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ABSTRACT The mechanisms and consequences of defective interfering particle
(DIP) formation during influenza virus infection remain poorly understood. The de-
velopment of next-generation sequencing (NGS) technologies has made it possible
to identify large numbers of DIP-associated sequences, providing a powerful tool to
better understand their biological relevance. However, NGS approaches pose numer-
ous technical challenges, including the precise identification and mapping of dele-
tion junctions in the presence of frequent mutation and base-calling errors, and the
potential for numerous experimental and computational artifacts. Here, we detail an
Illumina-based sequencing framework and bioinformatics pipeline capable of gener-
ating highly accurate and reproducible profiles of DIP-associated junction sequences.
We use a combination of simulated and experimental control data sets to optimize
pipeline performance and demonstrate the absence of significant artifacts. Finally,
we use this optimized pipeline to reveal how the patterns of DIP-associated junction
formation differ between different strains and subtypes of influenza A and B viruses
and to demonstrate how these data can provide insight into mechanisms of DIP for-
mation. Overall, this work provides a detailed roadmap for high-resolution profiling
and analysis of DIP-associated sequences within influenza virus populations.

IMPORTANCE Influenza virus defective interfering particles (DIPs) that harbor inter-
nal deletions within their genomes occur naturally during infection in humans and
during cell culture. They have been hypothesized to influence the pathogenicity of
the virus; however, their specific function remains elusive. The accurate detection of
DIP-associated deletion junctions is crucial for understanding DIP biology but is
complicated by an array of technical issues that can bias or confound results. Here,
we demonstrate a combined experimental and computational framework for detect-
ing DIP-associated deletion junctions using next-generation sequencing (NGS). We
detail how to validate pipeline performance and provide the bioinformatics pipeline
for groups interested in using it. Using this optimized pipeline, we detect hundreds
of distinct deletion junctions generated during infection with a diverse panel of in-
fluenza viruses and use these data to test a long-standing hypothesis concerning
the molecular details of DIP formation.
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Influenza virus defective interfering particles (DIPs) were first described over 60 years
ago and are classically defined by their ability to interfere with the production of

wild-type virus (1, 2). This ability has been linked to the ability of defective interfering
(DI) RNAs to both outcompete wild-type (WT) genomic RNAs for resources and pack-
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aging into virions and to more potently stimulate the induction of antiviral immunity
through cytosolic RNA sensors (3–6). DIPs have also been implicated in influencing the
outcome of influenza virus infection in humans (7). The specific mechanisms and
broader functional consequences of DIP formation during influenza infection remain
poorly understood.

Influenza DIPs are characterized by the presence of large internal deletions in one
or more genome segments that disrupt essential open reading frames while retaining
the sequences required for replication and packaging (5). As such, the mapping of
DIP-associated deletions has helped to define the minimum sequences required for
genome replication and packaging (8, 9). These deletions are believed to result from a
poorly defined process by which the viral RNA-dependent RNA polymerase (RdRp)
ceases RNA polymerization at one site of the viral RNA template (donor site), only to
resume at another site downstream (acceptor site), resulting in a failure to copy an
internal stretch of the WT template (10). Until recently, the ability to characterize these
DIP-associated deletion junction sites (breakpoints) has been limited based on the need
to clone and Sanger sequence individual DIP-associated RNAs. As a result, the number
of individual DIP-associated RNA sequences that have been analyzed has been rela-
tively small, hindering efforts to define the factors that govern DIP deletion formation.

The advent of next-generation sequencing (NGS) has increased the number of
individual recombinant sequences that can be identified within a given sample by
orders of magnitude. However, the identification and analysis of DIP-associated RNAs
by NGS poses new challenges, including the successful alignment of junction-
containing (or junction-spanning) reads to the viral reference sequence, the precise
definition and localization of DIP-associated deletion breakpoints, and the differentia-
tion of true DIP deletion sequences from the artifactual recombinants that can form
during reverse transcription, PCR, and/or sequencing. Without careful optimization and
validation, these issues can easily compromise efforts to define the genetic profile of
DIP populations.

Here, we describe the development and validation of an Illumina-based sequencing
framework for the identification and analysis of influenza virus DIP-associated deletion
junctions. The bioinformatics pipeline combines the Bowtie 2 alignment algorithm with
the Viral Recombination Mapper (ViReMa) algorithm developed by Andrew Routh and
a collection of additional scripts for data processing and analysis (11, 12).

We used simulated NGS data sets and a panel of experimental control samples to
optimize and quantify the sensitivity, precision, and reproducibility of our pipeline.
Subsequently, we used the optimized pipeline to fine-tune the experimental protocol
from sample preparation to sequencing to better detect and map DIP-associated
deletions generated during experimental infection with a panel of influenza A (IAV) and
influenza B viruses (IBV). This work highlights the computational and experimental
controls needed for Illumina-based NGS studies of viral recombination and provides an
optimized, user-friendly sequencing and bioinformatics pipeline for the identification
and analysis of DIP-associated sequences. Higher-resolution analysis of these deletion
sequences can shed light on the specific molecular mechanisms of DIP formation, as
well as on how DIPs may affect the overall behavior of viral populations.

(This article was submitted to an online preprint archive [13].)

RESULTS
Overview of the pipeline. The sequencing framework we describe here encom-

passes sample preparation, sequencing, and data analysis (Fig. 1A). In brief, we gener-
ate 8-segment, full-length amplicons from viral samples and sequence them using the
Illumina MiSeq platform. Datasets are quality filtered and aligned to the viral reference
genome using Bowtie 2 in a conservative manner that disallows soft clipping. Thus,
reads containing deletion junctions fail to align and are fed into the ViReMa algorithm
to detect DIP-associated deletion junctions. To exclude short indels, we ignored all
deletions of 20 nucleotides (nt) or shorter. Finally, the identified junctions are mapped
to the viral genome and output as a matrix containing the segment name, junction
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start and end sites, and NGS read support that can easily be analyzed using additional
software tools. Below, we outline the approaches we have taken to optimize and
validate the various steps in the process.

