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Abstract

In this article, we summarize the role of CD8+ T cells during natural and ART-treated HIV and 

SIV infections, discuss the mechanisms responsible for their suppressive activity, and review the 

rationale for CD8+ T cell-based HIV cure strategies. Evidence suggests that CD8+ T cells are 

involved in the control of virus replication during HIV and SIV infections. During early HIV 

infection, the cytolytic activity of CD8+ T cells is responsible for control of viremia. However, it 

has been proposed that CD8+ T cells also use non-cytolytic mechanisms to control SIV infection. 

More recently, CD8+ T cells were shown to be required to fully suppress virus production in ART-

treated SIV-infected macaques, suggesting that CD8+ T cells are involved in the control of virus 

transcription in latently infected cells that persist under ART. A better understanding of the 

complex antiviral activities of CD8+ T cells during HIV/SIV infection will pave the way for 

immune interventions aimed at harnessing these functions to target the HIV reservoir.
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Introduction

Human immunodeficiency virus (HIV) is the causative agent of the acquired 

immunodeficiency syndrome (AIDS) [1, 2] and infects an estimated 36.7 million people 

worldwide. Based on UNAIDS estimates, 1.8 million new HIV infections are projected to 

occur annually and as well as one million AIDS-related deaths [3]. While antiretroviral 

therapy (ART), the standard care for HIV infection, has dramatically reduced the mortality 

and morbidity of HIV infection, there is still no cure for this infection.

The main obstacle in the development of an HIV cure is the presence of a reservoir of HIV-

infected cells containing integrated DNA but not expressing the virus, defined as latently 

infected cells, that seem to persist indefinitely in ART-treated HIV-infected humans [4–7]. 

This population is termed “HIV viral reservoir” and occurs primarily within resting memory 

CD4+ T cells [4, 8]. It appears that over time there is a progressive reduction in the size of 
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the HIV viral reservoir around a core of less differentiated memory subsets: central memory 

(TCM) and stem cell memory (TSCM) [9]. These cells are long-lived, capable of self-renewal 

(in vitro) and have an estimated half-life of >44 months [7, 10]. It was recently described 

that the HIV viral reservoir is established early during infection [11, 12] and is responsible 

for the viral rebound observed after ART interruption [13, 14]. Therefore, strategies 

additional to ART are necessary to cure HIV, and novel therapies targeting the HIV viral 

reservoir are of utmost importance.

SIV infection of rhesus macaques (RM) is similar to pathogenic HIV infection of humans 

with establishment of peak and set point viremia, depletion of CD4+ T cells, onset of AIDS, 

and suppression of viremia by ART [15]. Therefore, certain experimental limitations of 

studying HIV infection of humans can be overcome using the nonhuman primate (NHP) 

with simian immunodeficiency virus (SIV) infection model [reviewed in [15–17]. NHP 

studies allow for control of the infecting virus strain, timing of infection, more aggressive 

tissue sampling, selection of specific MHC class I genotypes, and elective necropsies with 

unlimited tissue collection. Crucially, the NHP/SIV model allows the testing of risky in vivo 

immune interventions, such as those combining various immunomodulatory approaches, 

which are virtually impossible to conduct in HIV-infected humans. As such, NHP SIV 

studies are an important tool used for further insight into HIV pathogenesis, prevention, and 

treatment in humans.

CD8+ T cells in HIV and SIV pathogenesis

Acute infection

HIV can be transmitted via blood, breast milk, semen or vaginal secretions from infected 

individuals [18]. Systemic infection is established with the spread of the virus to lymphoid 

tissues throughout the body including, but not limited to, the thymus, the spleen, peripheral 

lymphoid organs, mucosal lymphoid tissues, and the brain [19]. Acute HIV infection of 

humans is characterized by a transient peak in viremia (2-3 weeks) followed by a post-peak 

decline to a viral set-point level of viremia that is a strong predictor of the ensuing rate of 

progression to AIDS [20]. Subsequently, HIV-infected patients experience a slow decrease 

in CD4+ T cells and gradual deterioration of immune function, including exhaustion of 

CD8+ T-cells, loss of immune function in the lymph nodes and mucosal tissues and chronic 

immune activation, leading to increased susceptibility to opportunistic infections and cancer 

[21], [22, 23].

Several lines of evidence suggest that CD8+ T cells play a significant role in the control of 

virus replication during the acute phase of HIV and SIV infection. First, the post-peak 

decline of viremia only occurs after the emergence of virus-specific CD8+ T cells, 

suggesting that CD8+ T cells are involved in the initial control of infection [24, 25]. In 

support, depletion of CD8+ T cells during acute SIV infection of RM results in the 

abrogation of the post-peak decline of viremia [26, 27], confirming a critical role in the 

initial resolution of viral control. In addition, during the first weeks of infection viral 

mutants capable of escaping the CD8+ T cell response begin to appear and rapidly become 

fixed in the overall virus population, thus demonstrating a strong evolutionary pressure 

posed on the virus to escape immunological recognition by CD8+ T cells [28–31]. Overall, 
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these observations indicate that CD8+ T cells play a significant role in the control of acute 

HIV infection.

