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Critical thermal limits (CTLs) show much variation associated with the exper-

imental rate of temperature change used in their estimation. Understanding

the full range of variation in rate effects on CTLs and their underlying basis

is thus essential if methodological noise is not to overwhelm or bias

the ecological signal. We consider the effects of rate variation from multiple

intraspecific assessments and provide a comprehensive empirical analysis

of the rate effects on both the critical thermal maximum (CTmax) and critical

thermal minimum (CTmin) for 47 species of ectotherms, exploring which of

the available theoretical models best explains this variation. We find substan-

tial interspecific variation in rate effects, which takes four different forms

(increase, decline, no change, mixed), with phylogenetic signal in effects on

CTmax, but not CTmin. Exponential and zero exponential failure rate models

best explain the rate effects on CTmax. The majority of the empirical rate vari-

ation in CTmin could not be explained by the failure rate models. Our work

demonstrates that rate effects cannot be ignored in comparative analyses,

and suggests that incorporation of the failure rate models into such analyses

is a useful further avenue for exploration of the fundamental basis and

implications of such variation.
1. Introduction
Thermal performance curves describe the effects of temperature on physiological

processes. The endpoints of a typical thermal performance curve (TPC) are the

upper and lower critical thermal (CT) limits (CTLs), where performance declines

to zero [1–4]. Practicably, these endpoints are often defined behaviourally as the

temperatures that result in loss of the righting response, coordination, or equili-

brium, or the onset of stereotypical behaviour or thermal spasms [5–7]. CTLs

are usually measured using a dynamic (ramping) method where temperature is

gradually increased or lowered at a constant rate of temperature change until

an endpoint is observed. Typically, CTLs of ectotherms increase with faster

rates of temperature change, but the converse has also been found [8–10]. Irre-

spective, the effects of varying rates of temperature change can be large [8,9],

and can also interact unpredictably with acclimation effects [11]. Given the use

of CTLs to explore fundamental ecological questions, such as the functional

basis of community structure [12] and the influence of trait variation on niche

modelling [13–15], and to estimate important environmental change impacts

[16–18], understanding the full range of variation in rate effects on CTLs

is essential.

Several proposals have now been made for the ways in which rate effects

(which are related to changes in exposure time to stressful temperature [2,19,20])

influence CTLs and their estimation. The most comprehensive of these is the

idea of thermal tolerance landscapes [2]. The approach is based on the premise

that a single underlying relationship exists between temperature, exposure time,

and mortality (see also [21]), which follows a typical dose–response curve.

Here, critical thermal maximum (CTmax) is defined as a knockdown (death) temp-

erature at 1 min of exposure [2] (not 0 min of exposure [20]). A similar argument is
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applied to critical thermal minimum (CTmin). In both cases, the

theoretical expectation is that CTLs should improve (higher

CTmax, lower CTmin) with increasing rates of experimental

temperature change (or ramping rate). Several studies have

now considered the thermal tolerance landscape approach,

the most comprehensive of which is a recent analysis of 11 Dro-
sophila species focusing especially on knockdown time [22].

A related approach models CTmax based on the assumption

that failure rate increases with rising temperature [23]. The stat-

istical failure rate model predicts that CTmax should increase,

typically in a nonlinear fashion, with both experimental ramp-

ing rate and experimental starting temperature, and is capable

of explaining more than half of the variation in CTmax values

associated with changing ramping rates and starting tempera-

tures. This model is thought to be likewise applicable to CTmin

estimates [23]. Notably, the failure rate model is considered a

first order model to distinguish statistical effects, which are

expected to lead to the positive relationship between an

increasing ramping rate and CTLs, from biological effects

that might lead either to no effect or to a negative relationship.

Here, statistical effects represent variance in CTLs explained by

the failure rate model showing an improvement in CTLs

(higher CTmax, lower CTmin), where failure rate (M ¼ 1/time)

is expected to be higher at the higher (or at the lower for

CTmin) temperature of failure. Residual variance not explained

by the failure rate model is attributed to the biological effects.

