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Over a billion people on earth are infected with helminth parasites and show

remarkable variation in parasite burden and chronicity. These parasite distri-

butions are captured well by classic statistics, such as the negative binomial

distribution. But the within-host processes underlying this variation are not

well understood. In this study, we explain variation in macroparasite infection

outcomes on the basis of resource flows within hosts. Resource flows realize

the interactions between parasites and host immunity and metabolism.

When host metabolism is modulated by parasites, we find a positive feedback

of parasites on their own resources. While this positive feedback results in

parasites improving their resource availability at high burdens, giving rise

to chronic infections, it also results in a threshold biomass required for para-

sites to establish in the host, giving rise to acute infections when biomass fails

to clear the threshold. Our finding of chronic and acute outcomes in bistability

contrasts with classic theory, yet is congruent with the variation in helminth

burdens observed in human and wildlife populations.
1. Background
Over one billion people are infected with parasitic worms and suffer the health

costs of hosting helminths [1,2]. Yet hosts vary tremendously in their duration

of infection, parasite burden [3] and subsequent morbidity outcomes [1,4].

Because of this variation, host populations typically have a few individuals

with many parasites while most individuals have few or no parasites [3]. Vari-

ation in parasite burden has been classically formalized by the overdispersed

negative binomial distribution [3,5], but the biology underlying this pattern

remains unclear [6]. Many of the hypotheses to explain variation in parasite

burden relate to host heterogeneity in susceptibility, recovery or exposure

[7,8]. In this study we focus on infection duration, the inverse of recovery,

and show that variation in infection duration can generate realistic variation

in parasite burden. We then identify key within-host processes that lead to

divergence in duration. Because parasite burden and infection duration drive

many health costs of infection [1,2], it is crucial to understand the within-host

processes that lead some hosts to expel parasites quickly in acute infections

while others suffer persistent infections.

To elucidate these critical within-host processes, we integrate the two

dynamic perspectives that have dominated within-host theory: resource compe-

tition between host and parasite [9], and immunity-driven top-down control of

parasite growth by the host [10]. Since ultimately parasite growth as well as the

host immune response relies on resources [11,12], we focus on within-host

resource flows and the impact of the parasite on host metabolism.

Parasite modulation of the immune system is well-studied [13–15], but para-

sites are also capable of modulating host energy dynamics through altered

resource uptake or reduced digestive transit time [16]. However, the implications
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of these manipulations are poorly understood, despite the fact

that resource modulation by parasites is widespread (e.g. [17])

and is probably decisive for infection outcome [12], especially

under food-limited conditions [18–21].

Here we represent host resource dynamics using dynamic

energy budget theory [22,23], and build a novel framework to

analyse the within-host interaction between parasite and host.

Our model accounts for within-organism resource flows by

integrating the dynamics of food intake, metabolism, and

growth for hosts, and by including the resource-dependent

immune response and parasite growth. We formulate the

model on the basis of the outcomes from mouse rewilding

studies that have examined the relationships between

resources, immunity and infection in a realistic setting, yet

with controlled parasite exposure [24,25].

In this framework, parasites modulate within-host

resources, which results in a positive feedback of the parasite

population on its own resource availability (i.e. an Allee

effect). This positive feedback gives rise to outcomes that

vary in infection duration, parasite burden and host health.

Because these outcomes are emergent results of the within-

host interactions, we avoid making any a priori assumption

of an acute or chronic outcome, which is the norm in theoreti-

cal epidemiology [10]. In this study we will use the terms

acute and chronic to indicate infections of short and (life-)

long duration. In the biomedical literature, descriptions of

infections as acute or chronic often also carry connotations

about both the nature of the immune response (e.g. acute

implies inflammatory) and the severity of infection. Here

we use these words only as a shorthand to describe the dur-

ation of infection, although we note that our modelling

approach could be extended to consider the health costs of

infections of short- versus long-duration.