Interestingly, unlike with other viral infections, the initial expansion of the effector CD8+ T 

cell pool is not limited to HIV-specific cells and of the total CD8+ T cell pool expanded 

during the acute infection, only about 10% are HIV-specific CD8+ T cells [32, 33]. CD8+ T 

cells specific for persistent pathogens, such as cytomegalovirus (CMV) and Epstein-Barr 

virus (EBV), and non-persistent pathogens, such as influenza and adenovirus, may 

reactivate, thus suggesting that CD8+ T cell expansion is capable of occurring through 

antigen-independent mechanisms [34–36]. The exact cause of such “bystander activation” 

remains unclear.

Persistent exposure to HIV antigen during the natural course of HIV infection leads to the 

progressive dysfunction and “exhaustion” of virus-specific T cells. T cell exhaustion is 

characterized by altered differentiation, impaired function, and decreased proliferation 

[reviewed in [37]]. Of note, T cell exhaustion begins soon after peak HIV viremia and 

persists for the remainder of the infection [38, 39]. In the early stages of exhaustion, HIV-

specific T cells have an impaired ability to proliferate in response to antigen, as well as 

reduced expression of interleukin-2 (IL-2), interferon-γ (IFN-γ), tumor necrosis factor-α 
(TNF-α), chemokine ligand-4/macrophage inflammatory protein-1α (CCL4/MIP-1α) and 

the degranulation marker CD107a [40]. The upregulation of exhaustion marker programed 

death-1 (PD-1) on HIV-specific CD8+ T cells from viremic patients is associated with 

impaired cytokine production, proliferation, survival, and turnover [41–44]. Other markers 

of T cell exhaustion include co-inhibitory receptors LAG-3, CD160, and Tim-3 [45–47]. It 

was recently shown that while virus-specific CD8+ T cells are initially capable of cytolytic 

activity, the potential is significantly reduced after acute infection [48, 49]. Thus, while HIV-

specific CD8+ T cells appear to be necessary for the post-peak decline in viremia during the 

acute infection, persistent exposure to antigen and chronic inflammation results in an 

exhausted phenotype, in which cells are no longer capable of amounting an appropriate 

response against HIV and the infection remains.

Chronic infection

CD8+ T cells continue to exert some level of control over HIV and SIV replication after the 

acute phase of infection, as shown by studies in which depletion of CD8+ T cells during 

chronic SIV infection results in increased viral replication [50–52]. Additionally, viral 

escape mutants against CD8+ T cell responses continue to appear during the chronic phase 

of infection [53]. However, the combination of virus escape and progressive T cell 

dysfunction and exhaustion makes HIV− or SIV-specific CD8+ cells increasingly less able 

to successfully control virus replication [40, 54–59]. This loss of CD8+ T cell-mediated 

control of virus replication is associated with disease progression in chronically HIV-

infected individuals [41, 46]. Interestingly, continuous activation of CD8+ T cells in the 

absence of effective antiviral activity may lead to disease progression [60], as first suggested 

by the classical observation that the level of CD8+ T cells expressing the activation markers 

CD38 and HLA-DR are most closely associated with shorter patient survival than viral load 

or CD4+ T cell count [61].
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Natural control of HIV infection

It has long been recognized that a small group of HIV-infected individuals (<1% of the 

population) are capable of controlling HIV infection independent of ART. These individuals, 

termed elite controllers (EC) are able to maintain plasma viremia below the limit of 

detection of standard PCR assays in absence of ART . EC typically have stable CD4 counts 

without decline and progression to AIDS. Post-treatment controllers (PTC) are HIV-infected 

individuals who control virus below the limit of detection after interruption of long-term 

ART [62]. Intriguingly, the non-pathogenic phenotype of natural SIV infection in sooty 

mangabeys, a natural host species, is associated with relatively low CD8+ T cell responses to 

the virus [63, 64].

It is now understood that host factors, as opposed to viral factors, largely mediate control of 

HIV infection in EC and that CD8+ T cells play a prominent role in this phenomenon 

[reviewed in [65]]. In fact, depletion of CD8+ lymphocyte from controller rhesus macaques 

resulted in a transient increase in viremia [66]. Another study found that EC have very high 

levels of escape mutations, suggesting that CD8+ T cells put great selective pressure on the 

virus [67]. The identification of specific differences in host factors between chronic 

progressors and EC has defined potential targets for in vivo manipulation of HIV/SIV-

specific CD8+ T cell-specific responses to achieve better immunological control of the 

infection. Among these host factors a key role is played by specific MHC class I alleles 

whose presence is significantly more frequent in the EC population [49, 68–71]. 

Specifically, HLA-B*27/*57 EC possess HIV-specific CD8+ T cells restricted by these 

class-I molecules that throughout chronic infection continue to show in vitro proliferation, 

whereas the majority of HIV-specific CD8+ T cells restricted by other HLA alleles lose this 

proliferative capacity [72–74]. Proliferative capacity of CD8 T+ cells in EC is associated 

with the up-regulation of perforin and therefore associated with enhanced cytotoxic 

capabilities [72]. In addition, HIV-specific CD8+ T cells from EC synthesize greater 

amounts of cytotoxic granule components, thus increasing their ability to kill infected cells 

[75–77] and are found to exceptionally up-regulate T-bet expression, which increases the 

production of perforin and granzyme B [78, 79].

Of note, EC are not different from CP on the basis of the frequencies of HIV-specific CD8+ 

T cells in peripheral blood, the antigen specificity or breadth of this response, nor the 

differences in the functional avidity [32, 80–82]. Together this data strongly suggests that 

CD8+ T cells play an important role during natural control of HIV and SIV infection.

