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Abstract

The causes of essential hypertension remain an enigma. Interactions between genetic and external 

factors are generally recognized to act as aetiological mechanisms that trigger the pathogenesis of 

high blood pressure. However, the questions of what genes and factors are involved, and when and 

where such interactions occur, remain unresolved. Emerging evidence indicates that the 

hypertensive response to pressor stimuli, like many other physiological and behavioural 

adaptations, can become sensitized to particular stimuli. Studies in animal models show that, 

similarly to other response systems controlled by the brain, hypertensive response sensitization 

(HTRS) is mediated by neuroplasticity. The brain circuitry involved in HTRS controls the 

sympathetic nervous system. This Review outlines evidence supporting the phenomena of HTRS 

and describes the range of physiological and psychosocial stressors that can produce a sensitized 

hypertensive state. Also discussed are the cellular and molecular changes in the brain neural 

network controlling sympathetic tone involved in long-term storage of information relating to 

stressors, which could serve to maintain a sensitized state. Finally, this Review concludes with a 

discussion of why a sensitized hypertensive response might previously have been beneficial and 

increased biological fitness under some environmental conditions, and why today it has become a 

health-related liability.
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Introduction

Environmental and physiological challenges encountered throughout one’s lifetime can 

induce long-lasting adaptations in physiological and behavioural systems. Many times the 

consequence of such experientially induced adaptations is increased biological fitness. 

However, in some cases, antecedent life events can act as strong aetiological factors that set 

the stage for subsequent challenges (or stressors) to trigger the onset of disease.

Among the important roles of the central nervous system (CNS) is the control of 

physiological and behavioural systems that maintain homeostasis as well as manage other 

complex functions, such as the integration of sensory and motor information and 

reproduction. Complex neural networks have been identified that control such functional 

systems. These networks are composed of many neuronal cell groups (nuclei) connected to 

one another by nerve pathways (tracts). Neural networks integrate and process incoming 

(afferent) information, which results in outgoing (efferent) signals that determine whether 

and to what extent particular behavioural, neural, immune or endocrine responses are 

elicited. Such networks are involved in both the short-term and long-term control of 

physiological and behavioural functions. Reflexes that are innate, hardwired and genetically 

determined mediate short-term responses to a particular stimulus. By contrast, long-term 

modifications can be introduced into neural networks to alter the control of functional 

systems. Neural networks also encode and store information about past events for later 

retrieval. This ‘memory’ property of adaptive neural control of effector systems involves 

neuroplasticity and enables new responses to be acquired or the magnitude of responses to a 

previously encountered stimulus to be adjusted in the face of new challenges or 

environmental changes.

One of the simplest forms of neurally mediated adaptation is response sensitization . The 

neural networks and cellular and molecular mechanisms involved in response sensitization 

have been studied in many functional systems, including pain, motivation, drug addiction, 

respiratory control, stress, salt appetite, and exercise. However, the hypertensive response to 

pressor stimuli has only recently1,2 been recognized as a mechanism that can become 

sensitized, and the neural mechanisms that mediate hypertensive response sensitization 

(HTRS) are, therefore, being actively investigated. Information from such studies provides a 

fresh understanding of what is likely to be an important causal mechanism of some forms of 

essential hypertension

In this Review, we describe insights into the mechanisms underlying HTRS derived from 

investigations into the conditions that induce this phenomenon. We also discuss how an 

induction-delay-expression (IND-DEL-EXP) experimental paradigm can be applied to 

investigate the neuroplasticity underlying HTRS and how activity-driven CNS 

neuroplasticity induced either in the perinatal period or in adulthood can maintain the 

propensity for increased sensitivity of the hypertensive response to pressor stimuli, perhaps 

even over the course of a lifetime. These topics will be introduced by discussing the nature 

of essential hypertension and the probable role of the sympathetic nervous system (SNS) in 

its pathogenesis. Also described are the types of stimuli and conditions that can activate and 
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modify central neural networks, thereby changing the responsiveness of the SNS and 

altering the long-term regulation of blood pressure.

Physiological and psychosocial stress

For over 100 years, the SNS has been recognized as a key adaptive system that corrects 

factors that challenge homeostasis3–5. Actual dyshomeostasis or threats that might disrupt 

the stability of the internal environment activate the SNS. The latency of sympathetic 

activation (that is, the time interval between stimulus and response) under such 

circumstances is nearly instantaneous, and its effects are more rapid than those of other 

systems (such as endocrine, immune or behavioural responses) that are mobilized 

subsequently to restore dislocations from homeostatic norms.

The stimuli or conditions that increase sympathetic activity can vary over a range of 

intensities and produce graded degrees of regional sympathetic activation. For example, an 

external threat evokes strong behavioural (aggression or running away) and cardiovascular (a 

haemodynamic pattern characterized by increased cardiac output, increased skeletal muscle 

blood flow, and decreased flow to renal and mesenteric vascular beds) changes. This has 

been dubbed the ‘fight - flight’ response.

The term stress was used to describe both the sympathetic and the behavioural responses to 

noxious or threatening challenges3–5. Later research showed that behavioural and 

cardiovascular components of the fight - flight response could be elicited by stimulating the 

hypothalamus6,7, amygdala8, dorsal tegmentum and central grey9. In turn, these studies were 

followed by elucidation of the role of the hypothalamo–pituitary–adrenal axis in response to 

stressors, and the general adaptation syndrome10–12

A stressful stimulus (or stressor) can be characterized as physiological or psychosocial. 