Crucially, we find that when parasites modulate host

resource flow, both acute and chronic infections are possible

for identical model settings. Acute and chronic infections

encompass the most extreme variation in infection outcomes,

while this variation emerges from the resource-driven inter-

action between parasite and host. In population settings,

the bistability underlying these outcomes moreover drives

parasite burdens that follow negative binomial distributions,

as so frequently observed in nature.
2. Methods
(a) Model formulation
To analyse how host metabolism, immunity and parasite growth

interact with parasite modulation of resources, we formulate and

analyse a mathematical model of these within-host processes.

Using dynamic energy budget (DEB) theory [22,23] to account

for resource-driven processes (where all processes and flows

are translated into units of biomass), we extend the baseline

DEB model to include parasite and immune processes.

As a case study for model formulation, we use a mouse-

gastrointestinal nematode system (the Mus musculus–Trichuris
muris interaction). A widely studied system, murine growth

and immunity to infection (reviewed in [26]), allow for empiri-

cally grounded model assumptions. The host organism is

modelled using biomass ‘pools’, including structural mass (S),

reversible mass (R) and ingesta (G). We explicitly account for

the biomass in the colon, referred to as ‘egesta’ (C), and for

induced immunity (Ii, electronic supplementary material, figure

S2). Structural mass and reversible mass form the two major
components of total body mass. Structural mass represents

essential body components, such as bone, muscle and organs,

whereas reversible mass can be metabolized when food supply

is low, such as fat tissue, liver glycogen stores and non-essential

muscular tissue.

We use a standard demand-driven, net-production DEB

model [27,28]. This model structure is representative for

mammal hosts and deviates (here and elsewhere) from the

model defined in [29]. The model is parametrized for M. musculus
[23,30,31] and its baseline settings (host-only) result in realistic

growth curves [30], as does varying food availability (electronic

supplementary material, figure S3; cf. fig. 3 in [30]). With this

validation, we use the full-grown mouse as the initial state

for parasite infection. This assumption facilitates equilibrium

analyses and is consistent with mature mice being used in the

rewilding field experiments (electronic supplementary material,

figure S1). All model flows and processes are discussed below,

full model equations and variables are given in electronic sup-

plementary material, figure S2, and parameter definitions and

values are given in electronic supplementary material, table S1.

The host has a constant food availability, F [30], and intake

is defined by size and body condition, according to

A(R,S) ¼ ðFimaxS2=3Þ=ð1þ ehððR=SÞ�urÞÞ [28]. Intake is then scaled

with maximum ingestion rate, imax, and with structural mass to

the power 2/3, following [28]. Intake is limited according to a

target body condition, ur, the ideal ratio between reversible and

structural mass (electronic supplementary material, figure S2

and table S1). The parameter h controls the steepness of the

intake rate as it compensates for low body condition (electronic

supplementary material, table S1).

We distinguish external ‘food’ from within-host ‘resources’,

where ‘resources’ are used as the energy source for growth in

either host or parasite biomass. Incoming resources (from food

intake) flow into the pool of ingesta at the rate A(R,S), and

flow out at rate r, with outflow subdivided between assimilated

resources and egesta (electronic supplementary material, figure

S2). The dynamics of ingesta are then

dG
dt
¼ A(R,S)� rG: ð2:1Þ

We assume that the flow processes in this compartment

are fast, relative to other processes and in particular to the

host–parasite interaction, such that

G� ¼ A(R,S)

r
: ð2:2Þ

From the resources in the ingesta, a fraction Ea(P) is assimi-

lated (dependent on parasite biomass, P), with the remainder

flowing to the egesta, C. Both the inflow (from ingesta) to and

outflow from egesta occur at rate r, such that

dC
dt
¼ r((1� Ea(P))G� � C): ð2:3Þ

Assimilated resources first cover maintenance demands,

following M ¼ mw(S þ R). M is here a ‘field’ metabolic rate,

which is an average of active, resting, and moving maintenance

levels. Surplus resources first go to structural mass according

to the solved von Bertalanffy equation [23],

g(S) ¼ 3g(s1=3
maxS2=3 � S), ð2:4Þ

where g is the growth rate, and smax the asymptotic size. Further

surplus resources are allocated to reversible mass, R,

dR
dt
¼ er(rEa(P)G� �M(S,R)� g(S)), ð2:5Þ

where er is the conversion efficiency. Reversible mass decreases

whenever the assimilate flow is insufficient for maintenance or
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structural growth costs. Equations (2.2), (2.3) and (2.5) define a