Cytolytic versus non-cytolytic activities of CD8+ T cells during HIV infection

Cytolytic activities

CD8+ T cells have long been characterized by their cytotoxic T lymphocyte (CTL) activity 

during viral infection. CTL activity is mediated via formation of TCR-dependent 

immunological synapses in an antigen-dependent manner. CD8+ T cells kill target cells 

through the secretion of the granule-bound cytolytic molecules perforin and granzyme [83–

85]. Granzymes are serine proteases that induce apoptosis by cleaving caspases [86, 87]. 

Perforin forms pores in the membrane of the cell, which also leads to apoptosis and allows 
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for delivery of granzyme [88, 89]. The balance between the transcription factors Eomes and 

T-bet seems to dictate the differentiation and CTL functional pathways of the cell [90–94]. 

Together these transcription factors regulate the differentiation and CTL effector function of 

CD8+ T cells [95–97]. While T-bet positively regulates perforin and granzyme B expression, 

as well as genes associated with effector function [78, 98], Eomes positively regulates genes 

associated the maintenance of memory CD8+ T cells [90, 95, 97, 99].

The specific contribution of CTL responses to the control of HIV infection remains 

incompletely understood. HIV-specific CD8+ T cells are able to suppress HIV replication in 
vitro by direct cytotoxicity as well as by secretion of soluble factors [100–102]. During the 

acute phase of HIV and SIV infections, the CD8+ T cell pool is highly activated and primed 

for strong cytotoxic effector activity, however, this capacity decreases in the chronic phase of 

infection [49]. HIV-specific CD8+ T cells lose their ability to upregulate perforin after the 

resolution of peak viremia, a characteristic that also coincides with reduced expression of T-

bet, but not of Eomes [49]. During chronic HIV infection, a T-bethiEomeshi population 

predominates the HIV-specific CD8+ T cell pool, exhibiting reduced differentiation, 

decreased functionality, enhanced exhaustion, and little to no expression of perforin [78, 92]. 

The loss of HIV-specific CD8+ T cell cytolytic function during chronic infection is thought 

to be a contributing factor to progressive HIV infection [75, 76, 103–105]. As mentioned 

above in describing the EC phenotype, control of viremia is associated with the ability of 

CD8+ T cells to proliferate and upregulate granzyme/perforin expression in response to in 
vitro antigen exposure [76]. In addition, it has also been shown that the ability of CD8+ T 

cells to upregulate perforin following in vitro stimulation correlates inversely with viral load 

[75]. Overall this complex set of experimental data suggests that CTL activity by CD8+ T 

cells is present and likely very important during the acute phase of HIV/SIV infection and in 

determining the relatively rare EC phenotype, while its role during chronic progressive 

infection is not clear and possibly much less important.

Non-cytotoxic activities

CD8+ T cells may suppress active HIV replication in vitro via non-cytolytic mechanisms 

that are related to the secretion of soluble factors [106–111]. Immunological factors able to 

suppress HIV/SIV replication include the β-chemokines CCL3, CCL4, and CCL5 (also 

known as MIP-1α, MIP-1β, and RANTES, respectively), which block the entry CCR5-

tropic viruses [102, 112–114]. In fact, characterization of CD8+ T cells with a MIP-1β 
expression profile has been identified as a correlate of virus control and inhibition [115–

117]. HIV/SIV-specific CD8+ T-cells also secret IFN-γ, which may play a role in the 

noncytolytic immune response, however, there is no demonstrable correlation between IFNγ 
expression and viral load, viral set point, viral clearance, or chronicity, with considerable 

variation between patients [118–120]. Despite a significant effort in the laboratory of Dr. Jay 

Levy, relatively little is known about the exact nature or specific identity of another secreted 

factor termed CD8+ Antiviral Factor (CAF) [121–123] that appears to suppress LTR-

mediated gene expression in CD4+ T cells [124]. CAF does not block viral entry, 

integration, or reverse transcription, nor is it MHC-restricted [122–125]. In addition, CAF is 

not lentivirus-specific as it was also shown to suppress promotors of other viruses [126] and 

it is not produced exclusively by CD8+ T cells, which led to the hypothesis that CAF is part 
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of the innate immune response [126, 127]. Of note, CAF lacks identity with IFN-α, IFN-β, 

TNF-α, IL-4, IL-6, and the β-chemokines [111, 121, 128, 129], and it remains possible that 

CAF is the activity of multiple factors [127]. The CD8+ T cell-specific noncytolytic 

mechanisms responsible for the suppression of HIV have yet to be fully understood. Studies 

have found evidence CD8+ T cells suppress replication by inhibiting viral transcription 

[130] and proviral gene expression[131, 132].

Strong support in favor of the hypothesis that non-cytolytic mechanisms of antiviral activity 

by CD8+ T cells are important in controlling HIV and SIV replication was provided by two 

independent studies in which the in vivo lifespan of productively infected cells was 

measured in CD8+ lymphocyte-depleted versus non-depleted SIV-infected RM [133, 134]. 

In both studies, SIV-infected RM were initiated on ART immediately after depletion of 

CD8+ T cells and the in vivo lifespan of productively infected cells was calculated based on 

the rate of viremia decline under ART using established mathematical models [135, 136]. 