Physiological stressors (also known as systemic, homeostatic or interoceptive stressors13–15) 

are challenges that result from an immediate disruption in homeostasis, such as hypoxia, 

hypovolaemia, extracellular hypertonicity or hypoglycaemia. By contrast, psychosocial 

stressors (also known as psychological, processive, neurogenic, mental or exteroceptive 

stressors13–15) do not immediately disrupt homeostasis but are perceived as posing a threat 

to an individual’s physical or psychological integrity. Examples of psychosocial stressors are 

restraint, conditioned fear and psychosocial defeat. Psychosocial stressors include both non-

conditioned, prepotent stimuli, such as the sight, sound or odour of a predator, fear of 

heights or fear of snakes, and conditioned stimuli that, despite being initially neutral or 

innocuous, have become linked to aversive responses through associative learning (also 

termed classical or Pavlovian conditioning). Psychosocial stressors engage sensory receptors 

and their afferent pathways (related to sight, hearing, smell, touch and taste) and involve the 

limbic system (including the amygdala, hippocampus and medial prefrontal cortex) in 

information processing. Psychosocial stressors that elicit sustained or repeated SNS 

activation are hypothesized to be important causes of essential hypertension, discussed 

below16–19.
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Essential hypertension

High blood pressure or hypertension is the leading risk factor for disability and death 

worldwide20,21. Hypertension increases the likelihood of many major disorders, including 

heart and kidney disease, stroke, dementia and retinopathy. In 2015 the number of adults 

with hypertension worldwide was estimated to be 1.13 billion22. A cross-sectional study of 

individuals aged 35–70 years from 17 countries estimated that 40.8% were hypertensive23. 

New guidelines24 announced in 2017 will further increase the number of individuals 

considered to have hypertension, as the new threshold values for systolic and diastolic blood 

pressure are lower than those used previously for diagnosis of hypertension25.

Patients in whom hypertension can be attributed to an underlying medical condition or 

medication are diagnosed as having secondary hypertension. However, these individuals 

account for 10% or less of the total hypertensive population. For the majority of 

hypertensive adults, the aetiology of the disease is unknown and they are consequently 

diagnosed as having primary (or essential) hypertension. Essential hypertension is 

recognized to be a multifactorial disorder involving multiple genes and environmental 

influences26,27. Almost certainly, several subtypes of essential hypertension will be 

identified, with different aetiologies and courses of development resulting from the 

interactions of multiple genetic and environmental factors.

The role of tissue perfusion factors

Increased systemic vascular resistance is the proximal cause and hallmark of established 

essential hypertension28,29. Early studies of the mechanisms responsible for cardiovascular 

homeostasis identified multiple interacting factors that control tissue perfusion, including 

chemical and neuromodulatory agents, and factors that control cardiac and vascular 

reactivity, blood volume, blood pressure and blood viscosity30. In recognition of the fact that 

blood pressure is a mechanism for controlling tissue perfusion, the mosaic theory of arterial 

hypertension proposed that these interacting factors were also likely to contribute to the 

pathogenesis of hypertension30,31. This theory led to the inevitable question of whether a 

fundamental fault in these systems causes essential hypertension32 — that is, whether a 

single cause of essential hypertension could be identified.

One approach to evaluate the relative contribution of various factors involved in the control 

of tissue perfusion and blood pressure regulation was to apply computer modeling with 

parallel animal experiments to test the relative contributions of various candidate 

factors33–35. These studies showed that normal kidneys have an infinite capacity to 

normalize blood pressure in response to changes in salt and water intake and excretion. By 

contrast, impairment in renal function reduces sodium and water excretion, which leads to 

increased extracellular volume and, in turn, to increases in blood volume and cardiac output. 

One route to increased systemic vascular resistance is thought to be mediated by the 

phenomenon of total body autoregulation, in which vasoconstriction is triggered by over-

perfusion of tissues36.
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The role of SNS overactivity

The role of the CNS in blood pressure regulation was initially thought to be limited to the 

baroreflexes and chemoreflexes. Such reflexes were considered to be involved only in short-

term regulation of blood pressure; they were considered to have no role in the long-term 

control of blood pressure because these reflexes adapt to chronically high or low blood 

pressures37,38. Consequently, the role of the CNS in the regulation of blood pressure and in 

the pathogenesis of essential hypertension was largely disregarded.

However, overactivity of the SNS is now considered a major cause of essential 

hypertension39–42. Studies measuring sympathetic nerve traffic and norepinephrine spillover 

have provided direct evidence for sympathetic activation of the skeletal muscle, heart and 

kidney in the early and established stages of essential hypertension43,44. As essential 

hypertension progresses, this increased sympathetic drive contributes to end-organ 

damage45. Some patients with elevated SNS tone respond to treatment with sympatholytic 

drugs by a decrease in blood pressure. At least 50% of patients with primary hypertension 

are estimated to have this neurogenic form of essential hypertension46. Among the most 

important issues to be addressed for understanding the causes and course of essential 

hypertension is identification of the mechanisms responsible for inducing and initiating the 

early increase in SNS activity and for sustaining the potential for increased SNS drive. If the 

SNS does indeed play an important part in the pathogenesis of essential hypertension, the 

next questions that arise are what factors or mechanisms lead to this excess SNS activation, 

and how do they result in long-term increased systemic vascular resistance (FIG. 1).

The central sympathetic nervous system

The SNS and the parasympathetic nervous system are two branches of the autonomic 

nervous system (ANS). Both sympathetic and parasympathetic arms influence activity of the 

heart, and the sympathetic component acts on the vasculature. Portions of the ANS are 

located in both the periphery (peripheral ganglia and nerves) and CNS (brain and spinal 

cord). Insight into how the SNS contributes to the long-term control of blood pressure 

necessitates some familiarity with its central organization.

The CNS portion of the ANS is a neural network that receives and integrates inputs from 

somatic and visceral sensory systems. The consequence of this central processing is the 

generation of a pattern of autonomic and endocrine system responses that determine blood 

pressure on a moment-by-moment basis. The number of brain nuclei involved in the control 

of sympathetic tone and blood pressure is large, and their connections and functional 

interactions are complex47,48. It is likely that multiple sites within the neural network 

controlling SNS activity store information about prior SNS activations resulting from 

physiological and psychosocial stressors.

The neural systems implicated in sympathetic responses to physiological and psychosocial 

stressors share some common elements, but they also have some different components. 

Probably the best-characterized central circuitry controlling SNS tone is that related to 

systemic stressors affecting the control of blood pressure and body fluid homeostasis 

(reviewed elsewhere47–50). The brain receives information about blood pressure and 
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extracellular fluid status through two different modes of body–brain communication: 

afferent neural input from the vasculature, and humoral input acting directly on target tissues 

in the brain. Mechanoreceptors in the venous and arterial vasculature sense changes in blood 

pressure and blood volume, causing a change in afferent nerve signaling to the nucleus 

tractus solitarius (NTS), which triggers corrective reflexes. Humoral signals, by contrast, act 

on two forebrain regions that lack a blood-brain barrier: the subfornical organ (SFO), and the 

organum vasculosum of the lamina terminalis (OVLT)51. The SFO contains receptors for 

angiotensin-II (ANG II) and the OVLT includes osmoreceptors that detect extracellular 

solute concentrations (mainly Na+). The SFO and OVLT, along with the median preoptic 

nucleus (MnPO), process information relevant to the status of blood volume, pressure and 

extracellular fluid osmolality52. (FIG. 2).