balance between costs for metabolism and growth and

energetic gains through feeding (electronic supplementary

material, figure S2).

(b) Immune response dynamics
Host immunity consists of constitutive (baseline) immunity Ic,

which equals a small fraction (c) of total mass, Ic ¼ c(S þ R) [32],

and induced immunity Ii, which responds dynamically to parasite

infection. Because the capacity to mount an induced immune

response depends on host body condition and reserves, the

resource input to induced immunity is taken directly from revers-

ible biomass [32]. This assumption is supported by the observed

correlation between measures of reversible mass (e.g. the fat-

associated hormone leptin) and induced immunity (e.g. the

cytokine interleukin (IL)-13, a promotor of helminth clearance)

in our rewilded mouse experiment (electronic supplementary

material, figure S1) [24,33], as well as by previous laboratory

experiments (reviewed in [34]) and wildlife experiments [35].

The rate of resource flow to induced immunity is a function

of response-fuelling reversible mass and response-provoking

parasite biomass, defined as bRP, with b as the biomass flow

rate per gram parasite [10]. Reversible biomass is converted to

induced immunity with efficiency e i. Induced immunity decays

at a constant rate, mi, so that

dIi

dt
¼ eibRP� miIi: ð2:6Þ

Because constituent and induced immunity impose

additional maintenance costs to the host (captured by the par-

ameters mc and mi), total maintenance cost M ¼ mw(S þ R) þ
mcIc þ miIi (electronic supplementary material, table S1) [32]

such that equation (2.5) becomes

dR
dt
¼ er(rEa(P)G� �M(S,R,Ic,Ii)� g(S))� bRP: ð2:7Þ

(c) Parasite dynamics
Parasites exploit the biomass in the egesta (C ) as resource, reflect-

ing the biology of Trichuris spp. and other helminths that live in

the colon [36]. Parasite resource intake rate follows a type II

functional response, ðscCÞ=ðhc þ CÞ, with uptake rate sc and

half-saturation constant hc. Resources are converted into parasite

biomass through the conversion factor ep. Parasite biomass

decreases at background mortality rate, mp, reflecting mortality

and metabolic losses, and at the immune-imposed rates, vcIc þ
viIi, reflecting mortality or stunting of parasite growth by the

immune response (electronic supplementary material, table S1).

The parasite dynamics are then determined by growth from

resources and mortality through top-down imposed immune

responses:

dP
dt
¼ ep

scC
hc þ C

P� mpP� (vcIc þ viIi)P: ð2:8Þ

We explicitly account for modulation of resources by the

parasite. Gastrointestinal worms can cause a decrease in the

digestive efficiency of their host, either by directly stealing

resources from the intestines [17], or by decreasing the assimila-

tion efficiency [37]. To include this effect we use a saturating

function of parasite biomass to reduce the proportion of ingested

food that is assimilated by the host:

Ea(P) ¼ ea 1� eAminP
he þ P

� �
: ð2:9Þ

This function simplifies to the default value of assimilation

efficiency, ea, in absence of the parasite. The unassimilated
resources that flow to the egesta are useless for the host, but

exploitable by the parasite. As such, gastrointestinal parasites

create a positive feedback on their own resource availability, con-

trolled via the parameter eAmin, which is the fractional reduction

in assimilation efficiency by the parasite (for example, eAmin ¼

0.05 translates into a 5% reduction in assimilation efficiency

when the parasite burden is very high, and eAmin ¼ 0.5 means

that assimilation efficiency is reduced by 50%). Parameter he

is the half-saturation level in the resource modulation by the

parasite (electronic supplementary material, figure S2).