Interestingly, both studies showed that the viral decay dynamics at the onset of ART was 

very similar between CD8+ lymphocyte-depleted RM and non-depleted animals, thus 

demonstrating that the relatively short in vivo lifespan of productively SIV-infected cells 

cannot be attributed to cytolytic activity of CD8+ T cells (Figure 1 A and B). Instead, the 

results of both studies are compatible with the hypothesis that non-cytolytic mechanisms that 

do not impact on the lifespan of a productively infected cell are involved in CD8+ T cell-

mediated suppression of SIV replication.

The main conclusion of these experiments was independently confirmed by three studies. In 

the first study, al Basatena et al., sough to determine if the consistent observation of viral 

escape proves that HIV/SIV-specific CD8+ T cells kill infected cells or could this also be the 

result of a non-cytolytic control [137]. To this end, these authors developed a 3D cellular 

automaton model of HIV infection that captures both spatial and temporal dynamics, and 

reproduces in vivo viral dynamics at the cellular and population level. Using this model, al 

Basatena et al. demonstrated that non-cytolytic effector mechanisms can select for viral 

escape variants. Intriguingly, those viral variants selected by non-cytolytic mechanisms of 

suppression have a slower outgrowth and a lower frequency as compared to those escaping 

from a cytolytic response, thus suggesting that non-cytolytic responses can provide more 

durable control of HIV/SIV replication. In the second study, Balamurali et al. investigated 

the mechanisms of virus-specific CD8+ T cell control during immune escape in vivo by 

using a RT-PCR assay that differentiates wild type (WT) virus from escape mutants (EM) 

and studying the dynamics of immune escape in early SHIV infection of pigtail macaques. 

These authors reasoned that for immune escape mediated by cytolysis, the death rate of WT 

infected cells would be faster than EM-infected cells. However, Balamurali et al. found no 

significant difference in the rate of decay of WT virus compared with EM virus, thus 

consistent with an epitope-specific, MHC class I-restricted, noncytolytic mechanism of 

CD8+ T cell control of both WT and EM variants of SHIV [138]. In the third study, Spits et 

al., tried to identify correlation(s) between markers of CD8+ T cell function that are 

associated with CTL activity ex vivo and the calculated in vivo lifespan of productively 

infected cell as calculated by measuring the kinetics of virus decline under ART. The 

apparently “negative” result that they obtained, i.e., that the lifespan of productively infected 

cells is similarly short even in patients with the arguably “worst” CTL responses, is 
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consistent with the hypothesis that non-cytolytic mechanisms are involved in the anti-HIV 

effect of CD8+ T cells [139].

In conclusion, a number of independent experimental investigations and mathematical 

analyses suggest that conventional CTL activity does not fully explain the antiviral role of 

CD8+ T cells in HIV/SIV infection. The possibility that the “CD8 effect” is due to 

alternative, non-cytolytic mechanisms of viral suppression is quite plausible. However, at 

this time it remains unclear what specific antiviral mechanisms are involved in this 

phenomenon, and what is the relative contribution of these non-cytolytic mechanisms to the 

control of HIV or SIV infection in vivo.

CD8+ T cells during ART-treated infection and HIV reservoir activity

ART does not restore CD8+ T cell compartment to pre-infection state

ART is unable to completely reverse the immune dysfunction bequeathed during the 

untreated infection, especially in the CD8+ T cell compartment. Although long-term ART 

results in some restoration of CD8+ T cell polyfunctionality and at least partial 

downregulation of activation and exhaustion markers, it does not fully restore CD8+ T cell 

cytotoxic and proliferative capabilities [41, 140–147]. Similarly, the bystander activation and 

expansion of the CD8+ T cell compartment does not return to normal despite virologic 

control [148, 149]. Interestingly, initiation of ART during early infection is associated with 

greater CD8+ T cell count reduction when compared to ART initiation during chronic 

infection [150, 151].

CD8+ T cells are unable to eliminate the HIV viral reservoir preserved during ART

A number of HIV cure strategies, collectively defined under the term “shock & kill” are 

based on the premise that, in ART-treated individuals, HIV/SIV-specific CD8+ T cells will 

recognize and eliminate virus-infected CD4+ T cells in which virus transcription and 

production has been reactivated by latency reversing agents [152]. While virus specific 

CD8+ T cells persist under ART, their number remains lower than prior to ART initiation, 

and the presence of virus immune escape variants as well as persistent dysfunction and/or 

exhaustion of HIV/SIV-specific CD8+ T cells may negatively affect their ability to clear the 

reservoir [53, 153–157]. Theoretically, during ART-treated HIV/SIV infections viral 

evolution ceases and, under this assumption, viral reservoirs preserve the pre-ART quasi-

species with their escape mutations [158]. Overtime the ability of CD8+ T cells to recognize 

viral reservoirs appears to decline at a rate dependent on the time between infection and 

ART initiation [159]. In fact, a recent study demonstrated that more than 98% of proviruses 

in patients treated during chronic infection harbored escape mutations in dominant epitopes 

that were unrecognizable to CD8+ T cells, but subdominant CD8+ T cell responses against 

non-escaped epitopes were still found in each of the patients [160]. These findings raise the 

possibility that the epitopes targeted by CD8+ T cells under ART are suboptimal [70, 161–

164]. Antigen sequestration has also been postulated to limit the ability of CD8+ T cells to 

clear the virus reservoir under ART. Most effector CD8+ T cells lack the proper chemokine 

receptors to enter the B cell follicle of the lymph node [165–169]. In the context of HIV, 

CD4+ follicular helper (TFH) T cells have been shown to be 30-fold more likely to harbor 
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latently-infected virus than peripheral CD4+ T cells [170], perhaps as a consequence of the 

inability of CD8+ T cell localization to the germinal center. Another point of discussion is 

whether and to what extent HIV latency per se poses as a barrier to CD8+ T cell-mediated 

eradication [159]. CD8+ T cells can detect even a single MHC-peptide complex on a cell 

surface [171] implying that even small levels of HIV translation can expose latently infected 

cells to CD8+ T cell killing. However, it is unclear how efficiently RNA transcripts that are 

often found in low levels in HIV/SIV-infected cells that persist under ART are translated – 

or, alternatively, their transcription is limited by retention in the nucleus, transcriptional 

interference, or “read-through” transcription [172] [173].