A recent work, particularly focused on predicting the ther-

mal acclimation capacity of ectotherms across many different

species, body sizes, latitudes, traits, and habitats, also includes

the effect of ramping rate as one of the variables, but only at

the interspecific level and at the high temperature end [24].

However, the study uses an interspecific approach, which con-

founds intraspecific with interspecific variation, assuming, in

contrast to existing empirical data [8–11], that rate effects at

the two levels have similar magnitudes and take the same

form, and leaving the effect of ramping rate on the extent

of variation of both CTmax and CTmin at the intraspecific

level unexplored.

Given the growing significance of CTL estimates in both

basic and applied ecological research [16–18,25,26], meth-

odological variation in their estimates, and the existence of

various theoretical frameworks for the expected nature

of its impacts, here, we examine CTL variation with time of

exposure to stressful temperatures within species, consider-

ing also how exposure time effects on CTLs vary among

species. To investigate what the form of the intraspecific

response is, across multiple taxa, we quantify how much

overall variance can be explained by time alone, how much

by species identity, and how much by higher level phyloge-

netic effects. In doing so we consider closely Rezende

et al.’s [2] variables CTmax and z (CTmin and z0). The variable

z is defined as a constant that characterizes the sensitivity to

temperature change, and is a key component of the thermal

tolerance landscape models [2]. We do so to determine

whether z (z0) conform to the original theoretical estimates,

and whether CTmax and CTmin estimated using this approach

provide values in keeping with what has been measured.

Next, we examine the failure rate model approach [23],

which provides more flexibility than the log-linear model of

the thermal tolerance landscape approach [2], to determine

whether each species follows the response expected by the

set of failure rate models originally proposed. We provide

the best fitting model to the data at the species level and
determine the variation attributed to the statistical effects of

failure rate and to residual biological variation [23]. Further-

more, we extend the set of failure rate models to analyse

CTmin responses.
2. Methods
(a) Data collection
We used a systematic review approach [27] to find studies that

measure upper and/or lower CTLs of ectotherms using different

rates of temperature change. Search databases included Web of

Science, Google Scholar, and Research Gate using the keywords

(‘critical thermal limits’ OR ‘thermal tolerance’) AND (‘rate of

temperature change’ OR ‘ramping rate’ OR ‘heating rate’ OR ‘cool-

ing rate’) AND (‘critical thermal maxima’ OR ‘CTmax’ OR ‘CTmin’

OR ‘critical thermal minima’). In addition, we examined studies

listed in the references of the articles found through the database

search. Upper and/or lower CTLs were extracted from tables,

figures and the main text. Data extraction from figures was under-

taken using PLOT DIGITIZER software [28].

Because the effect of ramping rate (i.e. time of exposure) on

CTLs of ectotherms at the intraspecific level is of central interest,

inclusion criteria for studies comprised: (i) at least two different

rates of temperature change per species to establish a time-temp-

erature pattern of response, (ii) the same life stage, and (iii) a

consistent acclimation temperature within single species across

multiple ramping rates. If the study contained more than one

acclimation temperature, while simultaneously testing for the

effect of ramping rate, we chose the acclimation temperature

that was the closest to the recorded environmental temperature

at the time of the species collection reported in the study.

Based on these criteria the CTmax and CTmin datasets included

41 (184 data points) and 23 (77 data points) species of ectotherms,

respectively. Each data point represents an arithmetic mean of a

CTL corresponding to a particular rate of temperature change.

Thus, these datasets differ from those used in a recent synthesis

which focuses on thermal tolerance and acclimation capacities of

ectotherms at different acclimation temperatures that use a single

ramping rate per species in all of the 254 cases investigated [24].