(d) Model analysis
We analysed transient (figures 1 and 2) and equilibrium

(figure 3) dynamics of the system defined by equations (2.2),

(2.3) and (2.6)–(2.8) with MatCont [38] (6p10), in MATLAB

(version 2018b). In addition, we analysed two bifurcation

points that characterize specific regions in parameter space

(electronic supplementary material, figure S7) [39], which rep-

resent the persistence and invasion thresholds of the parasite.

The interpretation and explanation of these techniques can be

found in the electronic supplementary material.

To examine the consequences of bistability for parasite

burden distributions, we projected the within-host model

outcomes to the population level. We simulated infection

dynamics for 1000 hosts, where the initial parasite dose (bio-

mass) for each host was drawn from a normal distribution.

Hosts were then sampled at the same or at different timepoints,

to explore how the distribution of burden varied across hosts

(figure 2). To fit statistical distributions to these data, including

the negative binomial distribution, we used the mass of an

adult T. muris parasite to convert the continuous parasite

biomass measurement into a discrete number of parasites.

In addition to the extensive analysis of the DEB model

(equations (2.2), (2.3), (2.6)–(2.8); electronic supplementary

material, figure S2), we also analysed a simplified model that

considers only parasite and resource dynamics. This simplified

system is mathematically tractable and allowed us to corroborate

our bistability findings analytically (electronic supplementary

material).
3. Results
(a) Acute and chronic infections emerge from different

initial conditions
Our model analysis shows both acute and chronic parasite

infections as emerging outcomes of the within-host inter-

actions among resource allocation, parasites and immunity

(figure 1). These divergent outcomes were observed by chan-

ging the initial conditions of the model in terms of parasite

dose and by changing the equilibrium configuration by

adjusting the food level (see electronic supplementary

material, figure S5). We do not change any assumptions

about the mechanistic basis of the model, unlike standard

theory in which infection duration is determined by the

model’s structural assumptions [10].

Parasite dose and food availability together determine

infection outcome. Low parasite dose results in acute infections

where the parasite is expelled, and high parasite dose results in

chronic infections with parasite persistence (figure 1a). This

divergence is caused by the potential for a positive feedback

of the parasite on its own resource availability. Biologically,

this positive feedback generates an Allee effect: if initial parasite

biomass is too low, the host’s immune response keeps parasite

biomass low, preventing it from effectively modulating host



(a) (b)

(c) (d)

F = 1.5

0

0.0005

0.0010
pa

ra
si

te
 b

io
m

as
s 

(g
)

F = 3.0

F = 1.5

F = 1.2

F = 1.5

0

0.0050

0.0100

0 100 200 300 400 500
time (d)

in
du

ce
d 

im
m

un
e 

re
sp

on
se

 (
g) F = 3.0

F = 1.5

F = 1.2

0 100 200 300 400 500
time (d)

Figure 1. Parasite biomass and induced immune response in time series starting from various initial conditions. Simulation of infections starting at eight different
doses (a,c), and starting at different host food availability levels (b,d ). sC ¼ 0.52, other parameters have default values (electronic supplementary material, table
S1). Only the first 500 time steps of the integration are shown, see electronic supplementary material, figure S4 for the extended time series with full transient
dynamics up to the attractor states and for the dynamics of other system variables. (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

286:20190456

4

resources and leading to acute infections, because parasites are

rapidly expelled. If initial parasite biomass is high enough, the

positive feedback allows the parasite to increase the resource

flow towards egesta sufficiently to establish in the host, leading

to chronic infections (figure 1; electronic supplementary

material, figure S4).

We also simulated parasite infections using a constant

initial parasite dose for three food levels. Higher food level

resulted in chronic infections, whereas low food availability

allowed the host to expel the parasite (figure 1c,d; electronic

supplementary material, figure S4). This is somewhat coun-

terintuitive, because higher food level improves host body

condition, and therefore the strength of the immune response.