Hindbrain structures (the NTS and parabrachial nucleus (PBN) are connected to rostrally 

located structures in the hypothalamus, amygdala and along the lamina terminalis; reviewed 

elsewhere47–49,53). The hypothalamic paraventricular nucleus (PVN) is a key area in the 

hypothalamus that receives both ascending input from the hindbrain and descending input 

from the SFO, OVLT and MnPO. The PVN, therefore, functions as a key integrative node 

for processing information important for maintaining body fluid and cardiovascular 

homeostasis. Sympathetic premotor neurons projecting from the PVN innervate the 

intermediolateral cell column (IML) of the spinal cord, either directly or indirectly via the 

rostral ventrolateral medulla (RVLM). The IML contains the preganglionic cell bodies of 

sympathetic axons leaving the CNS, which act as the final common path for the SNS (FIG. 

2).

In comparison to the neural pathways mediating responses to challenges associated with 

altered fluid balance and blood pressure, the network that controls SNS activity associated 

with psychosocial stressors is not very well defined. However, some major components have 

been identified, mainly by functional mapping 49,54–56. The amygdala is a key structure in 

mediating responses to psychosocial stressors. The short neural path from exteroceptive 

sensory receptors to the amygdala enables rapid activation of responses to environmental 

stressors that signal danger57. The amygdala also receives inputs from the medial prefrontal 

cortex and hippocampus, which are involved in memories of previously learned associations 

with conditioned stimuli54. In the diencephalon, the lateral hypothalamus /perifornical 

area55–58 and the dorsomedial hypothalamus have both been implicated in the cardiovascular 

components of the fight or flight response53,59,60. An output pathway projects from the 

dorsomedial hypothalamus to the rostral ventromedial medulla, and contains sympathetic 

premotor neurons that project to the IML49,53.

The renin–angiotensin–aldosterone system

The discovery of the enzyme renin and its substrate, angiotensinogen61, precipitated the 

elucidation of a major pressor system involving renin, angiotensinogen, angiotensin-I (ANG 

I), angiotensin-converting enzyme (ACE) and ANG II (reviewed elsewhere62). ANG II 

exerts its actions by binding to the type 1 and type 2 ANG II receptors (named AT1 and 

AT2, respectively). Because ANG II is a major determinant of circulating aldosterone levels, 
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and ANG II and aldosterone have many common functions, this system is often referred to 

as the renin–angiotensin–aldosterone system (RAAS).

Several other elements of the RAAS have since been discovered. A homologue of ACE, 

ACE2, removes a carboxy-terminal phenylalanine from ANG II to produce a heptapeptide, 

ANG1–7, which binds to the Mas-related G-protein coupled receptor MRG (also known as 

MASR). ANG1–7, ACE2 and MASR are considered to be components of a counter-

regulatory (that is, antihypertensive) arm of the RAAS62–64. ANG II itself could also have 

both hypertensive and antihypertensive actions, as the effects of ANG II binding to AT2 

oppose those produced by its binding to AT162,63.

In the early 1970s, so-called brain renin or isorenin (a renin-like substance discovered in the 

brain, probably cathepsin D) was thought to be the first brain RAAS component65,66. It is 

now recognized that most components of the RAAS are synthesized in the CNS as well as at 

many sites in the body, including the vascular wall, heart, adipose tissue, haemopoietic bone 

marrow, lungs, and the gastrointestinal tract62,63. Although some controversy remains, work 

by many contributors has resulted in a general consensus that essentially all RAAS 

components are generated de novo within the mammalian CNS and that the weight of the 

evidence favours the existence of a brain RAAS67–71.

It is important to understand how the peripheral RAAS is related to the brain RAAS. Many 

early studies investigating communication between the peripheral and brain RAASs led to 

the proposal that circulating ANG II acts on the SFO in the mode of a circulating hormone 

to activate ANG II-containing efferent neurons that use ANG II as a neurotransmitter or 

neuromodulator 72–74. Substantial evidence continues to support this concept of humoral–

neural coupling between the circulating and brain RAASs (reviewed elsewhere75). In the 

brain, ANG II is likely to function as an excitatory neuromodulator that acts in concert with 

excitatory neurotransmitters (such as glutamate) at synapses in the descending pathway 

between the SFO and IML to increase SNS activity75 (FIG. 2) and thereby induce activity-

driven neuroplasticity.

Microglia and pro-inflammatory cytokines

Both neurons and brain glial cells participate in the orchestration of cardiovascular and 

metabolic functions76,77. The brain has its own innate immune system; microglia are 

macrophages that migrate into the brain early in development and become its resident 

immune cells. Both systemic and brain components of the immune system use cytokines for 

autocrine, paracrine and endocrine (extracellular) signaling involved in immunomodulation. 

Levels of pro-inflammatory cytokines, including tumour necrosis factor-α (TNF-α), 

interleukin (IL)-6 and IL-1β, are increased in cardiovascular disease states, and extensive 

evidence indicates that these cytokines contribute to SNS activation in heart failure and 

hypertension78,79.

Activated brain microglia release pro-inflammatory cytokines and upregulate their 

production of extracellular and intracellular reactive oxygen species80–82. Both 

spontaneously hypertensive rats and animals with ANG II-induced hypertension show 
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microglial activation within the PVN, associated with increased levels of pro-inflammatory 

cytokines80–82 or targeted depletion of activated microglia within the PVN attenuates ANG 

II-induced hypertension and decreases both pro-inflammatory cytokine levels within the 

PVN and cardiac hypertrophy81,82. These results indicate that ANG II-induced microglial 

activation and the subsequent release of pro-inflammatory cytokines contribute to the 

development of hypertension. Of note, ANG II itself can activate microglia and stimulate the 

release of pro-inflammatory cytokines82,83.