(b) Analytical approach
Time of exposure for each CTL with its corresponding rate of temp-

erature change was calculated according to:

t ¼ CTmax � ST

r
ð2:1Þ

and t0 ¼ ST� CTmin

r
, ð2:2Þ

where ST is the starting experimental temperature, r is the rate of

temperature change, t is the time of exposure (t0 is the equivalent

of t for decreasing temperatures), CTmax is the upper critical

limit, and CTmin is the lower critical limit. To examine the CTL vari-

ation with time of exposure to stressful temperature and quantify

how much overall variance can be explained by time alone, time

and species, and by phylogenetic signal, we undertook two sets

of analyses. First, we used a linear model on a semi-logarithmic

scale to determine how much of the overall variance in CTLs (i.e.

separately for CTmax and CTmin) is explained by the time of

exposure across the entire dataset. In essence, the analyses suggest

how much variance might be accounted for by a simple failure rate

type model [23]. Then, we included species as an additional term

to determine how much variance is attributable to species-specific

responses. Because we found a strong species-specific response of

the pattern variation in the CTLs to the time of exposure, we also

undertook a phylogenetic analysis in each case using the phyloge-

netic generalized least-squares (PGLS) method with the ‘caper’
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package in R [29]. Phylogenetic trees were generated using the

‘rotl’ package [30] from the comprehensive tree of life [31]. Tree

branch lengths were estimated using Grafen’s arbitrary branch

lengths transformation where branch length is set to a length

equal to the number of descendant tips minus one [32]. All ana-

lyses were performed in R v.3.5.1 [33].

Following the approach recommended by Rezende et al. [2],

we tested the expectation that CTLs should improve (higher

CTmax, lower CTmin) with increasing rates of experimental temp-

erature change following the proposed log-linear model [2]. We

used a linear model of CTLs against a logarithm of time for

each species to calculate the intercept and slope of these lines

(electronic supplementary material, tables S1 and S2), which,

according to the thermal tolerance landscape framework, corre-

spond to parameters CTmax and z (and CTmin and z0 for low

temperatures), respectively [2]. We also calculated goodness-of-

fit of the line for each species (as the coefficient of determination).

In a few instances where we had only two ramping rates per

species, we used the CTL data only to establish the time-temp-

erature pattern of response, but did not include the goodness-

of-fit. Two species, Cryptolestes ferrugineus and Glossina pallidipes,

along with Thaumatotibia leucotreta (larval stage only), were

removed from examination of the association between CTmin

and z0 parameters because the CTmin estimates were major out-

liers. We tested whether parameters z (z0) and CTmax (CTmin)

were as strongly correlated as proposed in the thermal tolerance

landscape framework [2] and also performed a phylogenetic

analysis on these traits.

To test the failure rate model approach and determine

whether each species follows the response expected by the set

of proposed failure rate models (that assume that the relation-

ship between the failure rate and temperature can follow

different parametric forms, such as exponential and power-law

forms), we modified and expanded the R code provided by

the authors [23]. Because the authors provide the full code for

the best fitting model to their species’ dataset only, we expanded

the code to provide the probability density function (pdf),

expected time to failure, and CTL estimates for the remaining

seven models (https://doi.org/10.26180/5c467981f3158). We

selected the best fitting failure rate model for each species in

our datasets using the corrected Akaike information criterion

(AICc) [34] because mean CTL values were used within species,

and we reported the variance attributed to the statistical

effects of failure rate previously described above (electronic

supplementary material, table S3). Five species showing a con-

verse response from the one expected by the set of the failure

rate models (i.e. a CTmax decreasing with increasing rate) were

excluded from the CTmax analysis, because the statistical effects

described by the failure rate models cannot account for a con-

verse response [23]. Nevertheless, we applied these models to

species exhibiting no effect (i.e. no change in CTLs) or a mixed

response (i.e. an increase in CTL followed by a decrease at

faster ramping rates) to evaluate if statistical effects account, at

least partially, for any CTL variation of these types of responses.