In conclusion, while CD8+ T cell recognition of the HIV viral reservoir is possible, 

especially in the setting of interventions that reactivate virus transcription and translation 

(i.e., latency reversing agents), the effectiveness of these CD8+ T cells may be limited by 

functional defects and/or residual exhaustion, presence of viral immune escape variants, and 

limited anatomical access to the latently-infected cell populations.

CD8+ T cells are required for maintenance of HIV viral reservoir suppression under ART

Recent evidence suggests that CD8+ T cells remain an essential component of virus control 

in ART-treated SIV-infected RMs [174]. In this study, depletion of CD8+ T cells from SIV+ 

ART-suppressed RM resulted in a rebound of viremia in 13 out 13 depleted animals and the 

reemergence of viral control was consistently coupled to the reconstitution of CD8+ T cells 

(Figure 1C). While in this study the depleting antibody used also depleted NK cells, there 

was no association between reconstitution of the NK cell pool and re-establishment of virus 

control. As part of this study, longitudinal viral sequencing by single-genome amplification 

(SGA) of SIVmac239 Env was performed on plasma samples collected during peak viremia 

(day 10 post-infection), immediately prior to ART initiation (day 56), and at the time of 

virus rebound after CD8+ lymphocyte depletion. Interestingly, the viral sequences derived 

from plasma following CD8+ lymphocyte depletion were similar to those obtained at the 

time of peak viremia and did not include in any case, the mutations that have emerged in the 

plasma by the time the SIV-infected RMs were started on ART. This observation supports 

the hypothesis that the source of the rebounding viremia after CD8+ lymphocyte depletion is 

the reactivation of virus transcription from a pool of long-lived, latently infected cells that 

were infected prior to ART initiation. In addition, the study found a significant direct 

correlation between the level of cell-associated SIV DNA in CD4+ T cells before CD8+ 

lymphocyte depletion and both the peak and the area under the curve of plasma viremia after 

depletion. This suggests that the size of the viral reservoir maintained under ART before 

CD8+ T cell depletion is a determinant of the ensuing amount of virus production.

In this study, as well as other experiments involving in vivo depletion of CD8+ lymphocytes, 

a modest increase in CD4+ T cell proliferation was observed likely as a result of 

homeostatic proliferation of T cells [50, 63, 174]. These observations raised the possibility 

that the observed increases in viral load were a passive consequence of this increased level 

of CD4+ T cell activation and proliferation, as opposed to the removal of a direct antiviral 

effect of CD8+ lymphocytes. To address this possibility, our group depleted CD4+ T cells 

from eight ART-treated SIV-infected RM and found that while the CD4+ T cells that 
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survived depletion underwent strong homeostatic proliferation (as measured by increased 

expression of the proliferation marker Ki67) and increased cellular activation (as measured 

by increased expression of the markers CD25 and HLA-DR), plasma viremia remained 

below the limit of detection in all animals and at all time points (Kumar et al., manuscript in 

preparation) (Figure 1D). Thus, the results of these studies of CD4+ T cell depletion fully 

support the hypothesis that CD8+ T cells play a previously unappreciated but important 

direct role in the control of virus production and/or replication in ART-treated SIV-infected 

RM. Further studies with longer follow-up will determine if this effect of CD8+ T 

lymphocytes is present only in the first several months of ART or persists for longer periods 

of time under treatment.

It is important to note that in the natural history of HIV and SIV infections both cytolytic 

(i.e., CTL) and non-cytolytic (i.e., block of virus entry via beta-chemokines and suppression 

of virus transcription) activities result in reduction of virus production and replication, thus 

acting synergistically in promoting better virus control, with the most obvious example 

represented by the EC phenotype. However, in the setting of ART treatment and in terms of 

impact on virus persistence and the size of the reservoir, CD8+ T cell mediated CTL activity 

and CD8+ T cell-mediated suppression of virus transcription may have divergent effects. In 

particular, while clearance of infected cells via CTL activity will result in a net decrease of 

the reservoir size, the active suppression of HIV or SIV transcription may paradoxically 

increase the reservoir size by actively promoting latency. This latter point is of practical 

importance if we think of ways to manipulate these antiviral roles of CD8+ T cells in ART-

treated HIV-infected individuals. In this regard, CTL activity could be enhanced by 

interventions such as therapeutic vaccinations and/or co-inhibitory blockade. On the other 

hand, CD8+ lymphocyte depletion could be viewed as a potentially very powerful way to 

reactivate latent HIV or SIV infection (i.e., latency reversing agent). Further studies aimed at 

better elucidating the relative in vivo contribution of cytolytic vs. non-cytolytic mechanisms 

of virus suppression under ART, as well as the molecular pathways that regulate the 

prevalence of either function of CD8+ T cells, will be crucial to design immune-based 

interventions that are best suited to reduce the reservoir size in ART-treated HIV-infected 

individuals.