Optimization of analysis pipeline using simulated data. All bioinformatics pipe-
lines have the potential to introduce artifacts and biases during data analysis. Therefore,
we first aimed to optimize the sensitivity and precision of our bioinformatics pipeline
using simulated NGS data sets where we absolutely know the identities and frequencies
of all DIP-associated deletion sequences present. IAV DIP-associated deletions can be
found in nearly all (if not all) genome segments at a wide range of frequencies (10, 14).
To mimic this natural variation, we used MetaSim to generate a panel of Illumina MiSeq-
based NGS simulated data sets that contain DIP-associated deletions in all genome seg-
ments at various frequencies, locations, and deletion sizes (see Table 1, Fig. 2). We used a

FIG 1 Overview of sequencing/bioinformatics framework. (A) Flowchart outlining the steps of the sequencing pipeline. QC,
quality control. (B) Simple depiction of the possible types of NGS reads in relation to a deletion junction within a sample.
Arrows represent individual NGS reads, and the black circle denotes the location of a deletion junction. R1, reads derived from
a deletion-containing sequence that span the deletion junction; R2, reads derived from a deletion-containing sequence that
do not span the deletion junction; R3, reads derived from sequences that do not contain deletions.

TABLE 1 Description of the simulated data sets used in this study

Data set namea

Total junction
count (n)

Total no. of junction
NGS reads

Total no. of WT NGS
individual reads

Junction count (n)

PB2 PB1 PA HA NP NA M NS

A/Cal07-400 400 1,838,898 116,548 50 50 50 50 50 50 50 50
A/Cal07-200 200 177,4920 225,080 25 25 25 25 25 25 25 25
A/Cal07-0 0 0 2,000,000 0 0 0 0 0 0 0 0
aThe total number of 2 � 250-bp paired-end reads for each data set was �1 million, with a total of 2 million individual reads.
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simple Perl script to randomly generate deletion junctions within the terminal �600 nt of
A/California/07/09 (A/Cal07), since these regions have been shown to be hotspots for
DIP-associated deletions (9, 10, 15). We also generated a negative-control data set that lacks
deletions to quantify the occurrence of false positives generated by the pipeline. Critically,
we introduced a nucleotide substitution frequency of �1% into these data sets, based on
the published Illumina MiSeq empirical error model (16, 17). Each data set comprised
�1million 2 � 250-nt paired-end reads, mirroring the read depth that we expect per
sample on a typical sequencing run.

Optimization of alignment. We first optimized the filtering of reads that contain
deletion junctions (Fig. 1B, R1) from those that do not include junctions (Fig. 1B, R2 and
R3). To do this, we aligned all reads to the WT reference genome using Bowtie 2. Reads
that successfully align should not contain deletion junctions and are saved for further
analysis, while reads that fail to align are fed into the ViReMa algorithm. The perfor-
mance of this alignment step is highly dependent upon the mismatch penalty score
that is used during alignment. The penalty score setting determines the number of
mismatches and/or gaps that are tolerated within an alignment. If penalties are too
stringent, reads with random mutations or base-calling errors will fail to align and be
sent to ViReMa, increasing both the chances of false positives and the total computa-
tional time per sample; if they are too lenient, true junction-spanning reads will
successfully align and be excluded from downstream analysis.

We used a junction-rich simulated data set (A/Cal07-400) to test the effects of
various alignment penalty scores on the output of ViReMa (Fig. 3A). We observed that
a penalty score of 0.3 minimized the number of unaligned reads (and thus the potential
for false positives) without diminishing the number of junction-spanning reads de-
tected. This value was used for all subsequent analysis.

Optimization of ViReMa operation. We next optimized the sensitivity and preci-
sion with which the pipeline detects deletion junctions. The ability of ViReMa to
accurately map true junction-containing reads is affected by three factors. The first is
the method the algorithm uses to identify breakpoints. ViReMa extracts and aligns a
seed sequence of 20 to 30 nt (the default value of 25 was used in this study) from the
beginning of each read and begins aligning the downstream nucleotides. If at any point
the downstream alignment fails (as would be the case for a deletion breakpoint),
ViReMa generates a new seed sequence starting from that location for realignment.
Thus, breakpoints cannot be detected if they occur within the terminal 25 nt of a read.

The second factor is the presence of short direct repeats adjacent to the junction
site. These repeats result in a situation where multiple potential breakpoints can give
rise to the same final sequence, making precise definition of the true breakpoints

FIG 2 Simulated data set features. (A) Read support numbers for the individual deletion junctions in the
indicated data sets. (B) The deletion sizes of all junctions in the A/Cal07-200 data set. In A and B, each
dot represents a unique junction.
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impossible (Fig. 4). ViReMa deals with these “fuzzy” regions through the parameter
“Defuzz,” which can be set to report the junction either to the 5= end, 3= end or to the
middle of the ambiguous region. For the sake of consistency, we pushed all fuzzy
junctions toward the 3= end of the ambiguous region (not the 3= end of the entire read).
The effects of direct repeats on breakpoint mapping are impossible to avoid and vary
somewhat between influenza genome segments. Importantly, while this effect reduces
the precision of breakpoint mapping, it does not affect the ability of the pipeline to
determine the actual sequences of DIP-associated RNAs.

The third factor is the potential for base-calling errors or mutations to result in
erroneous junction mapping. Even though reported junctions in this category are
derived from real junctions, they can be viewed as false positives in that they are
reported as distinct junctions that do not actually exist in the viral population.

Altogether, these three factors set a ceiling on the maximum number of deletion
junctions that can be accurately detected and mapped. Using our simulated data sets,

FIG 3 Optimization of bioinformatics pipeline using simulated data. (A) Quantification of the effects of various Bowtie 2 penalty scores
on the number of junction spanning reads detected by ViReMa in the A/Cal07-400 simulated data set (dashed line represents the actual
number of junction-spanning reads present in the data set). The percentages of reads that aligned to reference genome (purple) and failed
to align (green) are also shown for each penalty score. (B) The effects of ViReMa –X and –N parameters on the percentage of
junction-spanning reads present in the simulated data set that were successfully detected. The dashed line shows the maximum
theoretical sensitivity (�81.5%) based on the ViReMa seed length of 25 nt. (C) The effects of ViReMa –X and –N parameters on the number
of accurately (green) and inaccurately mapped (purple) deletion junctions reported by the pipeline using the A/Cal07-200 simulated data
set. The maximum possible number of accurate junctions and the minimum number of inaccurate junctions (resulting from junctions
adjacent to direct repeat sequences) are shown for comparison. (D) Effects of various minimum read support cutoffs (RSCs) on junction
detection. Analysis performed on the A/Cal07-200 simulated data set using N1X8 ViReMa values.
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we knew how many deletion junctions actually existed, exactly where they were
located, and whether or not they were adjacent to direct repeats (see Materials and
Methods) that could result in incorrect mapping. This allowed us to systematically
optimize the sensitivity and precision of the software pipeline.