Likewise, we extend this code to analyse the response patterns of

CTmin and exclude nine species owing to their converse response

not described by the failure rate models (electronic supple-

mentary material, table S4 and https://doi.org/10.26180/

5c467981f3158). Both of these scripts can be easily applied to

any species dataset investigating the effect of ramping rate and

starting temperature on either heat or cold tolerance at the

level of species. It is important to highlight that we tested

these models using the reported mean values of CTLs for each

ramping rate and a single experimental starting temperature

per species, with the analyses focusing on the effect of ramping

rate at the intraspecific level. All analyses were performed in R

v.3.5.1 [32] using ‘bbmle’ package v.1.0.20 applying the

Nelder–Mead algorithm within function mle2 [35].
3. Results
In the overall time-temperature relationship, 43% of the overall

variance in CTmax can be explained by the time of exposure

to heat stress (r2 ¼ 0.426, p , 0.0001; figure 1a). If the analyses

are undertaken using rate data only (i.e. excluding starting

times) the outcomes are similar (electronic supplementary

material, figure S4). On the other hand, there was no relation-

ship between CTmin and time of exposure to cold stress (r2 ¼

0.0028, p . 0.60; figure 1c). Adding species identity as an

additional factor revealed a strong species-specific response

incorporating four different time-temperature patterns of

response. Most (94.4%) of variance in CTmax can be explained

by the time of exposure to heat stress and species identity

(r2 ¼ 0.944, p , 0.0001; figure 1b). Similarly, 94.7% of variance

in CTmin is explained by the time of exposure to cold stress

and species identity (r2 ¼ 0.947, p , 0.0001; figure 1d).

Variation among species in the relationships was not a conse-

quence of body size variation among them as no interaction

between a body size measure and rate was found when body

size was included in an examination of the relationship between

time and CTL (electronic supplementary material, figure S3

and tables S6 and S7). Of the 40 species examined in the

CTmax analysis (T. leucotreta was excluded from percentage

analysis because adults and larvae have different responses

for both CTmax and CTmin), more than half showed a decline

in CTmax with exposure time (figure 2). Fifteen per cent of

species showed no effect, 12% an increase in thermal tolerance

with exposure time, and 5% had a mixed response (figure 2). In

the case of CTmin, response patterns were more evenly distrib-

uted among categories (electronic supplementary material,

figure S1). Forty-one per cent of the 22 species showed an

increase in CTmin with exposure, which is the contrary of

what is typically predicted [2], 27% showed a decrease, 5%

had a mixed response, and cold tolerance of 27% of the species

remained unchanged regardless of the time of exposure (i.e.

ramping rate) (electronic supplementary material, figure S1).

Following the thermal tolerance landscape approach [2], we

calculated the intercept and slope of the lines for log10-trans-

formed time of exposure on CTmax values for each species

that correspond to the CTmax and z. We also calculated variance

explained by the time of exposure for each species excluding

species that had only two ramping rates. Regressing log10-

transformed time of exposure on CTmax values of 39 species

resulted in relationships with lower goodness-of-fit (median

r2 ¼ 0.872, 95% confidence interval (CI) between 0.656 and

0.976) (figure 2 and electronic supplementary material, table

S1) than those derived from upper lethal limit approaches

reported in the original study seeking to integrate the two

approaches (median r2 ¼ 0.985, 95% CI between 0.876 and

0.999) [2]. Analyses show that z accounts for 70% of the vari-

ation in CTmax as estimated by the coefficient of

determination (slope¼ 2.90, p , 0.0001, r2 ¼ 0.702; table 1a
and electronic supplementary material, figure S2a). Within

insects and crustaceans, the variance explained by this model

corresponds to 76% and 67%, respectively (slopes ¼ 2.52 and

1.88, p , 0.0001 and p ¼ 0.0069), while within fishes and

springtails this model cannot explain the variance in CTmax

(slopes ¼ 20.12 and 4.21, p ¼ 0.9145 and p ¼ 0.0694). Par-

ameters CTmax and z vary across species, with CTmax ranging

between 27.88C and 64.98C and z ranging between 0.04 and

8.9. Likewise, we performed the same analysis on cold tolerance

(electronic supplementary material, figure S1 and table S2).
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Figure 1. Time-temperature relationship for upper and lower critical thermal limits of ectotherms. (a) General relationship between time of exposure and CTmax of
41 species of crustaceans, fishes, insects and springtails. (b) The association between time of exposure and CTmax at the intraspecific level reveals four different
patterns of species-specific responses to the heat stress for 41 species of ectotherms. (c) General relationship between time of exposure and CTmin of 23 species of
crustaceans, insects, and springtails. (d ) The association between time of exposure and CTmin at the intraspecific level reveals four different patterns of species-
specific responses to the cold stress for 23 species of ectotherms. (Online version in colour.)
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CTmin curves of 21 species of ectotherms resulted in relation-