Conclusion

It is well established from the numerous studies discussed in this review that CD8+ T cells 

are key players in the antiviral response to HIV and SIV during each stage of infection, 

including when the infection is treated with ART. Recent studies have shown that (i) CD8+ 

T cells are required for maintenance of viral suppression under ART, and (ii) that the 

longitudinal analysis of viral sequences is compatible with a CD8+ T cell-mediated 

suppression of virus production at the transcriptional level. These findings suggest that 

CD8+ T cells may paradoxically contribute to persistence of the HIV reservoir and thus pose 

as a barrier to HIV cure. It is conceivable that while CTL activity occurs early during 

infection and results in a net reduction of the reservoir size, CD8+ T cells are also capable of 

maintaining latency via non-cytolytic mechanisms that suppress HIV replication. However, 

the relative contributions of cytolytic and non-cytolytic activities of CD8+ T cells in 

suppressing virus production remain unknown. A deeper understanding of these activities 
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would contribute to the design of therapeutic vaccines capable of harnessing and boosting 

specific antiviral activities or downregulating others in the hopes of targeting and 

eliminating the HIV viral reservoir. Heightening the ability of CD8+ T cells to recognize and 

kill virally infected cells, especially during ART treatment, is a promising strategy to 

eliminate virally infected cells, including the viral reservoir. If the non-cytolytic activities of 

CD8+ T cells contribute to the establishment and persistence of the viral reservoir via 

inhibition of viral transcription or translation, strategies aimed at decreasing these capacities 

could also contribute to the elimination of virally infected cells.
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Figure 1: 
Summary HIV and SIV infection in chronic progressors and elite controllers. A. Summary 

of CD4+ and CD8+ T cell response in HIV and SIV chronic progressors. 1. Acute HIV 

infection induces activation and expansion of all CD8+ T cells, including virus-specific 

CD8+ T-cells. 2. After an initial lag period, 3. expanded CD8+ T cells control peak viremia 

and chronic infection follows. 4. HIV specific CD8+ T-cells become exhausted and 

contribute to disease progression during chronic infection. 5. Emergence of CD8 escape 

mutants indicating selective pressure by CD8+ T-cells. 6. Despite ART, CD8+ T-cell 

function is not fully restored. (B) Summary of CD4+ and CD8+ T cell response in elite 
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controller. Elite controllers have similar expansion of CD8+ T cells which leads to control of 

peak viremia and subsequent viral control and restoration of CD4+ T cells. 1. Specific MHC 

class I alleles are associated with viral control, indicating CD8 selective pressure. 2. HIV 

specific CD8+ T cells maintain high levels of polyfunctionality, proliferative capacity and 

maintenance of cytolytic potential throughout infection. Abbreviations: SIV, simian 

immunodeficiency virus; HIV, human immunodeficiency virus; ART, antiretroviral therapy; 

MHC, major histocompatibility class.
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Figure 2: 
Changes in viral load and T cell frequencies during CD8 and CD4 depletion studies in 

SIVmac239 infected, ART-treated rhesus macaques. The initiation of ART in the presence 

(A) or absence (B) of CD8+ T cells during SIV infection results in similar decay rates of 

plasma viremia. (C) Viral load increases upon CD8 depletion during short-term ART. (D) 
Depletion of CD4+ T cells after ART does not result in viral rebound. Key: green arrow 

represents CD8+ lymphocyte depletion and orange arrow represents CD4+ T cell depletion. 
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Abbreviations: SIV, simian immunodeficiency virus; CD, cluster of differentiation; ART, 

antiretroviral therapy; P.I., post-infection.
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Figure 3: 
Schematic representations of the association between CD8+ T cell frequency and SIV viral 

load. A. The initiation of ART in the absence or presence of CD8+ T cells during SIV 

infection results in similar decay rates of plasma viremia. B. Viral load increases when 

CD8+ T cells are absent during short-term ART. C. Viral load does not increase when CD4+ 

T cells are absent during short-term ART. Abbreviations: SIV: Simian immunodeficiency 

virus; CD: cluster of differentiation; ART: Antiretroviral therapy; P.I.: post-infection.
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Table 1:

Summary of noteworthy studies providing evidence of cytolytic and non-cytolytic antiviral activity of CD8+ T 

cells during HIV/SIV infection during different phases of infection, including treatment and natural control. 

Abbreviations: HIV: Human immunodeficiency virus; SIV: Simian immunodeficiency virus; PBMC: 

peripheral blood mononuclear cell; ART: Antiretroviral therapy; RM: Rhesus macaque; EC: Elite controller; 

CP: Chronic progressor; CTL: Cytotoxic T lymphocyte; CD: cluster of differentiation; IL: interleukin; IFN: 

interferon; TNF: tumor necrosis factor; CCL: chemokine (C-C motif) ligand; CCR: chemokine receptor; PD-1: 

programmed death-1; HLA: human leukocyte antigen; MIP: macrophage inflammatory protein ; CAF: CD8 

antiviral factor.

Phase Finding Evidence Reference

Acute infection CD8 T cells are required for the initial 
control of HIV viremia.

Depletion of CD8+ lymphocytes from RM at the time of 
SIV infection resulted in abrogation of post peak decline.

[26, 175]

After initial lag period, HIV-specific 
CD8+ T cells massively expand and 
differentiate at the time of peak viremia.