Immunity was, however, counterbalanced by the fact that

hosts with better body condition at the onset of infection

(due to higher food levels) initially had higher resource avail-

ability for parasites (figure 1b). Parasites therefore expanded

in biomass and strengthened the positive feedback on their

own resources (through resource modulation), leading to a

chronic infection. Low food levels provided a less profitable

resource environment to the parasite. Parasites could not

grow as fast and did not effectively enforce the positive feed-

back loop between parasite biomass and resource availability.

Suppressed by the immune response, parasites were expelled

and hosts experienced an acute infection (figure 1b,d;

electronic supplementary material, figure S4).

The time series show diverging results and eventually

stable system attractors that represent either acute or chronic

outcomes for the within-host dynamics (figure 1; electronic

supplementary material, figure S4). We hypothesized that
such diverging outcomes for host individuals may contribute

to the well-known pattern of overdispersed parasite distri-

butions in host populations [3]. Assuming a population of

hosts, each exposed to a unique parasite dose and sampled

either at the same (figure 2, top row) or different (figure 2,

second row) timepoints in infection, we find that the parasite

burden distributions conform to a negative binomial distri-

bution if the system state is bistable. Moreover, when

parameter values are outside of the bistable region, parasite

burden distributions approach entirely acute (figure 2, third

row) or entirely chronic distributions (figure 2, bottom

row). This final negative result confirms that a negative bino-

mial distribution is unlikely to arise due to variation in

exposure alone [3], but rather requires underlying dynamical

variation. This negative binomial burden distribution also

occurs when we include variation in the parametrization of

host and parasite processes (electronic supplementary

material, figure S6). Including this variation is more represen-

tative of natural systems, where genetic and phenotypic

variation exists among both hosts and parasites.
(b) Stability analyses of acute and chronic equilibrium
states

The two stable states we found in time simulations (figure 1)

represent the core dynamics of our system. We studied these

dynamics further through stability analysis of the stable

states, using parameter bifurcations, which illustrate how

the system stability changes as a function of parameters.
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For this analysis we studied the equilibrium outcomes as

a function of the parasite attack rate, sc, because this par-

ameter quantifies a key process for the parasite (resource

uptake) and is an important determinant of the interaction

strength between host and parasite. We found three regions

with qualitatively different dynamics (figure 3; electronic

supplementary material, figure S7). Low attack rates (below

the persistence threshold) only allow for acute infections

(figure 3a), since the extinct-parasite equilibrium is the only
stable attractor. Parasites were expelled upon infection by

the host’s immune response, and the final system state (equi-

librium) did not contain the parasite. High attack rates (above

the invasion threshold) only allow for chronic infections

(figure 3b), since the positive-parasite biomass equilibrium

is the only stable attractor. Here, parasites are able to

invade even from very low biomass, resulting in a chronic

infection. Intermediate attack rate values allow for both

acute and chronic infections (figure 3; electronic
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supplementary material, figure S7), with the outcome being

dependent on initial conditions (figures 1 and 3a,b). The

acute and chronic equilibria are characterized by parasite

biomass being zero or positive (figure 3c; electronic sup-

plementary material), but these states also differed with

respect to host body condition.

In the acute infection equilibrium, the parasite was

absent, and because of this all host variables, S, R, C and Ii,

were constant and independent of the parasite attack rate.

The induced immune response was absent (figure 3d ),

reversible biomass was high (figure 3e) and biomass in

egesta was low (figure 3f ). Note that host irreversible mass

is constant across the entire parameter range because we

initiate simulations in adult-sized hosts.

