-
formed the test twice.

Data sets from tibia fracture patients were obtained
from a study at the University of Utah Orthopaedic
Center. Ten tibia fracture patients (6 males 4 females,
age range 20–55 years) were recruited from this
institution. Each patient was fitted with an ATLAS
system that integrates with the clinically prescribed
MaxTrax CAM walking boot. Each patient was

instructed in the study procedures by a member of
the clinical team.

ATLAS data

Data analysis was performed in MATLAB 2014a
(Mathworks, www.mathworks.com). The objective of
data analysis was to generate a loading curve, to iden-
tify individual steps and to determine step statistics
from ATLAS-recorded underfoot load data. All of
the ATLAS data analyzed by the algorithm consisted
of the sum of the underfoot load from the three sensors
(1 underneath the heel and 2 underneath the forefoot).
Loading values obtained from patients were normalized
for the patient’s body weight from the beginning of the
study. Step count data from the treadmill, ATLAS and
video records were tabulated for each trial and average
and standard deviation values were computed. The
data were plotted, and correlation coefficients (linear
regression) were calculated.

Results

Laboratory hardware verification

The total load recorded by ATLAS during a 10-s inter-
val from the cyclic load test is shown in Figure 1. Five
peak loads are observed with a baseline value between
each maximum. The five asterisks indicate the five
maxima values that were detected by the algorithm
and interpreted as steps. The step counting algorithm
detected 2000 out of 2000 cycles that were programmed
for this experiment.

Figure 1. Representative 10-s interval of ATLAS data during

the cyclic loading test. Asterisks indicate maxima detected by the

step counting algorithm. The number of cycles during this inter-

val, 5, matches the number of ‘‘steps’’ detected by the ATLAS

algorithm.
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Laboratory verification using simulated
loading curves

A sine wave with varying amplitudes and frequencies
was created to simulate various walking conditions is
shown in Figure 2. The number of steps detected by
different conditions of the algorithm as well as the
number of steps detected by the algorithm as a whole
is also shown. When individual conditions of the algo-
rithm were used, percent errors of 50% or greater were
observed. The testing demonstrated that all three com-
ponents of the step counting algorithm are necessary in
order to obtain the correct number of steps.

Validation of step counting software using treadmill

During the 2MWT, the treadmill, ATLAS, and video
count detected footsteps of 89� 9 steps, 91� 10 steps,
and 91� 10 steps, respectively. Figure 3 shows the cor-
relation between the calculated number of steps from
each device with respect to the actual number of steps
derived from video analysis. The number of steps as

detected by the ATLAS had the highest correlation
with the actual number of steps taken with an r2

value of 0.989. The number of steps as calculated by
treadmill was also highly correlated to the actual
number of steps with an r2 value of 0.984.

Figure 2. Simulated steps detected from an artificial waveform representing ambulation. The four subplots used different peak

detection conditions: (A) constant small threshold, (B) first condition of the algorithm, (C) first and second conditions of the

algorithm, (D) all three conditions of the algorithm. Asterisks at the waveform peaks indicate the detected simulated steps. (a)

Indicates number of maxima expected, (b) maxima detected, and (c) percent error. Only the combination of all three conditions of the

algorithm resulted in the correct step count.

Figure 3. ATLAS step count is highly correlated to the actual

step count. The highest correlation with the reference values was

recorded for the ATLAS (r2
¼ 0.989), with the treadmill following

closely (r2
¼ 0.984).
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Continuous recovery data

In this section, examples of the application of the step
counting algorithm in two patients are discussed.
Figure 4 shows 28 days of continuous loading data
obtained in tibia fracture Patient 1. The load values
for this patient begin 17 days after surgery when the
patient was first instructed to wear the ATLAS. During
the first two weeks of ATLAS use, loading values never
exceeded 50% of the patient’s bodyweight. However,
after additional weeks of recovery, this patient was
weight bearing at nearly 90% of their bodyweight.
Inset graphs (A) and (B) represent the differences in
ambulation that occur over time. The underfoot load
while ambulating is irregular and variable 9 days after
surgery, but becomes more patterned and consistent 42
days after surgery.

Practical application of the step counting algorithm
to patient data is shown in Figures 5 and 6. In Figures 5
and 6, asterisks indicate steps detected by the algo-
rithm. Figure 5 shows the total underfoot load during
a 10-s period from the early stage of healing. The data
appear disordered and only one step was detected
during this period. During the first 5 s of this data,
the total underfoot load varies irregularly from 8% of
body weight to approximately 11% of body weight.
This results in numerous peaklets (local maxima)
which lack the loading profile typically seen during
ambulation in a walking boot. In contrast, the 10 s of
data from the late stage of healing shown in Figure 6
depict loading values which relatively consistently

varied from 6% of body weight to 66%. In this case,
six steps were detected from the dynamically varying
data and the overall profile of loading during each
step is similar in magnitude and duration. The six
steps in Figure 6 all contain the same pattern of two
peaklets, representing loading of the heel and forefoot
sensors during each step, while the single step detected
in Figure 5 has several peaklets during the step. Overall,
there are qualitative differences in the nature of ambu-
lation and loading values between the early and late
stages of healing.