Pro-inflammatory cytokines released in the periphery and in the brain as a consequence of 

RAAS activation can also upregulate AT1. Blood-borne pro-inflammatory cytokines can 

increase SNS activity and elicit a pressor response by acting on the SFO to increase brain 

RAAS activity and inflammation84–86. This finding suggests that the SFO-mediated 

sympathoexcitatory response to pro-inflammatory cytokines depends on having an ambient 

level of activity of both the brain RAAS and pro-inflammatory cytokines84–86.

Plasticity in neural networks

Late in the 19th century, the idea that the relationship between cells of the nervous system 

could be modified and that life experiences could produce such changes provided the first 

structural basis for memory (reviewed in 87). Half a century later, a functional hypothesis 

accounting for the storage of information involving the synapse was proposed88. According 

to this hypothesis, the close temporal contiguity of activation of a presynaptic neuron 

immediately followed by firing of a postsynaptic neuron strengthened the connection 

between the two cells.

Further support for this functional hypothesis was generated by experiments demonstrating 

that the strength of synapses could be modified by delivering high-frequency electrical 

stimulation to a pathway projecting onto hippocampal granule cells89. The stimulation 

induced facilitation of extracellular field potentials in the dentate gyrus of the hippocampus 

that lasted for a sustained duration, suggesting that the phenomenon was akin to memory. 

This enhanced response, known as long-term potentiation (LTP), can be induced at many 

other sites in the nervous system90,91, including the sympathetic ganglia92,93.

At the time LTP was discovered, investigators in the field of memory and learning classified 

learning as either associative or non-associative. Two forms of associative learning are 

classical or Pavlovian conditioning and instrumental conditioning (also known as operant 

conditioning). In both forms of associative learning, a neutral stimulus becomes associated 

with a response (or with another stimulus) as a result of the subject undergoing a 

conditioning procedure. Non-associative learning does not require a neutral stimulus; 

however, repeated presentations of a stimulus produce a change in the magnitude of an 

elicited response. A decrease in response amplitude after repeated stimulation is termed 

habituation, whereas an increase in response amplitude is termed sensitization. Habituation 

occurs when a stimulus provides little relevant information — particularly when it proves to 

be non-aversive and non-threatening. Response sensitization occurs when a stimulus is 

injurious or threatening, and activates defensive physiological and behavioural responses.
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The study of response sensitization in mammals and lower species led to the discovery of 

many fundamental cellular and molecular mechanisms that are important for the formation 

and retention of memories94,95. Neural mechanisms responsible for sensitization have been 

investigated in many functional systems, including pain96–98, cravings for drugs of 

abuse99–102 or salt103,104, baroreceptor and chemoreceptor-reflexes105,106, reflex motor 

responses107, intermittent hypoxia108,109, respiration110,111, stress112,113 and exercise114,115. 

Progress in investigating the role and mechanisms of neuroplasticity in sensitization of many 

of these CNS-supervised functional systems has been rapid because the neural pathways 

controlling these responses have been defined. The neuroanatomy of the brain network 

controlling SNS activity and blood pressure has also been characterized. However, only 

recently have we recognized that HTRS exists and is mediated by maintained 

neuroplasticity1,116.

The evidence supporting the existence of a modifiable CNS-network-embedded controller of 

SNS activity and blood pressure is discussed in the next section. This CNS controller of 

sympathetic tone is adaptive and can alter long-term regulation of blood pressure as a result 

of prior experience117,118. In other words, an altered cardiovascular response is learned as a 

result of the presence of an antecedent stimulus. This sensitized capacity to increase SNS 

activity in response to physiological and psychosocial challenges provides a working 

hypothesis to explain how exposure to stressors earlier in life can, through vascular and renal 

mediators, lead to increased systemic vascular resistance and high blood pressure at a later 

time (FIG. 1).

Hypertensive response sensitization

IND-DEL-EXP experiments

Our research group has investigated sensitization of the hypertensive response using an IND-

DEL-EXP experimental paradigm (BOX 1)1. In in an initial experiment a very low, non-

pressor dose of ANG II was administered during the induction phase. After a 1-week delay 

period, animals exposed to the non-pressor dose of ANG II during the induction phase show 

a significantly enhanced hypertensive response during the expression phase, compared with 

control animals that received vehicle during the induction phase (BOX 1). A follow-up 

experiment demonstrated that the HTRS-inducing effects of ANG II were mediated by the 

CNS. Intracerebroventricular administration of very low (non-pressor) doses of ANG II 

during the induction phase had no sustained effect on blood pressure during the induction 

and delay phases yet still induced HTRS1 . Additional evidence implicating the CNS in 

HTRS was provided by experiments showing that intracerebroventricular administration of 

irbesartan (an AT1 antagonist) along with subcutaneous low-dose ANG II in the induction 

phase prevented HTRS1.

By employing the IND-DEL-EXP experimental design, it was possible to provide the first 

unambiguous demonstration that the hypertensive response can be sensitized1. The power of 

the IND-DEL-EXP method is that it disambiguates induction of a sensitized response from 

expression of sensitization. Most procedures used to induce hypertension conflate the time 

and processes involved in inducing sensitization with the period of expression of the 

hypertensive response. A retrospective view of the literature indicates that there are 
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phenomena that in all likelihood are examples of HTRS but that have not been interpreted as 

involving the process of sensitization and of CNS neuroplasticity. Two good examples are 

the effects of the induction of hypertension by prolonged systemic administration of very 

low doses of ANG II and of the phenomenon of the rapid expression of hypertension 

following renal artery clipping-unclipping and re-clipping.

Large doses of ANG II administered systemically are well known to produce a rapid rise in 

blood pressure. However, in the mid-1960s, studies in the rabbit interestingly demonstrated 

that maintained infusions of very low doses of ANG II that initially produced no notable rise 

in blood pressure would after several hours or days produce frank hypertension119,120. This 

is in spite of the fact that circulating levels of ANG II were likely to reach study-state within 

a few minutes. This so-called slow-pressor effect of ANG II has been demonstrated in many 

species (including, dog121, rat122, mouse123, sheep124 and humans125). The capacity of the 

maintained administration of low doses of ANG II to progressively shift the dose-response 

curve upward and produce a greater rise in the blood pressure response was originally 

defined as “angiotensin auto-potentiation” 126,127. Now after recognizing that the 

hypertensive response can be sensitized, perhaps a more logical interpretation of the slow-

pressor effect of ANG II and a mechanistic clarification of the concept of auto-potentiation 

is that as the low-slow pressor dose infusion of ANG II proceeds, a sensitized state is 

progressively being induced that reinforces and amplifies the ongoing rise in blood pressure.