HIV-specific CD8+ T cells exhibit a delay in expansion 
and differentiation until peak viremia when compartment 
becomes fully expanded and differentiation in response to 
systemic proinflammatory cytokine burst, allowing for 
effective killing of productively-infected cells.

[176]

The emergence of HIV-specific CD8+ T 
cells is associated with partial control of 
acute infection.

Increasing frequency of precursor CD8+ T cells specific 
for HIV-1 gag, pol, and env viral proteins using PBMC 
from patients experiencing acute HIV infection was 
correlated with partial resolution of peak viremia.

[24, 25]

CD8+ T cells are capable of exerting 
significant selective pressure on the HIV 
viral genome.

Identification of the rapid appearance of specific escape 
mutations in HIV genome.

[29, 153]

Acute HIV infection induces massive 
activation and expansion of the entire 
CD8+ T cell compartment

CD8+ T cell frequencies increase during the course of 
infection in HIV+ individuals and do not return to normal.

[177]

Activation marker CD38 is up-regulated on Epstein Barr-, 
Cytomegalovirus- and influenza-specific CD8+ T cells 
during acute HIV infection, although activation was 
highest in HIV-specific cells.

[178]

HIV-specific CD8+ T cells represent less than 10% of the 
total CD8+ T cell pool expanded during the acute 
infection.

[32]

During the acute infection as high as 80%-90% of the 
entire CD8+ T cell compartment becomes activated.

[55]

CD8+ T cell expansion can occur 
through antigen-independent 
mechanisms.

Microbial products systemically translocated across the gut 
epithelium contribute to the chronic activation of CD8+ T 
cells.

[22]

Lipopolysaccharide and inactivated HIV activate 
monocyte-derived dendritic cells, which are capable of 
activating CD8+ T cells via transpresentation of IL-15. 
Therefore, proliferation and activation of the CD8+ T cell 
pool is initiated by cytokines, most notably IL-15.

[179]

HIV-specific CD8+ T cells become 
exhausted during the acute infection and 
do not recover.

HIV–specific CD8+ T cells proliferate rapidly upon 
encounter with cognate antigen in acute infection, but lose 
this capacity with ongoing viral replication.

[73]

HIV-specific CD8+ T cells provide a very early, robust, 
and highly activated effector response with immediate 
cytotoxic potential (as measured by perforin expression), 
but the ability is quickly lost after resolution of peak 
viremia.

[49]

After full differentiation and expansion, HIV-specific 
CD8+ T cells reach a hyperproliferation state that is “too 
strong for too long” and push them to terminally 
differentiated effector cells that contributes to exhaustion.

[176]
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Chronic infection CD8+ T cells contribute to control 
during chronic HIV infection.

CD8+ T cell depletion during chronic infection results in 
an increase in viremia that is not controlled until 
reconstitution of depleted cells.

[50-52]

Expanded CD8+ T cell population in 
chronically HIV-infected patients shows 
symptoms of immunosenescence.

HIV-specific CD8+ T cells lack of proliferative capability 
in response to cognate antigen (ex vivo), which could not 
be overcome by exogenous IL-2 or IL-15. These cells were 
associated with expression of CD57.

[46]

Ex vivo analysis of virus-specific CD8 T cells shows that 
HIV disease progression correlates with increased 
proportions of highly differentiated CD8+ T cells, which 
exhibit characteristics of replicative senescence: CD57 
expression, inability to proliferate in response to antigen, 
and shortened telomeres.

[55]

The HIV-specific CD8+ T cell 
compartment has a skewed 
differentiation pattern towards effector 
memory during chronic infection.

70% of HIV-specific CD8+ T cells were found to be 
CD45RA-CCR7-, in contrast to cytomegalovirus-specific 
CD8+ T cells where only 40% are CD45RA-CCR7-.

[180]

Expression of exhaustion markers on 
HIV-specific CD8+ T cells continues 
during chronic infection and contributes 
to disease progression.

Persistent antigen during chronic HIV infection contributes 
to the impairment of HIV-specific CD8+ T cells. HIV-
specific CD8+ T cells show significant upregulation of 
PD-1. Expression correlates positively with impaired 
function, viral load and inversely with CD4+ T cell count.

[41, 42, 44]

TIM-3 expression on CD8+ T cells correlates positively 
with viral load and inversely with CD4 counts during 
chronic HIV infection.

[140]

PD-1 expression on HIV-specific CD8+ 
T cells is correlated with decreased 
survival, proliferation, and cytokine 
expression.

Ex vivo anti-PD-L1 treatment of CD8+ T cells from HIV+ 
donors led to changes in the ability of the cells to survive, 
expand, and secrete cytokines.

[42]

HIV-specific CD8+ T cells exhibit 
reduced polyfunctionality during 
chronic infection.

HIV-specific CD8+ T cells from HIV+ donors exhibit 
decrease CD107, IFNγ, CCL4, IL-2, and TNFα 
expression after stimulation.

[40]

HIV-specific CD8+ T cells exhibit 
impaired cytolytic function during 
chronic infection

Perforin expression was significantly lower in HIV-specific 
CD8+ T cells compared to CMV-specific CD8+ T cells of 
the same donor.

[57]

CD8+ T cells secrete factors that are 
capable of suppressing replication of 
HIV through non-cytolytic mechanisms.

CD8+ T cells were found to release β-chemokines (CCL3, 
CCL4, and CCL5) with suppressive activities capable of 
blocking entry of M-tropic viruses.