We tested how various ViReMa operating parameters affected both junction-
spanning read detection and actual junction reporting. We used the A/Cal07-200 data
set to challenge ViReMa across a range of –N parameter (number of mismatches
allowed) and –X parameter (mismatch distance from the putative junction location)
values. We first asked how various –N and –X parameters influenced the total number
of junction-spanning reads detected (Fig. 3B). We found that using N � 0 (–X is
irrelevant at this condition) significantly decreased the number of junction-spanning
reads detected compared with nonzero –N and –X values. We next asked how increas-
ing the –N and –X values affected the number of accurately and inaccurately mapped
junctions reported (Fig. 3C). We observed a clear correlation between the –X parameter
and junction-mapping precision, as increasing the –X value decreased the number of
inaccurately mapped junctions. Overall, we found that using N � 1 and X � 8 reduced
inaccurate junction mapping to the minimum amount possible, given the occurrence
of direct repeats adjacent to 23.5% (47 of 200) of junctions in the data set.

We next asked whether setting a minimum read support cutoff (RSC) to report a
junction affected the numbers of both accurate and inaccurate junctions that the
pipeline identified. Requiring that a given junction be represented within a minimum
number of reads can decrease the number of erroneously mapped junctions arising
from base-calling errors but could also result in some true junctions being lost due to
insufficient read coverage. We aligned our simulated A/Cal07-200 data set with Bowtie
2 and used the resulting unaligned reads to challenge ViReMa using different RSC
values (Fig. 3D). We found that the number of true junctions reported by the pipeline
was very close to the theoretical maximum, with minimal dropoff across the range
of RSCs tested. In contrast, we observed that the number of inaccurately reported
junctions was highly sensitive to the RSC value used. An RSC of �30 was needed to
lower the number of inaccurately reported junctions to the minimal limit (determined
by the number of “fuzzy” junctions with adjacent direct repeats in the data set).
Together, these data highlight the importance of optimizing RSC values and the

FIG 4 Illustration of a “fuzzy” junction caused by an adjacent direct repeat. The black letters represent the sequence where the
polymerase detaches (donor site), and the gray letters represent the sequence where polymerase reinitiates (acceptor site).
The arrows represent the actual path of the polymerase, and the underlined letters denote the direct repeat sequence. The
resulting DIP-associated sequences are represented by the black and gray letters to highlight the donor and acceptor sites,
respectively. The junction sites reported by ViReMa are at the bottom and use the following nomenclature: DonorSite_Ac-
ceptorSite. Note that ViReMa was adjusted to push the junction site toward the 3= site of the direct repeat. The left side
illustrates a situation where no direct repeats are present and, as a result, ViReMa reports the correct junction. On the right,
a situation where a direct repeat of 2 nucleotides is present, resulting in ambiguity. In this case, ViReMa pushes the junction
toward the 3= end of the repeat and incorrectly reports the junction as 5 to 7= (5_7=). Shown are three possible paths for the
polymerase that yield different junction locations with the same sequence. In all cases, the junction will be reported as 5_7=.
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ViReMa –N and –X parameters for maximizing the sensitivity of junction detection while
minimizing the number of false positives. We set our default values at an RSC of �30,
an –N of 1, and an –X of 8 for the subsequent analysis.

Validation of sequencing pipeline. After optimizing the bioinformatics compo-
nent of our pipeline using simulated data sets, we examined the ability of the pipeline
to detect DIP-associated deletions within complex viral populations from experimental
samples. Our overall strategy was based on the universal, 8-segment reverse
transcription-PCR (RT-PCR) approach pioneered by Zhou et al. (18). Critically, there are
a number of steps among the library preparation and sequencing steps that have the
potential to introduce artifacts that can compromise junction detection and analysis. In
particular, we were concerned about the potential for recombination during reverse
transcription, PCR, and/or sequencing to generate junctions that will be called by the
pipeline (19, 20). To address this, we prepared several control sample libraries, se-
quenced them on the MiSeq platform, and ran the results through our optimized
pipeline.

To quantify generation of false positives during the PCR and/or sequencing steps,
we constructed libraries without using actual viral RNA or reverse transcriptase. To do
this, we generated an equimolar mixture of full-length PCR amplicons from each of the
eight IAV genome segments, using reverse genetics plasmids encoding the gene
segments from A/Puerto Rico/8/1934 (A/PR8) as the templates. These amplicons were
gel purified to ensure correct, full-length size, and then used as the templates for
the universal amplification PCR and subsequent library preparation. Our analysis pipe-
line detected no deletion junctions in this control, indicating that none of the steps in
our pipeline from PCR onwards were significant sources of false-positive signals.

We next sequenced a recombinant A/Cal07 stock that was grown under low-
multiplicity-of-infection (MOI) conditions to minimize the frequency of DIPs (21). We
performed two independent RNA extractions and reverse transcription reactions on this
stock to serve as technical replicates (named Par1 and Par2). ViReMa detected 6 and 7
DIP-associated deletion junctions from Par1 and Par2, respectively, with junction-spanning
reads representing �0.1 to 0.2% of the total reads (Fig. 5A). The majority of these reads
were derived from a single shared deletion junction in hemagglutinin (HA) (615_1132_HA,
where the nomenclature is [5= junction position]_[3= junction position]_[gene segment]).
On the other hand, 4 other DIP-associated junctions were shared between replicates, each

FIG 5 Reverse transcription is not a significant source of deletions. We performed two independent RNA extractions, RT
reactions, PCR amplifications, and library preparations from a single recombinant A/Cal07 working stock grown at a low MOI
(Par1 and Par2). Gray blocks represent deletions with nonzero read support that fell below our read support cutoff (RSC), and
white blocks denote deletions that were not detected. (A) Comparison of deletion junctions detected in Par1 and Par2 samples.
(B) Comparison of HA segment junctions detected in two libraries generated from independent RT reactions using two
different RT enzymes, along with a library generated from in vitro T7-transcribed viral RNA.
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with low NGS read depth (ranging between 19 and 94). Two unshared junctions in Par1 and
one in Par2 were actually reported in both replicates but failed to reach the level of
detection in one replicate.