Constricting renal arteries by various methods, including using small metal clips, produces 

hypertension over the course of several days. In rats with established two-kidney, one-clip 

renal hypertension (2K-1C), removal of the renal clip rapidly restores blood pressure to 

normal levels. However, re-clipping the renal artery a short time after its removal very 

quickly reestablishes the hypertensive state128,129. This reinstated hypertension occurs much 

more rapidly than the time it took to make the animals hypertensive with the original 

placement of the renal clips. Also shortly after the renal artery clips are removed or the 

clipped kidneys are ablated the pressor responses to exogenous renin or ANG II is 

significantly enhanced128–130. Notably, one unclipping-reclipping experiment implicated the 

CNS by demonstrating that after destroying the spinal cord there was no greater renin-

induced pressor response in acutely unclipped 2K-1C rats129. Taken together, the clipping/

unclipping/reclipping studies indicate that a control of cardiovascular function behaved as if 

it had a memory for a condition induced by renal clipping. Because the 2K-1C rat model of 

renal HT chronically increases circulating renin129, it is probable that an initial rise in ANG 

II acted through neuroplasticity to reprogram the CNS to trigger a sensitized HT response 

when the renal artery was re-clipped or exogenous renin-angiotensin was administered. 

Examination of the re-clipping and slow-pressor response phenomena in the context of 

recognition of HTRS invites investigations examining the nature of central neuroplasticity 

associated with the maintenance of the sensitized state.

Neuroplasticity accompanying hypertensive response sensitization

One of the advantages of using the IND-DEL-EXP protocol to investigate HTRS is that 

cellular and molecular changes in the CNS can be examined in control and experimental 

groups at the end of either the delay or expression phases Being able to collect tissue 
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samples at the end of the delay phase is an especially important asset because the blood 

pressure of the experimental group is still normal and not different from that of the control 

group. This situation obviates any concern that results might be confounded by the differing 

levels of hypertension in the control and experimental groups, as is the case for samples 

collected at the end of the expression phase. Studies of mRNA and/or protein expression in 

the lamina terminalis and paraventricular nucleus at the end of the delay phase have proved 

to be particularly informative, because they indicate molecular changes that are sustained 

after induction. (FIG. 3)

In every HTRS model studied to date using the IND-DEL-EXP paradigm, mRNAs related to 

components of the RAAS are upregulated at the end of the delay phase1,2,131–135. Evidence 

most consistent has been the observation of upregulation of AT1 mRNA. This finding is 

compatable with many other in vivo and in vitro studies showing upregulation of AT1 or 

increased binding of ANG II to AT1 after treatments that elevate levels of ANG II136–142, or 

after administration or mineralocorticoid agonist143–146. These observations are particularly 

important, because for most agonist-receptor interactions, increasing the concentration of a 

ligand will typically produce downregulation of its receptor. The functional significance of 

agonist-induced receptor upregulation in the RAAS is that it can function as a feed-forward 

mechanism that presumably would result in response amplification and contribute to HTRS.

Recognizing that very low doses of ANG II can sensitize the hypertensive response by 

reprogramming the CNS to make it more responsive to ANG II may help explain the long-

standing therapeutic enigma observed in the treatment of many patients with essential 

hypertension. Specifically, HTRS and central neuroplasticity may help address the question 

of why RAAS antagonists are successful in lowering blood pressure in individuals with 

normal- or low- plasma renin activity147,148. In light of demonstrations of enhanced 

sensitization to ANG II and indications of neuroplasticity that includes upregulation of 

central AT1, it seems reasonable to speculate that in such patients prior exposure to 

challenges may have produced an increased the number of AT1 in the CNS to manifest 

HTRS. Consequently, the actions of RAAS antagonists to attenuate RAAS actions in the 

CNS would be more effective in reducing sympathetic tone and lowering blood pressure 

even in normal- or low- renin patients.

Sensitization is a form of non-associative memory. The study of the cellular and molecular 

basis of sensitization has significantly advanced knowledge about the nature of 

neuroplasticity underlying learning and memory94,149. The maintained molecular changes 

observed after HTRS induction in addition to those in the RAAS indicate that the 

neuroplasticity associated with HTRS are similar to those found in many other models of 

associative and non-associative learning and memory (FIG. 3). For example, in experiments 

that examined the effect of non-pressor doses of either ANG II or aldosterone given during 

induction of HTRS on growth factors in the lamina terminalis at the end of the delay phase, 

brain-derived neurotrophic factor mRNA and protein levels were increased, whereas 

vascular endothelial growth factor mRNA and protein levels remained unchanged136–142,150. 

Also, lamina terminalis tissues collected at the end of the delay phase showed no net 

increase in levels of the second messenger p38 mitogen-activated protein kinase (MAPK) 
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nor transcription factor cyclic AMP-responsive element-binding protein (CREB). However, 

levels of the phosphorylated forms of each of these proteins increased significantly150.

Collectively, the characterization of several of sustained changes following the delay phase 

in components of the RAAS and other molecular indictors of synaptic plasticity is consistent 

with the idea that there is neuroplasticity in the neural network controling sympathetic tone 

and blood pressure (FIGS. 2 & 3). These changes are likely to represent an instantiation of 

memories of earlier life challenges that produced a neural state resulting in HTRS.

Cross-sensitization

Cross-sensitization describes the development of HTRS despite the stimulus used during the 

induction phase being different from that used during the expression phase. Aldosterone and 

ANG II interact cooperatively in the brain, indicating that both mechanisms must be intact 

for hypertension to occur in response to systemically administered ANG II or 

aldosterone151,152. Cross-sensitization was first confirmed by the results of IND-DEL-EXP 

studies, in which subcutaneous aldosterone given at a non-pressor dose during the induction 

phase led to HTRS when a slow-pressor dose of ANG II was administered at the beginning 

of the expression phase2. Evidence that the CNS is involved in cross-sensitization was 

provided by further experiments showing, first, that intracerebroventricular administration of 

aldosterone at a non-pressor dose during induction produced cross-sensitization when a 

slow-pressor dose of ANG II was delivered during the expression phase. Second, that 

intracerebroventricular administration of a mineralocorticoid receptor antagonist along with 

subcutaneous aldosterone during induction blocked HTRS2.