ships with lower goodness-of-fit (median r2 ¼ 0.858, 95% CI

between 0.694 and 0.956) (electronic supplementary material,

figure S1) than those reported using lower lethal limit values

in the original study seeking to integrate the two approaches

(median r2 ¼ 0.955, 95% CI between 0.876 and 0.993) [2].

After excluding three outliers from the analysis, we found

that the association between parameters CTmin and z0 was not

significant (slope¼ 20.68, p ¼ 0.5167, r2 ¼ 0.022; table 1b
and electronic supplementary material, figure S2b), suggesting

that z0 does not explain the variation in CTmin in 21 species of

ectotherms, which is in contrast with the high correlation

found in studies using lower lethal limits and the general ther-

mal tolerance landscape expectation (slope ¼ 24.99, p ,

0.0001, r2 ¼ 0.965 [2]). The range of CTmin variation was

lower than for CTmax, with CTmin ranging between 27.308C
and 9.618C, and z0 between 0 and 4.03, which is not in keeping

with the results of the thermal landscape approach [2].

Estimates of a phylogenetic signal in z, a constant character-

izing the sensitivity to temperature change, were moderate.

Pagel’s l in z alone was 0.43, while lower phylogenetic signals

were detected in the effects of response (l ¼ 0.26), habitat (l ¼

0.05), and climate (l ¼ 0.40) on z. On the other hand, no phylo-

genetic signal was detected in z0 alone, nor in the effects of

response, habitat, and climate on z0 (electronic supplementary

material, table S5).

The most common failure rate models across species

in both CTmax and CTmin analyses were exponential and zero
exponential models, followed by a zero-power threshold, zero

exponential threshold and exponential threshold models. Five

species had a converse trend to which we could not apply stat-

istical effects described by the failure rate models as recognized

by the authors, thus, we assigned the response to the biological

effects only (figure 2 and electronic supplementary material,

table S3). Outcomes of the CTmin analysis showed that the

most common cold tolerance response was a converse response,

which could not be accounted for by the statistical effects of the

failure rate models. Therefore, we similarly assigned the var-

iance to the biological effects (electronic supplementary

material, table S4 and figure S1). The zero-power threshold

model was the most common best-fit model closely followed

by the exponential and zero exponential models, including

exponential threshold and zero exponential threshold models.

Using mean CTmax values for each ramping rate we found

that the best-fitting model for G. pallidipes are exponential and

zero exponential models, giving a different outcome from the

zero-power threshold model, which was the best-fitting

model for the full G. pallidipes dataset containing CTmax

values for each individual tested.
4. Discussion
Our results demonstrate that the commonly expected direction

of response characterized by an improvement of CTLs (higher

CTmax, lower CTmin) with the increasing rate of temperature
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change is not a universally observed pattern among the

ectotherms. While time of exposure generally has a negative

effect on CTmax, such a generalization cannot be made for

CTmin. Similarly, ontogeny, body size, and sex, along with

nutritional status and the extent of desiccation stress have

varying effects on heat and cold tolerance [36–40].