The significant overlap between the specific junctions that were reported from the
2 replicates suggested that these junctions were produced by the viral polymerase (and
were thus bona fide DIP-associated sequences) rather than by the reverse transcriptase.
However, the generation of the same junction in independent reverse transcriptase (RT)
reactions could also indicate the existence of strong hotspots for RT recombination. To
more directly address the potential contribution of RT-derived recombinants, we
performed two independent experiments. First, we compared the junctions detected in
HA segment libraries generated from Par 1 using two different RT enzymes, Invitrogen
Superscript III and Agilent AccuScript. Second, we performed in vitro transcription of a
plasmid-derived A/Cal07 HA segment using T7 RNA polymerase, which then was used
as a template for RT-PCR to produce the amplicon library for sequencing. The IAV
polymerase was not involved in this control; thus, any deletions detected would have
been generated by T7 polymerase or the RT enzyme.

The junctions reported from libraries generated by the two RT enzymes had
significant overlap and were both dominated by 615_1132_HA (Fig. 5B). In contrast, we
detected none of the Par1-derived junctions in the library generated from T7-
transcribed HA (Fig. 5B). Although the read depth coverage was comparable to Par1,
615_1132_HA was completely absent, and the 3 junctions that were detected had
minimal read support and were not seen in virus-derived libraries. Together, these
results suggest that the formation of deletion junctions during the reverse transcription
reaction is rare and that the Par1-derived junctions we observed are most likely derived
from true DIPs present within our viral stock, despite the stock having been prepared
at a low MOI. This highlights the difficulty in producing a completely DIP-free virus
preparation.

Generation of DIP-enriched populations through high-MOI passage. To test the
ability of the pipeline to detect real DIP-associated RNAs, we enriched for DIPs through
serial undiluted passage of A/Cal07 in Madin-Darby canine kidney (MDCK) cells. We
confirmed the presence of DIPs by amplifying full-length genomic cDNA at each
passage and examining the size distribution of PCR products by gel electrophoresis
(Fig. 6A), as previously described (21). The gradual disappearance of the polymerase
segments, which are thought to form the majority of DIPs, and the appearance of a
smear below the shortest IAV segment (NS, �0.9 kb) were consistent with the accu-
mulation of DIPs over successive passages. Based on these results, we picked passage
1 (P1), P3, and P6 as representative samples for sequencing.

We further confirmed the presence of DIPs by plotting the read coverage of the
aligned reads from passages 1, 3, and 6 (Fig. 6B). These coverage plots clearly reveal the

FIG 6 Generation of DIP-rich populations through high-MOI passage. A/Cal07 was serially passaged 6 times (P1 to P6) in MDCK cells at a sustained high MOI.
(A) PCR products from the indicated A/Cal07 populations following 8-segment whole-genome amplification, visualized on a 1% agarose gel. The accumulation
of deletion junctions is reflected by the disappearance of the polymerase segments (�2.3 kb) and the appearance of a smear below the NS segment (�0.9 kb)
ranging from �0.3 to 0.8 kb. (B) Coverage depth of aligned reads from the indicated passages for PB2 and NS genome segments. The coverage was normalized
against the read coverage of the parental sample (Par1). (C) Fold increase in the number of deletion junctions (left y axis) and total read support for those
junctions (right y axis) over the parental sample (Par1).
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characteristic pattern of DIP-rich populations, with a much lower depth of read align-
ment in the middle portion of the segment than those in the termini. As expected, the
number of DIP-associated deletion junctions detected by the pipeline also increased
across passages, reaching the highest level at passage 6 (Fig. 6C). To confirm that these
junction-containing sequences were derived from virion rather than cellular RNA, we
measured the number of reads that aligned to the host (canine) genome in our
samples. We found very few reads derived from the canine genome in all the passages,
compared with about 40% of the reads from RNA extracted from infected cells (data
not shown).

Optimization of minimum read support cutoffs. Our experiments using simulated
data sets revealed the importance of setting minimal RSCs for maximizing the accuracy
of pipeline performance and suggested that the optimal RSC may differ between data
sets. We next attempted to optimize RSC values for our experimental data set, for which
we did not actually know the precise location and number of junctions present in the
population (as we did with our simulated data sets). To quantify precision in junction
detection for our experimental data set, we assumed that base-calling errors and
mutations that result in inaccurate junction reporting would be stochastic and thus
read support for these inaccurate junctions would be highly variable between technical
replicates. In contrast, read support for real junctions should be consistent between
replicates.

We assessed the effects of various RSC values on the degree of correlation between
junctions identified in two technical replicates generated from the same passage 6
population (hereinafter, L1-P6-Rep1 and L1-P6-Rep2, where L refers to lineage, P to
passage number, and Rep to technical replicate). We varied the RSC values from 1 to 50
for each individual genome segment and examined the effect on the number of
reported junctions (Fig. 7). We observed a similar pattern to that observed for our
simulated data, where raising the RSC to 10 or higher resulted in a large dropoff in the
number of reported junctions. We next determined the RSC value that yielded the
highest degree of correlation between the two replicates. We identified the following
distinct optimal RSC cutoff values for each segment: 20, 20, 30, 30, and 15 for PB2, PB1,
PA, HA, and neuraminidase (NA), respectively. The average of these values was used as

FIG 7 Determination of optimal read support cutoffs for experimental data. Plots showing the numbers of deletion junctions (left y axis) reported in the
indicated genome segments for two technical replicates (L1-P6-Rep1 and L1-P6-Rep2) across various RSC values. Black dots represent the results of Spearman
correlation tests between the replicates at each RSC condition (right y axis). Blue dots indicate the point with the highest degree of correlation and minimum
decrease in junction count for each genome segment.
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an RSC for the remaining segments, for which not enough junctions were detected to
perform the correlation test (see below).