Many different stressors can act to cross-sensitize with ANG II to induce HTRS in IND-

DEL-EXP experiments (TABLE 1). In the course of studying these stressors, our research 

group has also found many interventions that can block HTRS, some of which actually 

reverse the sensitized state (TABLE 2). The results of these studies provide insights into the 

nature of HTRS and into how it might be maintained by neuroplasticity (FIGS. 1 and 3). The 

Information that can be derived by varying the parameters applied during induction and 

expression phases and by changing the duration of the delay phase is illustrated by some 

examples of these studies, below.

High dietary fat intake and the role of central leptin and inflammation.—The 

current obesity epidemic makes it clear that increased adiposity is a major risk factor for 

hypertension. Obesity and consumption of a high fat diet are both widely accepted to 

produce a chronic state of low-grade inflammation in the CNS, which is characterized by 

increased activation of microglia and astrocytes, and increased CNS expression of genes 

encoding pro-inflammatory cytokines (TNF-α, IL-6 and IL-1β)153. Increased CNS levels of 

pro-inflammatory cytokines also contribute to elevated SNS activity in obesity154.

Growing evidence from human and animal studies indicates that activation of the RAAS is 

involved in the pathogenesis of both obesity and obesity-related hypertension155. Increased 

ANG II levels during diet-induced obesity (DIO) activate NADPH oxidase via AT1, leading 

to increased production of reactive oxygen species and further increased transcription of 

genes encoding pro-inflammatory cytokines155. Thus, the RAAS and pro-inflammatory 
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cytokines mutually reinforce each other’s actions in the periphery and in the CNS to 

generate sympathoexcitation and hypertension156,157.

Results from clinical trials suggest that in addition to its anti-hypertensive effects, 

pharmacological inhibition of the RAAS also protects against the development of DIO and 

type 2 diabetes mellitus158. Obese Zucker rats show increased sensitivity to the blood-

pressure-elevating effect of ANG II, and RAAS blockade lowers blood pressure in obese rats 

more than it does in lean rats, despite the obese animals having lower plasma renin activity 

than their lean counterparts159. In rabbits, 3 weeks of a high-fat diet led to increases in blood 

pressure, heart rate and renal sympathetic nerve activity, and this model of obesity-induced 

hypertension is known to be of neurogenic origin160–162. Interestingly, although animals 

with DIO placed on a normal diet were able to restore their body weight, insulin levels and 

leptin sensitivity to normal, their blood pressure, renal sympathetic nerve activity and levels 

of central RAAS components and pro-inflammatory cytokines remained high163. These 

results indicate that obesity itself might induce hypothalamic inflammation and sensitization 

of the brain to circulating sympathoexcitatory factors (such as those from the RAAS) and 

that these factors might drive hypertension.

In light of the relationship between obesity and essential hypertension and the need to 

understand how adiposity results in high blood pressure, our group conducted IND-DEL-

EXP experiments to test whether a high-fat diet could produce HTRS. Rats were placed on a 

high-fat diet for 3 weeks (the induction phase). At the end of this period, body weight, white 

adipose tissue mass and plasma leptin levels were all increased. Tissue samples from the 

lamina terminalis showed increased levels of mRNAs encoding components of the brain 

RAAS (namely, renin, ACE and AT1), the pro-inflammatory cytokines TNF-α and IL-6, and 

a marker of microglial activation (CD11b)131. In parallel experiments, animals on the high-

fat diet for three weeks were then returned to a normal diet and immediately challenged 

during an expression phase with a slow-pressor dose of ANG II. This evoked HTRS in the 

animals that had been on the high-fat diet. Taken together, these results suggest that a high-

fat-diet-induced upregulation of the RAAS and pro-inflammatory cytokines in the CNS, 

which participated in the induction of HTRS. The capacity of the RAAS and pro-

inflammatory cytokines to mutually upregulate their expression is an important factor in 

central feed-forward pathways that induce HTRS.

In obese humans and in animal models of DIO, increased SNS activity and high blood 

pressure are both associated with increased levels of leptin and activation of the leptin–

melanocyte stimulating hormone-α–melanocortin receptor 4 pathway164,165. Brain 

structures that mediate the central actions of leptin include the arcuate nucleus (ARC), PVN, 

SFO and hindbrain. Microinjection of leptin into the ARC or PVN resulted in increased SNS 

activity166,167, whereas deletion of the leptin receptor (LEPR) in the ARC or SFO attenuated 

this leptin-elicited increase in SNS activity166,168. Leptin-deficient or LEPR-deficient mice 

demonstrate attenuated microglial activation and reduced levels of inflammatory 

mediators169, findings that are consistent with leptin having a pro-inflammatory function. 

Furthermore, a high-fat diet and obesity both activate microglia and astrocytes and increase 

levels of pro-inflammatory cytokines in the SFO and PVN170. These effects are ANG II-

dependent, as some responses are reversed by deletion of AT1 in the PVN170. SNS 
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responses to leptin are also dependent on central AT1, as intracerebroventricular infusion of 

losartan attenuated SNS activity in response to leptin171. Additional evidence indicates that 

obesity-associated activation of the hypothalamic inflammatory pathway mediates the CNS 

functions of leptin172. These findings suggest that the interactions and synergism between 

leptin, the RAAS and pro-inflammatory cytokines are responsible for the increase in SNS 

activity that occurs early in the onset of obesity.

Obesity, a high-fat diet, leptin, pro-inflammatory cytokines and microglial interactions all 

have a role in HTRS. In IND-DEL-EXP experiments, central administration of leptin during 

the induction phase mimicked the HTRS-inducing effects of a high-fat diet, whereas 

intracerebroventriclar administration of a leptin receptor antagonist prevented the induction 

of HTRS by 3 weeks of a high-fat diet134. Intracerebroventricular TNF-α was as effective in 

inducing HTRS as intracerebroventricular ANG II given at a non-pressor dose. TNF-α given 

during the induction phase resulted in increased levels of mRNAs encoding components of 

the RAAS and increased levels of markers of inflammation and microglial activation in 

lamina terminalis structures131. Central inhibition of AT1, TNF-α synthesis or microglial 

activation all blocked the induction of HTRS by either leptin or high fat diet. These 

inhibitors also blocked the upregulation of RAAS activity and the rise in indicators of 

inflammation in the lamina terminalis131,134.