An overview of the number of steps taken per day by
10 patients (mean, SD) is shown in Figure 7. The large
standard deviation values (up to �3000 steps/day) indi-
cate the diversity of patient behavior during partial
weight-bearing rehabilitation. Overall, there appears
to be an increase in the mean number of steps taken
per day during the first five to six weeks after surgery.
After this time period, the mean number of steps taken
per day intermittently increases and decreases. Despite
the lack of a continuing trend, the mean number of
steps per day is generally greater than 1000 steps per
day after two weeks of recovery as compared to the first
two weeks.

Discussion

Ambulation may be an influential factor in the healing
of lower extremity fractures and could also be used as a
monitoring tool to measure the progression of fracture
healing.13,32 However, the ambulatory behavior of tibia

Figure 4. Progressive nature of weight bearing during the rehabilitation period of a tibia fracture patient. The patient began wearing

the boot 17 days after surgery. Insert (a) shows a 10-s segment of data from day 26, and insert (b) shows a 10 s segment of data from

day 40.
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fracture patients remains unknown due to an inability
to continuously and reliably quantify ambulation out-
side of a clinical setting. Our goal was to develop an
algorithm to assess ambulation in tibia fracture
patients, outside of the clinic, during recovery in a
CAM walker. Our results indicated that a reliable algo-
rithm to count steps from ATLAS underfoot load data
was developed and validated. To the best of our know-
ledge, this is the first report on the out-of-clinic ambu-
latory behavior of tibia fracture patients from the first
day of recovery in a CAM walker to the day a clinician
determined that the fracture was healed and the CAM
boot was no longer needed.

The accuracy and reliability of the algorithm were
verified using hardware and software in the laboratory
to simulate two simplified models of ambulation. When
a cyclic loading system was used to simulate ambula-
tion, the algorithm correctly identified all of the simu-
lated steps (Figure 1). Similarly, when a loading
waveform containing data representing both footsteps
and miscellaneous activities was input into the algo-
rithm, the algorithm filtered out extraneous activities
and correctly identified the simulated steps (Figure 2).

These experiments indicated that the algorithm could
reliably identify footsteps in simplified models of ambu-
lation. In addition, validation testing was performed on
healthy volunteers. Our results showed that the algo-
rithm derived step count had a high correlation
(r2¼ 0.989) with the actual number of steps taken as
determined by a manual video count (Figure 3), indi-
cating that the algorithm could accurately detect steps
taken in a CAM walker boot during walking.
Comparing the accuracy of our device to common com-
mercial devices, the accuracy of our step counting algo-
rithm is greater than that of the wrist worn FitBit Flex,
but similar to the hip worn FitBit One. Previous valid-
ation and reliability studies performed on a treadmill
have shown that step counts from the FitBit Flex and
Fitbit One are moderately correlated (0.77� r2�
0.85)24 and highly correlated (0.97� r2� 0.99),33,34

respectively, to the manual step count.
The collection of continuous, out-of-clinic, under-

foot load data from tibia fracture patients revealed spe-
cific patient behavior and provided insight into the
progressive nature of weight bearing over time
(Figure 4). While previous studies have captured

Figure 5. Example of irregular loading pattern at relatively low percentage of bodyweight during the early stage of rehabilitation.

This graph shows the percentage of loading normalized to body weight over a 10-s interval. Examples of peaklets resulting from

behavior that does not appear to be ambulation are denoted by dashed arrows. The algorithm disregarded the peaklets and detected a

single step, denoted by the (*), in this portion of the data.
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Figure 6. Example of regular load pattern at a relatively high percentage of bodyweight during the late stage of rehabilitation. This

10-s interval of data shows the relatively consistent and patterned waveform seen in most patients during the late stages of healing.

Overall, the features of the waveform are similar to that normal ambulation in a walking boot. The (*) above the peak indicates the six

steps detected by the algorithm in this portion of the data.

Figure 7. Average number of footsteps taken per day by 10 patients. Large standard deviations indicate a wide variety of patient

ambulatory behavior. The number of steps taken per day tends to increase during the first five weeks and is followed by intermittent

increases and decreases.
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discrete changes in weight bearing,35,36 this study pro-
vided the first continuous picture of weight bearing
during a period of 28 days. From day 17 to day 45,
there was an overall nonlinear increase in weight bear-
ing. Within that period, there were consecutive days
where the increase in weight bearing was followed by
a sudden decrease as seen in days 21 to 22 and days 34
to 35. One explanation for this behavior may be that
the patient over-loaded the injured limb leading to pain
which is reflected by the subsequent decrease in weight
bearing. When the weight-bearing data were analyzed
with a time scale in seconds, ambulatory behavior was
revealed (Figure 4(a) and (b)).