We do not expect these values to be universal, as they are likely influenced by
a number of factors that will vary between individual sequencing runs. Also, for
different applications, it may be beneficial to lower the RSC to improve detection
sensitivity at the cost of precision. Thus, we suggest running two technical repli-
cates with each NGS run to establish optimal per-segment RSC values for that run.
It is also worth mentioning that we removed reads with identical sequences
(duplicates) using the “dedup” option in ViReMa because there is no possible way
to define the source of duplication (e.g., PCR duplicates versus identical reads that
occur by chance), and we wanted to minimize the influence of PCR biasing. The
presence or absence of PCR duplicates will likely change the optimal RSC values.
Finally, read depth was highly consistent between samples within our individual
sequencing runs. In situations where this is not the case, RSCs may need to be
normalized to per-sample sequencing depth.

Effect of various template inputs on pipeline performance. We next asked
whether the amount of cDNA template that goes into the library preparation affects the
sensitivity and/or stochasticity of junction detection by the pipeline. We serially diluted
both the amount of viral RNA template used in the RT reaction and the amount of cDNA
template used in the PCR and compared pipeline outputs from the DIP-rich L1-P6-Rep1
population. We first tested the correlation between detected DIP-associated junctions
at a limited number of dilutions ranging from 1:3 to 1:15. We observed that the
correlation of read support values between specific junctions across dilutions was more
consistent when cDNA was diluted, rather than RNA, suggesting that RNA dilution may
increase the stochasticity of downstream PCR amplification (Fig. 8A).

Based on this, we performed whole-genome PCR using a dilution series of L1-P6-
Rep1-derived cDNAs (spanning roughly 4 � 108 to 4 � 106 nucleoprotein [NP] genome
equivalents per PCR) as the template (Fig. 8B). We observed that there is an optimal
amount of input cDNA template for maximizing junction detection. Diluting the input
cDNA 1:120 (corresponding to �4 � 106 NP genome equivalents) increased the
number of detected junctions by more than 4-fold compared with that with undiluted
input. Further dilution of input template beyond 1:120 resulted in a decrease in
sensitivity. Importantly, dilution across the range tested did not result in a failure to
detect any of the junctions reported in the undiluted sample. We also observed that the

FIG 8 Effects of viral template input on the detection of DIP-associated junctions. We serially diluted RNA or cDNA generated from the L1-P6-Rep1 sample and
compared sequencing results between libraries generated with these dilutions as the templates. (A) Serial dilutions (1:3 to 1:15) was carried out on either the
RNA or cDNA of the L1-P6-Rep1 sample, and a correlation test between the detected DIP-associated junctions was performed. (B) For each dilution, the total
number of detected junctions (purple) is shown, along with the number of specific junctions that were also detected in the undiluted sample (gray). The copy
number of viral cDNA molecules included in downstream PCR and library preparation for each dilution was determined by RT-qPCR (green; right y axis). GE,
gene equivalent. (C) Read support values for all deletion junctions common across the diluted (at the cDNA level) and undiluted samples were normalized to
the total number of deletion junction-spanning reads for each sample and used to perform a Spearman correlation between all pairs of samples using the R
cor function.
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correlation of read support values between specific junctions across dilutions tracked
closely with the sensitivity (Fig. 8C). Together, these observations indicate that optimi-
zation of the cDNA template input amount can significantly improve the sensitivity of
DIP-associated junction detection.

Reproducibility of pipeline performance. Multiple steps in the combined exper-

imental/computational pipeline could introduce stochasticity into the pipeline perfor-
mance, thus diminishing overall consistency and reproducibility of output. To examine
the reproducibility of our pipeline’s performance, we sequenced two separate extrac-
tions of a single P6 population (L1-P6-Rep1 and L1-P6-Rep2) and compared the pipeline
outputs between the two replicates. We found that the normalized read support values
of individual junctions were highly correlated between the two replicate samples
regardless of whether the replicates were sequenced on the same MiSeq flow cell
(Spearman’s R � 0.92) or separate ones (Spearman’s R � 0.91). Thus, the combined
steps from RNA extraction to sequence analysis introduce minimal noise into the
pipeline output, and pipeline performance is highly reproducible between experi-
ments.

Commonalities and differences in DIP formation between IAV and IBV sub-
types and strains. After optimizing the pipeline, we used it to examine the patterns of

DIP formation across diverse strains of IAV and IBV. We serially passaged A/Perth/16/
2009 (A/Perth09; seasonal H3N2), A/California/07/2009 (A/Cal07; seasonal H1N1),
A/New Caledonia/1999 (A/NC99; seasonal H1N1), and B/Lee/1940 (B/Lee; lab-adapted
IBV) at a high MOI in duplicate independent lineages (for the sake of consistency, we
performed a new A/Cal07 passage series in parallel with the other viruses rather than
using samples from the passage series shown in Fig. 4). For each virus, we assessed the
presence of DIPs across passages by 8-segment PCR and gel electrophoresis and
sequenced 2 DIP-enriched passages from both passage lineages after normalizing virus
input amounts across all samples based on Fig. 8. To empirically determine optimal
RSCs (as in Fig. 7), we sequenced two technical replicates of a single population for
each virus.

For each virus strain, we detected hundreds of distinct deletion junctions spread
across the individual genome segments. When we compared the repertoires of distinct
junctions between the two independent passage lineages for each strain, we observed
very little overlap, suggesting that most of the junctions we observed were generated
de novo during passage and that there is a substantial degree of stochasticity in the
deletion generation process (Fig. 9A). The total number of unique junctions decreased
between early and late passages for all viruses except B/Lee, consistent with compe-
tition between DIPs during passage (data not shown).