In the chronic infection equilibrium, the host had an elev-

ated induced immune response, triggered by the presence of

the parasite (figure 3d ). The induced immune response inten-

sity increased with increasing parasite attack rate, in response

to increasing parasite biomass (figure 3c). Because of the

resource demands of the immune response and the reduction

in assimilation efficiency due to the parasite, reversible bio-

mass was reduced with respect to the acute infection state

(figure 3e). In the chronic infection equilibrium, the parasite

exerted a positive feedback on the biomass in the egesta,
keeping the resource level high, and maintaining a profitable

environment for itself (figure 3f ).

We verified that bistability depends on resource modu-

lation using a simplified model that only accounted for

resources and parasites (electronic supplementary material).

The analysis of this simple model revealed the importance

of a nonlinear functional form for the resource modulation

function, Ea(P) (equation (2.9)). We also carried out two-

parameter bifurcation analysis to quantify the importance

of the parameters eAmin, which determines how much para-

sites are able to modulate assimilation efficiency, and vi,

which determines the killing rate of the induced immune

response. These analyses showed that the larger the impact

a given parasite biomass has, the stronger the potential for

positive feedback and for bistability (electronic supplemen-

tary material, figure S7a). Increasing the immune killing

rate did not qualitatively affect the occurrence of bistability

(electronic supplementary material, figure S7b).
4. Discussion
We show that the positive feedback of parasites on their own

resources can produce both acute and chronic infections in a
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single within-host model. This positive feedback is compar-

able to an Allee effect in free-living consumer species [40],

where per capita increase is positively correlated to popu-

lation density at low densities. Accounting for bottom-up,

resource-driven processes is essential to capture this

possibility of acute and chronic infections emerging

simultaneously in the same model.

Our results contrast with previous within-host theory that

must define a priori whether a model represents an acute or

chronic infection. In these classic models, one makes separate

assumptions about the parasite–host interaction to produce

differences in infection outcomes (acute versus chronic

[9,10,41]). Even previous approaches where both resource-

competition and immunity are explicitly accounted for were

restricted to chronic infections [11]. In contrast, we only assume

that all within-host processes rely on available resources (or

energy). And we consequently find acute and chronic infections

as emergent model outcomes, depending on the initial con-

ditions in parasite dose or different food availability. These

results fill a knowledge gap in within-host theory, by showing

that acute and chronic infections can both be the outcome of

infection in a single (general) within-host model [10,11].

Our assumption that parasites can reduce their host’s

assimilation efficiency is based on various mechanisms

found in empirical systems. Helminths commonly reduce the

host’s ability to assimilate nutrients. For example, many

species feed on intestinal cells [37], alter intestinal lining struc-

ture [42] and increase intestinal permeability [43]. While some

immune defences ameliorate these effects [43], other defences

reduce nutrient acquisition, thereby indirectly reducing assim-

ilation [44,45]. Reduced digestive efficiency has substantial

consequences [46–48]: calves infected with GI nematodes

had nearly 40% lower conversion efficiency of feed to live-

weight gain [49]. We capture all these sources of reduced

assimilation efficiency in the term Ea(P) in our system.

The immune response was represented using a minimal

form, where we did not do justice to many known aspects

of immunology, such as the specific cell types involved in

responses against nematodes [50] or the many positive and

negative feedbacks inherent to the dynamics of the immune

system [51]. Moreover, (genetic) variation in immune func-

tion is expected to alter host susceptibility and parasite

infection outcome and may explain some discrepancies

between our model predictions and empirical results [52].

For example, in our model, higher parasite doses are more

likely to lead to chronic infections, whereas dose–response

experiments suggest that lower parasite doses can produce

chronic infections in otherwise resistant host strains

[53–55]. In laboratory settings, this outcome is attributed to

low-dose infections leading to a response biased towards

immune activity that is ineffective against nematodes (instead

of an effective response that follows high-level exposure [52]).

In our model, effective or ineffective immune responses

would bear the same resource costs, but we do not capture

the parasite-dose dependence in the immune response type

that is being triggered (effective or ineffective). Accounting

for a more sophisticated representation of the parasite-dose

dependence in the immune response could reveal the inter-

play with resource modulation, and how these processes in

concert explain variability in infection duration.