Application of the step counting algorithm to data
obtained continuously by the ATLAS system qualita-
tively showed that ambulation during the initial stages
of recovery (Figure 5) differed from ambulation in later
stages of recovery (Figure 6). While the loading curve in
Figure 5 contained varying maxima values, the loading
curve in Figure 6 appeared to be regular with consistent
maxima values. The variance in initial loading (Figure 5)
may be due to the patient continuously adjusting the
amount of load on the injured limb due to pain (such
as shuffling) or attempting to partially weight bear while
using crutches. Previous studies have also found a differ-
ence in gait in the initial stages of recovery compared to
the later stages of recovery.13,37 However, the aforemen-
tioned studies were performed on an animal model or
assessed gait at discrete time points, in a clinical setting.
Thus, results from these studies may not be representative
of patient community ambulatory behavior. Our results
may be more representative of actual patient ambulation
since they were based on measurements obtained continu-
ously, outside of a clinical setting. Since new literature has
pointed towards a correlation between the quality of gait
and fracture healing,13 clinicians may be able to utilize the
step counting algorithm to gain objective insight into con-
tinuous, personalized fracture healing.

Our overall assessment of ambulatory behavior
revealed much variance in the number of steps taken
between patients during recovery. We believe this is the
first report of a continuous step count for tibia fracture
patients obtained outside of a clinical setting. A general
increase in the daily step count was observed (Figure 7) for
the first five weeks of use followed by intermittent
increases and decreases during the following three weeks.
One possible explanation for this behavior is that a subset
of patients may have been non-compliant and wore the
ATLAS instrumented CAM walker less consistently once
they were able to ambulate comfortably without the CAM
walker (around week 5). In addition, there was a large
standard deviation for each data point in this group of
10 patients. This variance between patients underscores
the fact that patients have different behaviors and may
respond differently to prescribed rehabilitative protocols.

Instead of a standardized protocol for given fracture
types,10 individualized rehabilitative protocols based on
ambulatory data obtained by the algorithm may optimize
healing outcomes. Despite a paucity of data on patient
ambulation during recovery outside of a clinical setting,
our findings are similar to the most current results in the
literature. While Braun et al.23 only performed measure-
ments for a total of six weeks, they also observed that the
average time spent active by a group of 10 ankle fracture
patients increased overtime and that there was a relatively
large standard deviation in the time spent active. Time
spent active may include ambulation by both the healthy
limb and the injured limb. However, literature has shown
that loading and ambulation on the injured limb promote
healing36,38 and therefore time spent active may be an
imprecise measure of ambulation experienced by the
injured limb. Further studies with an increased number
of patients may reveal how ambulation affects healing
and allows for scientifically derived activity suggestions
to promote fracture healing.

One of the limitations of this study was that valid-
ation of the step counting algorithm was only performed
with healthy subjects for a trial duration of 2min. The
2MWT is commonly used to determine ambulatory cap-
acity of unhealthy individuals, due to the practicality
and efficiency of the test.39,40 While there is no estab-
lished protocol for validation of a step counting
system, previous studies have used walking durations
of 1–3min.41–43 As a result, the authors decided the
2MWT was a feasible protocol to validate the step
counting algorithm. Another limitation is our inability
to report on ambulation when patients are non-compli-
ant and do not wear the ATLAS. It is possible that a
recovering patient can take numerous steps without
wearing ATLAS, which would not be detected by the
algorithm. While we cannot control the compliance of
patients, we can continuously monitor the underfoot
load and speculate when patients do not wear the
ATLAS based on long periods of no loading. In other
words, the ATLAS system could also be used as a tool to
measure patient compliance. Lastly, we did not give
wearable sensors to the tibia fracture patients during
the recovery period. However, it is important to note
that no activity monitor has been validated in a tibia
fracture patient model and as a result we would have
been unable to make objective comparisons between
our device and one that is not intended for this purpose.
In addition, prescribing activity monitors to tibia frac-
ture patients is not part of the current standard of care,
whereas the CAM walker boot is commonly prescribed
by orthopaedic clinicians. While prescribing the use of
an activity monitor may have been a major change to
established protocols, integration of the ATLAS into the
sole of the CAM Walker was a minimal modification to
the current post-surgical standards.
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In summary, the algorithm reported here provided a
means to assess patient ambulation and may be used in
the future to connect patients and care providers to
guide therapy and monitor rehabilitation. We have
shown that our algorithm can be applied to ATLAS
underfoot load data to continuously count the
number of steps taken and provided an assessment of
the ambulatory behavior of tibia fracture patients. The
algorithm revealed a qualitative difference in gait
during the initial stages of recovery compared to the
later stages of recovery. Additionally, a relatively
large variance in daily ambulation within a group of
10 patients over a six-week period was observed, sug-
gesting differences in ambulatory behavior. In the
future, the ambulatory behavior of patients, as derived
by our algorithm, may be used by clinicians to develop
personalized healing regimens, which could allow
patients to resume their normal activities more quickly
and lower surgical revision rates. Future studies corre-
lating radiographic measures of healing, such as the
RUST score,44 to ambulation may also provide add-
itional evidence for the use of ambulation as a measure
for fracture healing.
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