Despite variation in the specific locations of individual junctions that arose in
replicate lineages, the overall distribution of unique junctions across genome segments
was highly reproducible between lineages (Fig. 9B). Comparison between strains
revealed both common and strain-dependent patterns. For all IAV strains tested, the
majority of DIP-associated deletions occurred in the three polymerase genes, mirroring
previous studies, while the NP, matrix (M), and NS segments were almost entirely
deletion-free. In contrast, the occurrence of deletions within the HA and NA segments
varied significantly between strains: A/NC99 had no detectable junctions in these
segments, while A/Cal07 had dozens of deletions in both HA and NA. B/Lee differed
significantly from the IAV strains in that (i) there were relatively fewer unique junctions
in the polymerase segments compared with the NA segment, and (ii) there were
numerous deletion junctions detected in the M segment. Together, these results
indicate clear virus strain and type differences in patterns of DIP formation within
individual genome segments.

While the precise locations of deletion junctions varied significantly, plotting indi-
vidual junction locations within the genome segments revealed that they were con-
fined within clear hotspots toward the termini of the segments (with a few exceptions)
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(Fig. 9C). This suggests that while the specific nucleotide locations of deletion break-
points may be highly stochastic, the overall contours of where they form in the context
of the genome segment are highly defined and nonrandom.

Lack of association between direct repeats and junction formation. Direct
repeat sequences (detailed in Fig. 4) are common across the IAV genome and have
previously been hypothesized to contribute to DIP-associated deletion formation by
promoting viral polymerase slippage (10, 15). We leveraged the large number of
DIP-associated deletion junctions that we identified in this study to test this hypothesis.
We asked whether the deletion junctions in the DIP-enriched sample L1-P6-Rep1 were
more frequently found adjacent to direct repeats than would be expected if the
junctions were located randomly in the viral genome. We compared the frequency of
deletion junctions associated with direct repeats between the L1-P6-Rep1 and L2-P6
populations, i.e., biological replicates derived from two independent lineages (where all
deletions are formed by the viral RdRp) and the A/Cal07-200 simulated data set, where
all deletions are randomly localized (Fig. 10). The frequency of direct repeats of various
lengths at junction sites in the real viral populations was not significantly different than
that seen in the simulated data, indicating that direct repeat sequences are not
enriched at DIP-associated junctions and arguing against a significant role for direct
repeats in DIP formation.

FIG 9 Identification of DIP-associated junctions in different influenza types, subtypes, and strains following high-MOI passage. Each virus was serially passaged
in MDCK cells at a high MOI in two independent, parallel lineages (L1 and L2). The earliest passages that showed high accumulation of DIPs (based on gel
analysis shown in Fig. S6A) were picked for NGS. (A) Venn diagrams showing the numbers of shared versus unique DIP-associated junctions between the two
passage lineages for each virus. (B) The numbers of distinct junctions detected within each genome segment for both passage lineages of the indicated viruses.
(C) Parallel coordinate diagrams showing the specific locations of deletion junctions found in the PB1 and PA segments of lineage 1 of the indicated viruses.
Each individual junction is represented by a black line that connects the donor and acceptor sites of the breakpoint. Data in panels A to C are all placed below
the relevant virus strain labels at the top of the figure.
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DISCUSSION

Sensitive and accurate detection of DIP-associated sequences within viral popula-
tions is critical for defining the causes and consequences of DIP formation during
influenza virus infection. Here, we outline a pipeline to detect DIP-associated junctions
within viral populations using Illumina-based short read sequencing, validate its per-
formance using a combination of simulated and experimental control data sets, and
use this pipeline to reveal variation in patterns of DIP formation across viral strains and
types.

Our primary goal was to develop and optimize a reasonably simple and straight-
forward sequencing framework that accounts for the potential artifacts that can
potentially confound NGS-based DIP detection efforts. We chose the Illumina sequenc-
ing platform because it is widely available, easy to use, and conducive to sample
multiplexing, and because it has a relatively low rate of base-calling errors. One concern
that we had initially was that recombination during reverse transcription, PCR, or
sequencing might make identification of bona fide DIP-associated junctions a chal-
lenge. Two recently developed technologies, CirSeq and ClickSeq, largely eliminate this
issue, but they also significantly increase the amount of labor involved in library
preparation (22, 23). We observed that the occurrence of nonviral recombination that
occurs during our library preparation and sequencing procedures was vanishingly small
and can effectively be ignored. Thus, while both CirSeq and ClickSeq are enormously
useful in certain circumstances, our data indicate that such methods are not required
to generate highly accurate and sensitive profiles of influenza virus DIPs.

We chose ViReMa to identify deletion breakpoints because it is the only published
algorithm specifically designed to identify viral recombination junction locations while
explicitly accounting for the high error rates inherent in RNA virus replication and NGS.
Previously published studies have used different splicing aligners, such as TopHat (7),
or alternative packages, like CLC bio Genomics Workbench (24) or MUMmer (15), to
identify junctions. Although these methods have generated useful data that has
contributed significantly to efforts to dissect DIP biology, each has significant limita-
tions that can bias (due to a preference for splice donor/acceptor sequences) or reduce
the sensitivity of junction detection (due to high read support requirements for
deletion calling or the need to map specific breakpoints by hand).

A significant shortcoming of the method we detail here is that the measured read
support for individual deletion junctions does not necessarily reflect the actual fre-
quencies of these deletions within the viral population. This is due to biasing of PCR
amplification toward shorter products, as well as to the uneven distribution of read
coverage across the viral genome. For situations where the accurate measurement of

FIG 10 Direct repeat sequences are not overrepresented at DIP-associated deletion junctions. The per-
centages of deletion junctions within the polymerase segments that occurred at unique sites or at sites with
direct nucleotide repeats 2 to 4 nt in length were compared between L1-P6-Rep1, L2-P6 (passage 6 from
two independent lineages), and the A/Cal07-200 simulated data set. The number of junctions was plotted
and compared by chi square. The table shows the chi-square P values between every possible pair of the
samples.
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individual DIP genotype frequencies is critical, we recommend pairing a cDNA barcod-
ing method, such as primer identification (ID) (25, 26), with a platform capable of
long-read sequencing, such as PacBio or Oxford Nanopore (27). Alternatively, direct
sequencing of viral RNA using the Oxford Nanopore platform may also prove to be
useful for accurate measurement of junction frequencies (28). Note that these long-
read sequencing methods are not compatible with components of our pipeline (such
as Bowtie 2) and would thus require additional pipeline development.