A strong species-specific response for both CTmax

and CTmin, independent of body size (unlike the situation

found in interspecific analyses [24]), reveals four different ther-

mal tolerance response patterns to the increasing exposure

time (i.e. slower ramping rate). The proposal that static and
dynamic experimental methods share similar relationships

with exposure time in a thermal tolerance landscape frame-

work [2] thus appears to be an oversimplification of

empirical observations. Species showing an increase in ther-

mal tolerance with the exposure time might fit the log-linear

time-temperature trend [2] well, but in the opposite direction

from the one expected. This model generally produces a

poor fit for species with no effect and mixed trends in their

CTLs. Indeed, assessment of the method used by Rezende

et al. [2] revealed that the parameters z (z0), a constant charac-

terizing the sensitivity to the temperature change, and CTmax



Table 1. Outcome of the linear models examining the relationship between parameters CTmax and z and CTmin and z0 among 41 and 23 species of ectotherms,
respectively.

(a) CTmax estimate s.e. t p

CTmax (intercept) 34.696 1.147 30.240 ,0.0001

z 2.905 0.299 9.703 ,0.0001

F1,40 ¼ 94.14, p , 0.0001, r2 ¼ 0.7018

(b) CTmin estimate s.e. t p

CTmin (intercept) 3.413 1.780 1.918 0.0703

z0 20.681 1.031 20.661 0.5167

F1,19 ¼ 0.44, p ¼ 0.5167, r2 ¼ 0.022
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(CTmin), redefined as a knockdown temperature at 1 min of

exposure, are not always highly correlated as originally pro-

posed. These outcomes are in agreement with a recent

comprehensive assessment of the thermal landscapes

approach, which demonstrated that heat tolerance parameters,

z and CTmax at 1 min of exposure in 11 Drosophila species are

not correlated [22]. The lower correlation of z and CTmax

than the one found in the study by Rezende and colleagues

[2] may have several explanations. One of these may be vari-

ation of species’ CTmax response patterns to the ramping

rate, as two thirds of the species show the decline in thermal

tolerance with the longer exposure time (i.e. slower ramping

rate), while the rest of the species yield different responses.

The other explanation, supported by evidence from modelling

analyses, is that experimental noise (or small sample size),

autocorrelation and unwarranted extrapolation, are respon-

sible for the initial finding of a strong relationship between z
and CTmax [22]. Perhaps unsurprisingly, therefore, we also

found no correlation between z0 and CTmin, a result while

different to the original thermal landscapes idea [2], is in keep-

ing with the growing body of literature testing it [22]. The

variation of CTmin with the dynamic temperature change is

much more pronounced, where the most dominant pattern

among the species tested is an increase in cold tolerance with

the increasing exposure time. Parameter z also appears to be

more phylogenetically constrained (l ¼ 0.43) than para-

meter z0 where no phylogenetic signal was detected (l ¼ 0),

which is in agreement with the previous studies detecting a

phylogenetic constraint in upper thermal limits [41,42].

In addition, significant disparities exist when comparing

CTmin estimates from the empirical studies using a dynamic

method and CTmin values predicted by the thermal tolerance

landscape. For example, Jian et al. [43] found that the overall

limits to activity (CTmin) for three species of beetles in the

adult life stage, Cryptolestes ferrugineus, Tribolium castaneum,

and Sitophilus oryzae, were 2.08C, 6.08C, and 6.58C respectively

[43]. Empirical results from this study differ substantially

from CTmin values predicted by Rezende et al. [2], where

CTmin limits for C. ferrugineus, T. castaneum, and S. oryzae
were estimated to be 2100.968C, 285.178C, and 238.988C
respectively [2]. This discrepancy arises from redefining

CTmin as death or knockdown temperature at 1 min of

exposure [2] as opposed to the lowest limit to activity, as

used across a multitude of cold tolerance studies [44–46].

The lowest ever reported CTmin of 2168C for Diamesa
Meigen, a Himalayan glacier species, remains much higher
than these three estimates [47]. Because the thermal tolerance

landscape framework seems to overestimate empirical CTmin

values, the approach requires more exploration.