Taken together, the results of these studies provide insight into the role of metabolic factors 

and the actions of the brain RAAS and the brain innate immune system that mediate the 

production of HTRS. Accordingly, we hypothesize that eating a high-fat diet increases the 

effects of leptin on and in the brain, which activates the brain RAAS and upregulates 

inflammatory mechanisms that result in reprogramming the control of SNS activity and 

HTRS (FIG. 4). The consequence of these changes is that HTRS increases the likelihood 

that frank hypertension will develop if these challenges are sustained or when additional 

hypertensinogenic stressors are encountered later in life.

Gestational hypertension and maternal high dietary fat intake.—Maternal health 

during pregnancy is strongly associated with the cardiovascular health of her adult offspring. 

Many studies have demonstrated that the offspring of mothers with gestational hypertension 

have increased blood pressure in childhood and adolescence, and that these children are at 

an increased risk of developing hypertension in adulthood173–178. This risk to the offspring 

is graded and greatest in those whose mothers had the most severe hypertensive signs, such 

as early onset hypertension or pre-eclampsia177,179. Animal experiments also demonstrate 

that many kinds of prenatal insult, including uteroplacental insufficiency, protein restriction, 

chronic secondary hypertension and glucocorticoid treatment during pregnancy, lead to 

hypertension in the offspring180.

Increased renal sympathetic nerve activity and over activity of the RAAS and pro-

inflammatory cytokines in the periphery have been implicated as causal mechanisms in 

prenatal programming of hypertension. In human studies, the adolescent sons of mothers 

who had high blood pressure during pregnancy had increased aldosterone levels, a trend 

towards increased circulating renin activity, and increased SNS activity before and during 

isometric exercise181,182. In animal models, renal denervation or chronic blockade of both 
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the RAAS and inflammation reduced hypertension (via restoration of renal and arterial 

function) in the offspring of dams that had received different types of insult during 

pregnancy183–187. The RAAS has a key role not only in the generation of increased basal 

blood pressure but also in the development of enhanced renal sympathetic and pressor 

responses to physical stress observed in male offspring of pregnant dams exposed to protein 

restriction188,189.

Besides exploring the roles of the peripheral RAAS and sympathetic nerve activity in the 

development of hypertension in prenatally programmed hypertensive animals, a few studies 

have implicated the brain RAAS in hypertension associated with antenatal nutrient 

deprivation. Intracerebroventricular injection of an ACE inhibitor or an AT1 antagonist 

significantly reduced the blood pressure of animals previously subjected to maternal protein 

restriction in utero. Expression of AT1 in the SFO and the OVLT was increased in these 

animals compared with controls190.

The time between prenatal interventions and the development of hypertension in adult 

animals is long compared to the delay periods used in our IND-DEL EXP studies of HTRS. 

Consequently, these studies have provided a good way to investigate the duration of HTRS. 

Prenatal induction of HTRS was accomplished by subjecting pregnant dams to ANG II-

elicited gestational hypertension. The adult male offspring of these dams had normal resting 

blood pressures but showed HTRS when challenged with a slow-pressor dose of ANG II 

during a 2-week expression phase, which began when the rats were 10 weeks old191. Protein 

and/or mRNA expression of components of the RAAS, markers of microglial activation and 

brain levels of pro-inflammatory cytokines (which indicate activation of the brain’s innate 

immune system) were also increased in these offspring191. These experiments demonstrate 

that reprogramming of the mechanisms controlling SNS activity and blood pressure during 

the prenatal period produces long-lasting phenotypic changes in the CNS as well as 

sensitized responsiveness to a hypertensinogenic challenge during adulthood.

Various interventions during the delay period (that is, between weaning of these rats at 3 

weeks of age and pressor challenge at 10 weeks of age) can abrogate HTRS. For example, in 

one experimental group, the ACE inhibitor captopril was administered in the drinking water 

beginning from weaning until the rats were 8 weeks old. Another experimental group 

underwent renal denervation at 8 weeks of age. Both interventions blocked HTRS in 10-

week-old male offspring of dams with gestational hypertension. Consistent with these 

findings, the upregulation of mRNAs encoding components of the brain RAAS and indices 

of CNS inflammation also were normalized in captopril-treated animals191.

As noted above, many human and animal studies have found that female subjects in 

comparison to male offspring are frequently protected from the effects of negative earlier life 

experiences producing hypertension later in life. We have also seen that females are 

protected against the induction of HTRS192,193. Unfortunately, an in-depth discussion of the 

nature of the female-related protection against HTRS and the role of estrogen and other anti-

hypertensive factors prominent in females is precluded by space limitations placed on the 

present review.
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In humans as well as in experimental animals, maternal obesity and maternal high dietary fat 

intake have adverse consequences for health of her offspring by altering their responses to 

environmental challenges and predisposing them to cardiovascular and metabolic 

disease194–197. For example, the offspring of rabbits fed a high-fat diet have elevated renal 

sympathetic nerve activity and pressor responses to central leptin, increased sympathetic 

responses to ghrelin and an exaggerated sympathetic response to acute air-jet stress198. 

These observations suggest that the elevations in blood pressure and renal sympathetic nerve 

activity are attributable to changes in central pathways that regulate SNS activity198. Also, a 

maternal high-fat diet has been associated with hypothalamic inflammation, impaired 

baroreflex sensitivity and reduced heart rate variability in the offspring, implicating 

abnormalities in autonomic control199–201. The effects of maternal obesity and a maternal 

high-fat diet on HTRS, and the influence of a maternal high-fat diet on the autonomic 

function of her offspring have been studied in female rats fed a high-fat diet beginning 8 

weeks before conception and continuing throughout either pregnancy and lactation, just 

during pregnancy, or just during lactation135. The 10-week-old adult offspring of these rats, 

which had initially normal blood pressure, showed a blunted cardiac baroreflex and an 

elevated autonomic responsiveness of blood pressure and heart rate to an acute challenge 

with either intracerebroventricular ANG II or TNF-α135. These offspring also showed 

upregulated mRNA expression of RAAS components and increases in levels of NADPH 

oxidase and pro-inflammatory cytokines in the lamina terminalis and PVN in response to 

being challenged with a slow-pressor dose of ANG II during the expression phase135.