Additionally, previous studies showed that immune

modulation by parasites is a decisive factor of parasite–host

interactions [13–15]. But the theoretical models accounting
for this effect have not shown bistable outcomes [41], such

as we present here. We included the resource-dependence

of the immune response, providing an indirect route for

immune modulation by parasites [12]. It is, however, likely

that immune modulation by parasites can also directly pro-

duce bistability through a similar Allee effect. It would be a

valuable extension to investigate the interplay of immune

and resource modulation combined, and the relative potential

of these processes in determining infection outcomes.

An important challenge to testing our model predictions

against experimental data is that in laboratory environments

high-dose exposure is usually performed in hosts fed to

excess (see [18–20] for exceptions). To avoid confounding

effects, we need direct, experimental manipulation to pair

dose variation with diet variation in factorial designs. And

quality matters also, as shown in a study where hosts fed

on low-protein diets more rapidly expelled helminth para-

sites [20]. In line with our finding that the immune

response to parasites strongly depends on available

resources, [56] showed that lactating mice experimentally

infected with T. muris had a suppressed immune response

compared to non-lactating individuals. Our finding of bifur-

cating infection outcomes resonates with recent empirical

studies in Drosophila and Tribolium, both of which showed

that experimental infections could produce either short-dur-

ation, fatal infections or long duration, persistent infections

[57,58]. Importantly, these divergent outcomes were

observed even when host and pathogen genetic variation,

dose, and host environment were tightly controlled. In the

light of all these laboratory observations, note that field sys-

tems and real-world parasite infections are likely to be

more resource-limited than laboratory conditions, and unra-

velling where and why differences occur between

controlled and real-world systems is crucial for progress

towards solving real-world parasite infection patterns.

The results we present may help explain the ubiquitous

pattern of burden variation among individuals in field

systems [3]. Our population level projection of the bistability

between acute and chronic infections in individual hosts

generated aggregated burden distributions starting with

only stochastic variation in dose. But dose variation by

itself is insufficient to generate heterogeneity in burden; at

the same time, without a source of host heterogeneity,

bistability alone does not produce burden variation. It is the

combination of the two that drives burden variation.

For the population projection, we assumed that parasite

biomass represents a fixed number of parasites of the same

size, discounting the effects of different numbers of differ-

ently-sized parasites. This is an important simplifying

assumption, since a few large parasites may have very differ-

ent energetic requirements (both in terms of host resource

ingestion rates and metabolic rates) than many small

parasites of equal biomass, given the difference in surface-

area-to-volume relationship.

Future work should incorporate knowledge of these het-

erogeneities into the DEB framework to tighten predictions

for how parasite biomass and burden are related, and how

these traits combine to affect host health and parasite trans-

mission. This would also allow a more mechanistic analysis

of processes like (biomass-dependent) parasite-induced host

mortality [59], or biomass-driven infection by free-living para-

site stages. Such a mechanistic model would build towards a

nested approach including the energetic dependencies
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between parasites and their hosts, integrating from the within-

host to the population level [60].

Previous adaptations of dynamic energy budgets for

parasite–host interactions revealed the importance of host

metabolism for parasite virulence [29], parasite production

[11,21] and parasitic castration [61], but none of these systems

accounted for bistability. Here we highlight the variability of

infection duration and parasite burdens, which have wide-

ranging implications for parasite transmission, infectivity

and host mortality [21].

The dynamics we present here take place in an ecological

dimension, where the interaction between host and parasite,

as well as the functioning of the immune response, are all

dependent on bottom-up resource availability. There is evi-

dence that parasite modulation is dependent on parasite

density or parasite biomass [62], but further studies should

explore how this relationship differs between (resource-lim-

ited) field versus laboratory systems. The energy dependence

of all processes in our modelling framework ensures that the

outcomes we find emerge from low-level assumptions and

calls for extensions from the within-host scale to considering

the between-host dynamics of infectious disease.
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