When we used our pipeline to examine DIP-enriched viral populations generated
through serial passage, we detected hundreds of distinct DIP-associated deletion
junctions, revealing a high degree of diversity within the DIP population. Although the
majority of these DIP-associated junctions were derived from the polymerase segments
as expected, we also detected a substantial proportion of deletions within the HA
and NA segments, while deletions within the NP, M, and NS segments were rare or
nonexistent. This nonrandom distribution of junctions across the genome segments
mirrors what has been reported elsewhere and highlights how little we know about the
specific molecular mechanisms that regulate DIP formation. The variation in DIP
formation patterns that we observed between viral strains may aid in defining the
molecular determinants that govern deletion formation within individual genome
segments. Furthermore, it raises the question, given the potential role of DIPs in
influencing infection outcome (7), of whether these strain differences in DIP formation
have phenotypic consequences during infection.

We hope that the approach detailed here, and the associated bioinformatics pipe-
line, proves useful to other groups interested in defective interfering particle biology.
Our approach is optimized for influenza virus sequences; however, the approaches and
controls detailed here can easily be adapted to other RNA virus systems.

MATERIALS AND METHODS
Viruses and cells. Madin-Darby canine kidney cells (MDCK; obtained from Jonathan Yewdell) and

human embryonic kidney 293 cells (293T; obtained from Joanna Shisler) were grown in minimal essential
medium (MEM) plus GlutaMax (Gibco), supplemented with 8.3% fetal bovine serum (Seradigm), at 37°C
and 5% CO2. Recombinant A/California/07/09 (Cal07) virus was rescued via the standard 8-plasmid
reverse genetics approach. Briefly, 60 to 90% confluent 293T cells were transfected with 500 ng of various
plasmids (pDZ::PB2, pDZ::PB1, pDZ::PA, pDZ::HA, pDZ::NP, pDZ::NA, pDZ::M, and pDZ::NS) by using
JetPrime (Polyplus) according to the manufacturer’s instructions. A/Cal07 reverse genetics plasmids were
originally obtained as A/California/04/2009-encoding plasmids from Jonathan Yewdell. We introduced
A660G and A335G substitutions into the HA and NP plasmids, respectively, to convert them to match the
amino acid sequences of A/California/07/2009 HA and NP (NCBI accession numbers CY121680 and
CY121683). Recombinant A/Perth/16/2009 was generated via the same method from plasmids kindly
provided by Seema Lakdawala. Seed stocks of virus were prepared by amplifying plaque isolates from the
rescue supernatants. Virus working stocks were generated by infecting MDCK cells with seed stock at an
MOI of 0.001 50% tissue culture infectious dose (TCID50)/cell and collecting and clarifying supernatants
at 48 hours postinfection (hpi). A/New Caledonia/1999 and B/Lee/1940 virus stocks were both provided
by Jonathan Yewdell.

Generation of DIP stocks through high MOI passage. Confluent MDCK cells in 6-well plates were
infected in duplicate with undiluted stocks of A/Cal07, A/Perth09, or A/NC99 at 37°C or with B/Lee at
35°C. Supernatants (2 ml total per well) were harvested at 24 hpi (passage 1). An aliquot of 500 �l of this
supernatant was used to infect a 6-well plate of fresh MDCK cells to generate the next passage. This
process was repeated up to 9 times for both independent lineages of all viruses examined. Note that the
MOIs across different passages were not consistent between viruses due to differences in starting titer
and replication rates in MDCK cells.

IAV genome amplification. Viral RNA was extracted from 140 �l of cell culture supernatant using
the QIAamp viral RNA kit (Qiagen) and eluted in 60 �l distilled H2O (dH2O). For cDNA reactions, 3 �l of
RNA was mixed with 1 �l (2 �M) MBTUni-12 primer (5=-ACGCGTGATCAGCAAAAGCAGG-3=) � 1 �l
(10 �M) deoxynucleoside triphosphates (dNTPs) � 8 �l dH2O. The mixture was incubated for 5 min at
65°C and then placed on ice for 2 min. Subsequently, the mixture was removed from ice and the
following were added: 1 �l SuperScript III (SSIII) RT (Invitrogen), 4 �l of � first-strand buffer (comes with
SSIII kit), 1 �l of dithiothreitol (DTT), and 1 �l RNase-in (Invitrogen). The reaction mixture was incubated
at 45°C for 50 min, followed by a 15 min incubation at 70°C for inactivation. cDNA product (5 �l) was
mixed with the following for PCR amplification: 2.5 �l (10 �M) MBTUni-12 primer, 2.5 �l (10 �M)
MBTUni-13 primer (5=-ACGCGTGATCAGTAGAAACAAGG-3=), 0.5 �l Phusion polymerase (NEB), 10 �l 5�
high-fidelity (HF) buffer, 1 �l (10 mM dNTP mix), and 28.5 �l dH2O. The PCR conditions used were 98°C
(30 s) followed by 25 cycles of 98°C (10 s), 57°C (30 s), and 72°C (90 s); a terminal extension of 72°C (5 min);
and a final 10°C hold. PCR products were purified using the PureLink PCR purification kit (Invitrogen) with
the �300-nt cutoff option and eluted in 30 �l dH2O. There was no difference in deletion junction
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detection when we purified the PCR products with the lower-cutoff option (data not shown); note that
this may not be the case for all DIP-enriched samples. For B/Lee, we used the universal amplification
method published by Zhou et al (29).