[102, 112, 113]

Replication of HIV in latently infected, resting CD4+ T 
cell reservoir is effectively suppressed in ex vivo coculture 
by autologous CD8+ T cells in EC and ART-treated 
patients but not ART-naïve patients.

[114]

Identification of the characterization of CD8+ T cells with 
a MIP-1β expression profile as a correlate of virus control 
and inhibition.

[115, 116]

CAF suppresses LTR-mediated HIV gene expression in 
CD4+ T cells.

[124]

CD8+ T cells suppress replication by inhibiting viral 
transcription and proviral gene expression].

[130-132]

SIV-infected RM were initiated on ART in the absence or 
presence of CD8+ T cells. The rates of viral decay did not 
differ between the two groups, suggesting that CD8+ T 
cells do not decrease the lifespan of productively infected 
cells. Thus, the antiviral mechanism of CD8+ T cells may 
be non-cytolytic.

[133, 134]

Natural control CD8+ T cells are important during the 
control of SIV viral replication during 
RM controller infection.

Depletion of CD8+ lymphocytes in SIV controller RM 
resulted in a transient and significant increase in viremia 
and control was reestablished with the reconstitution of 
CD8+ T cells.

[66]
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HIV-specific CD8+ T cells from EC 
maintain high polyfunctionality.

HIV-specific CD8+ showed increase function via 
expression of 5 functional markers: CD107 
(degranulation), IFNγ, CCL4, IL-2, and TNFα.

[40]

HIV-specific CD8+ T cells from EC 
show better maintenance of cytolytic 
potential compared to CP.

HIV-specific CD8+ T cells of EC exhibit greater cytolytic 
capacity compared to CP. The strong ability of EC to kill 
HIV-infected CD4+ T cells was mediated by the delivery 
of granzyme B to target cells, an observation not congruent 
in CP.

[76]

During chronic infection, cytolytic potential is lost rapidly 
in most HIV-infected individuals, such that only around 
15% of HIV-specific CD8+ T cells express perforin, 
whereas around 40% express perforin in EC.

[75]

HIV-specific CD8+ T cells from EC 
have a higher proliferative capacity as 
compared to CP.

High proliferative capacity of HIV-specific CD8+ T cells 
EC is coupled to increases in perforin expression with 
relative absence of these functions in CP.

[72]

Host factors related to CD8+ T cells 
contribute to the control of HIV 
infection observed in EC.

CD8+ T cells restricted by certain protective alleles (HLA-
B27 and -B57) can resist replicative defects, which permits 
expansion and antiviral effector activities.

[74]

HIV-specific CD8+ T cells of EC have a 
higher functional recall memory than 
CP.

The expansion of CD8+ T cells producing IFNγ alone or 
in combination with IL-2 in response to gag peptides 
presented on monocyte-derived dendritic cells is limited in 
CP compared to EC. This was not observed by CD8+ cells 
in response to influenza, cytomegalovirus, and Epstein 
Barr virus.

[181]

HIV-specific CD8+ T cells put selective 
pressure on the virus during EC 
infection.

Sequencing of plasma viremia of EC shows a discordance 
between the genotypes of the plasma virus and provirus. 
Specifically, HLA-B*57-restricted Gag epitopes were 
present in plasma virus but rare in provirus.

[67]

Treated infection CD8+ T cells are required for the 
maintenance of viral suppression under 
ART.

Depletion of CD8+ lymphocytes from SIV+ RM during 
short-term ART results in a rebound of viremia.

[174]

HIV-specific CD8+ T cells decline in 
peripheral blood after the initiation of 
ART

The longitudinal responses to 95 HLA class I-restricted 
HIV epitopes were measured using intracellular staining in 
HIV+ patients beginning ART. A rapid decline in HIV-
specific CD8+ T cell response was observed upon 
initiation of ART. Discontinuation of ART resulted in a 
rapid increase in HIV-specific CD8+ T cells.

[149]

Dysfunction of HIV-specific CD8+ T 
cells is decreased, but not restored 
during ART.

In a longitudinal study of HIV-infected patients, ART 
initiation resulted in some restoration of cytokine 
secretion, increase of IL-7Rα and CD28 expression, and a 
decline of PD-1 on HIV-specific CD8+ T cells.

[147]

Defective HIV-specific CD8+ T cell polyfunctionality, 
proliferation, and cytotoxicity are not restored by ART

[182]

ART does not resolve CD8+ T cell 
compartment elevation.

ART does not restore ongoing elevation of CD8 counts 
despite normalized CD4 count, resulting in a persistently 
low CD4:CD8 ratio even during virological control. This 
phenotype is correlated with markers of T cell activation 
and innate immune active, immunosenescence, and serious 
non-AIDS events and mortality.

[183]

Early initiation of ART during HIV infection, not 
prolonged duration of ART, contributes to partial 
normalization of CD8+ T cell counts.

[150]

ART is able to partially reverse the 
exhaustion of virus-specific CD8+ T 
cells observed during chronic HIV 
infection.

ART-initiation reverses expression of PD-1 on HIV-
specific CD8+ T cells, reversing the functional impairment 
of these cells that had been caused by the constant 
presence of HIV antigen.

[145]

HIV-specific CD8+ T cells from ART-treated patients 
expressed significantly lower levels of TIM-3 compared 
with untreated patients and TIM-3 expression was 
positively correlated with viral load.

[144]
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