The set of failure rate models proposed by Kingsolver &

Umbanhowar [23], where failure rate is higher at the higher

(or at the lower for CTmin) temperature of failure, generally

corresponds to a decline in thermal tolerance with exposure

time, a similar expectation to the thermal tolerance landscape

framework [2]. However, failure rate models are more flexible

than the log-linear models in a sense that they allow curves to

take different shapes and include the presence or absence of a

threshold temperature. In addition, other patterns of thermal

tolerance response to the increasing ramping rate, which

cannot be attributed to the statistical effects of failure rate,

can also be incorporated generally [23]. Contribution of the

statistical effects to the mixed and no effect responses is gen-

erally small, probably because the variation is owing to the

biological effects. The models are not applicable to the con-

verse response currently including 12% (for CTmax) and

41% (for CTmin) of species, which can be also attributed to

the biological effects. It is important to note that we obtained

a different best-fitting model for G. pallidipes than the authors

[23] because we used mean CTmax values per ramping rate as

opposed to CTmax values for each individual tested, which

demonstrates how the outcome of the analysis may change

when an individual variation is incorporated into or excluded

from the intraspecific study. The most common best-fit

models in CTmax analysis suggest that failure rate increases

exponentially from the experimental starting temperature

until CTmax is reached. Results of other species support the

presence of a temperature threshold after which failure rate

follows an exponential or a power increase before reaching

CTmax. CTmin analysis supports the presence of a temperature

threshold, but there are also species showing an exponential

increase in failure rate from the experimental starting temp-

erature until CTmin is reached.

Based on the four response patterns found, we propose a

set of hypothetical relationships between failure rate [23],

recovery rate, and CTLs that may explain the variation in

species’ responses (figure 3). If recovery rate cannot catch

up with the failure rate during prolonged time of exposure

(figure 3a), thermal tolerance declines with exposure time.

On the other hand, if recovery rate improves with time

owing to a rapid physiological response, thermal tolerance

increases with exposure time (figure 3b). In the case of the

no effect response, time of exposure (i.e. ramping rate)
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might have no effect on thermal tolerance (figure 3c). Alterna-

tively, failure rate and recovery rate could be matched

because of some form of beneficial physiological response

by an organism. Finally, a mixed response could reveal an

inflection point [8], with a pattern of declining thermal toler-

ance from an intermediate ramping rate towards faster and

slower rates (figure 3d ). This response potentially reveals

an optimal ramping rate at which maximum tolerance

gain is achieved owing to acclimation to the rapid change

in temperature, while an organism simultaneously becomes

exposed to the deleterious effects of temperature extremes.

What these four relationships provide is a framework for

further exploration of the way in which differing damage

accumulation rates and organismal-level physiological and

biochemical response rates interact to determine thermal tol-

erance. Clearly, time of exposure (given different ramping

rates) is an important component thereof, especially given

the high Q10 of the processes leading to heat stress-related

physiological failure [22]. However, as an early study

showed [9], so too is the starting temperature of the process,

because this may determine the extent to which an organism

is already outside the zone of tolerance [48], which precedes

the onset of damage. Just what the effect is of starting temp-

erature on experimental outcomes is not yet well resolved.

The proposed framework suggests that future work should

focus on three main areas. First, determining whether starting

temperature has an as large effect as ramping rate on out-

comes, as a single study suggests it might [9] and whether

a threshold effect, indicating that differences in starting temp-

eratures inside or outside the organism’s zone of tolerance

(i.e. on either side of the incipient lethal temperature [48])

are important. Second, further considering the outcomes of
the failure rate approach in the context of the framework pro-

posed here to determine the extent to which simple failure

rate models may afford the null expectation for thermal

limits in the absence of biological responses [23]. The failure

rate models provide good fits to the available data and are

readily interpretable both in a statistical and physiological

context. Finally, investigation of whether differential rates

of damage and repair really are responsible for variation in

the rate-thermal limit response. Very high rates of Q10 for

thermal limits [22] suggest that, at least at the highest temp-

eratures, any form of repair will be rapidly overwhelmed

given generally lower thermal sensitivities of routine physio-

logical functions including, for example, protein synthesis

[49]. Of course, even in the absence of investigation of these

questions, it is clear that rate variation cannot be ignored in

compiled comparative studies, either of CTLs or of their

implications for environmental change.
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