NGS library preparation. We started with �20 ng of the PCR products in a volume of 50 �l. The
Covaris M220 sonicator (Covaris) was used to fragment the DNA. The following three conditions were
used to generate average fragment lengths of 300, 500, and 700 bp: (i) 300 bp � Peak Power 50, Duty
Factor 20 and Cycles/Burst 200 for 2:40 min, (ii) 500 bp � Peak Power 50, Duty Factor 10 and Cycles/Burst
200 for 1:30 min, and (iii) �600 bp � fragment length Peak Power 50, Duty Factor 10 and Cycles/Burst
200 for 1 min. In our hands, the fragmentation length did not have any effect on our sequencing results
(data not shown). For the sake of consistency, we used the 300-bp fragmentation length. To confirm the
PCR products, we visualized the amplicons on a Fragment Analyzer (AATI) with the DNF-486 high-
sensitivity NGS kit before and after fragmentation. Next, we used a Kapa Hyper prep kit (Roche) according
to the manual to construct the libraries. To eliminate the possibility of index hopping (or index
switching), we used the TruSeq unique dual indexes (UDI) from Illumina. The Adapter ligation step was
carried out with 5 �l of TruSeq UDIs diluted 1:10 with 10 nM Tris. For maximum efficiency, we increased
the ligation time to 30 min. We then performed 3 cycles of PCR with the Kapa library amplification
primers diluted 1:5 in water, followed by a cleanup step with 40 �l of AxyPrep Mag PCR beads (Thermo
Fisher). We then mixed the libraries at an equimolar ratio and carried out a quantitative PCR (qPCR) to
accurately quantitate the library pool and maximize the number of clusters in the sequencing flow cell.
A size selection step was not needed. Finally, the pooled libraries were sequenced with paired-end 2 �
250-nt reads on an Illumina MiSeq instrument using V2 chemistry. The fastq files were generated and
demultiplexed with the bcl2fastq Conversion Software v2.20 (Illumina).

Simulated data sets. All of the simulated data sets used in this study were generated by MetaSim
(v0.9.1) (30), a genomics and metagenomics simulator. Several reference library sequences composed of
WT reference sequences of IAV Cal07 (see Table 2 for NCBI accession numbers), mixed with a defined DIP
sequence population— generated randomly within the first and last 600 nt of all the segments—were
used in MetaSim for data simulation. The configurations were fixed across all data sets to maintain the
preferable conditions. The reference sequences were fragmented into 350-nt fragment lengths with a
standard deviation of �50 and were simulated into �1 million 2 � 250-nt paired-end reads per sample,
with a total substitution rate of �1% based on the published Illumina empirical error model. One data
set was simulated with no DIP sequences as a control sample for any computational artifacts. MetaSim
generated two FASTA files of 1 million reads per file per sample (�2 million single-end reads � 1 million
paired-end reads), which were subsequently used for the optimization process.

Sequencing analysis of DIP-associated junctions. The raw sequencing reads were quality-filtered
by Trimmomatic (v0.36) (parameters: ILLUMINACLIP:TruSeq3-PE-2.fa:2:15:10 SLIDINGWINDOW:3:20 LEAD-
ING:28 TRAILING:28) (31), and any reads shorter than 75-nt were removed from the data sets. The paired
reads were concatenated into one file and treated as single-end when aligned end-to-end to the WT
reference sequences (Table 2) using Bowtie 2 (v2.3.1) (parameters: –score-min L,0, 	0.3). Bowtie 2 passes
these values into a linear function to calculate the total penalty score [f(x) � 	0.3 � x], where x is the
read length. This option allows Bowtie 2 to align based on the read length, i.e., the penalty score of a
250-nt read is relatively the same as that of a 200-nt read.

Subsequently, the algorithm ViReMa (v0.10) was used to analyze the remaining unaligned reads
(putative junction-spanning reads) (parameters: -DeDup –MicroInDel_Length 20 –Defuzz 3 –N 1 –X 8).
Next, the DIP-associated deletion junctions and their read support were extracted from ViReMa output
files and sorted per segment, using an in-house Perl script, for data analysis and visualization. To detect
any MDCK genome leakage, the data sets were aligned against the dog genome (assembly CanFam3.1).
All scripts are available at https://github.com/BROOKELAB/Influenza-virus-DI-identification-pipeline.

Quantification of sensitivity and precision. To calculate the actual number of junction-spanning
reads in Fig. 2A, reads that derived from DIP-associated sequences were counted by their FASTA headers
(produced by MetaSim), which contain the source of each read. To calculate the maximum theoretical
sensitivity of ViReMa (Fig. 3B) based on a seed length of 25-nt and two allowed mutations (–N � 2), the
number of mutations was subtracted from the seed length, which in turn was multiplied by 2 to account
for both termini [(25 	 2) � 2 � 46]. Subsequently, this number was subtracted from the possible cutting
site of a 250-nt read and divided by the total number of cutting sites and multiplied by 100 ([(249 	 46)/
249] � 100 � 81.5%). To calculate the number of accurately and inaccurately mapped junctions in Fig. 3C

TABLE 2 NCBI accession numbers for influenza viruses used in this study

Gene segment

NCBI accession no.

A/PR8 A/Cal07 A/NC/99 A/Perth/09 B/Lee/40

PB2 AF389115.1 CY121687 CY147325 KJ609203.1 CY115118.1
PB1 AF389116.1 CY121686 CY147324 KJ609204.1 CY115117.1
PA AF389117.1 CY121685 CY147323 KJ609205.1 CY115116.1
HA AF389118.1 CY121680 CY147318 KJ609206.1 CY115111.1
NP AF389119.1 CY121683 CY147321 KJ609207.1 CY115114.1
NA AF389120.1 CY121682 CY147320 KJ609208.1 CY115113.1
M AF389121.1 CY121681 CY147319 KJ609209.1 CY115112.1
NS AF389122.1 CY121684 CY147322 KJ609210.1 CY115115.1
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and D, the original sequences generated to simulate the data set A/Cal07-200 were used in ViReMa with
–N set to 0, and the remaining parameters were kept the same (the junctions that occurred within the
first or last 25 nt were removed). Subsequently, the junctions that accurately mapped were counted,
resulting in 149 accurately mapped versus 47 inaccurately mapped junctions.

Correlation analysis. For the correlation tests, the NGS read support count for each DIP-associated
junction was normalized against the total detected junction-spanning reads of every sample. Next, the
correlation was calculated based on Spearman’s rank correlation using R (cor function).

Data availability. All NGS data sets generated in this study may be found under BioProject accession
number PRJNA527853.
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