Taken together, these results indicate that a maternal high-fat diet during either pregnancy or 

lactation is sufficient for early-life reprogramming of the central neural network controlling 

SNS activity and blood pressure, thereby producing HTRS and predisposing the offspring to 

an increased risk of hypertension in adulthood.

The perinatal period has long been recognized as a critical time during which many 

interventions are particularly effective in reprogramming many physiological systems and 

particularly the nervous system202,203. One of the consequences the presentation of 

challenges to offspring via the mother is that it can induce a sensitized state that is 

maintained and that can be expressed as hypertension when exposed to stressors much later 

in life. Perinatal challenges presented to the offspring represent a predisposition for 

expressing hypertension that are likely to last a lifetime.

Psychosocial stressors.—Social defeat is an example of a psychosocial stressor that 

can induce HTRS when administered in a resident-intruder experimental paradigm. These 

experiments involve introducing a smaller adult male rat, the intruder, into the cage of a 

larger male, the resident, who is well established in his living quarters. During such pairings, 

the two animals reliably take on different behavioural roles. The resident immediately 

assumes the role of the dominant animal and the intruder becomes submissive and displays 

psychosocial defeat. In addition to behavioural submission, the defeated intruder manifests 

cardiovascular changes typical of reactions to stressors204.

This paradigm is considered to be an excellent model of post-traumatic stress disorder 

(PTSD), a psychiatric illness characterized by persistent emotional and mental stress 
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following traumatic events205,206. Patients with PTSD are at increased risk of developing 

hypertension and cardiovascular disease207,208. Both patients with PTSD and animal models 

of PTSD are characterized by increased SNS activity, decreased cardiac vagal control and 

baroreflex dysfunction207–212. Enhanced sympathetic activity and blunted baroreceptor 

reflex sensitivity is also associated with elevated levels of pro-inflammatory cytokines and 

activation of the peripheral and brain RAASs213,214.

Three resident-intruder pairings (made every other day during a 1-week induction period) 

followed by a 3-day delay period reliably produced HTRS in the intruder. In addition, 

lamina terminalis tissue collected at the end of the delay period showed increased mRNA 

expression of AT1, IL-1β, IL-6 and TNF-α132. Pretreatment with captopril or administration 

of a TNF-α antagonist during the induction period abrogated the HTRS produced by 

resident-intruder pairings, and also blocked the increased expression of RAAS components 

and proinflammatory markers in the brain133.

The results of these resident-intruder studies provide insight into the mechanisms by which 

psychosocial stress, such as that associated with PTSD, induces HTRS. Information derived 

from such studies will be useful in generating new therapeutic strategies for patients with 

mental health and cardiovascular disease comorbidities.

Salt-sensitive hypertension.—High dietary sodium chloride (table salt) intake is widely 

viewed to be a contributor to the pathogenesis of hypertension215–217. The effect of high salt 

intake on blood pressure varies between individuals in both humans and nonhuman species, 

as environmental and genetic factors both contribute to salt sensitivity215,218,219. Rigorously 

defined protocols have been developed to diagnose salt sensitivity215,220, and it is estimated 

that in the United States, about 51% of patients with hypertension and about 26% of 

normotensive individuals are salt-sensitive221.

Growing evidence indicates that the brain is involved in the control of both sympathetic tone 

and salt sensitivity221–225. Accordingly, the effects of systemic ANG II or aldosterone 

administration were studied in IND-DEL-EXP experiments to see if these hypertensinogenic 

challenges would produce salt sensitivity150. Rats were implanted with probes to enable 

continuous recording of blood pressure and heart rate. After recovery from surgery, they 

received 1 week of systemic treatment with either vehicle or non-pressor doses of either 

ANG II or aldosterone (the induction phase). After a 1-week delay period, the rats were 

given 2% saline as their sole drinking fluid226,227. Blood pressure increased significantly 

from baseline in all animals; however, the increase was significantly greater in the groups 

that had previously received ANG II or aldosterone. Blood pressure in all three groups fell to 

pre-exposure levels when saline was replaced with plain water. Additional studies found that 

salt sensitivity can also be produced by intracerebroventricular administration of non-pressor 

doses of either ANG II or aldosterone during a 1-week induction period.

The finding that salt sensitivity can be experimentally induced is important for two reasons. 

First, these experiments show that HTRS can be demonstrated during the expression phase 

by using a treatment (high salt intake) other than a slow-pressor dose of ANG II. Second, 

they demonstrate that the expression of salt sensitivity does not require a genetic 
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predisposition or the administration of another pressor agent in conjunction with high salt 

intake. The CNS can be programmed to display HTRS when excessive amounts of sodium 

are subsequently consumed.

The functional relevance of adaptation

Substantial evidence from HTRS studies implicates the brain RAAS in reprogramming of 

the central neural network that controls SNS activity and determines long-term blood 

pressure regulation. The observation that stressors induce a sustained upregulated expression 

of components of the RAAS is of particular importance, as this feed-forward mechanism is 

critical for the memory-related processes that mediate HTRS. However, the brain RAAS is 

not the only system that includes mechanisms for long-term information storage.

The acquired or adaptive immune system employs T and B memory cells to quickly and 

specifically recognize an antigen the body has previously encountered, which enables the 

initiation of a corresponding immune response. However, several components of the innate 

immune system228, including brain microglia229, also have memory capacities, and this 

newly recognized function of the innate immune system in the brain brings neurological and 

immune memory mechanisms in close proximity to one another. The emerging picture of 

mechanisms involved in HTRS is that microglia and pro-inflammatory cytokines are as 

likely as the brain RAAS to have important roles in inducing and maintaining HTRS (FIG. 

4). Essentially, these mechanisms predict future events, a theme that is explored further 

below.

Phenotypic plasticity

The concept of phenotypic plasticity is related to the likelihood that a given genotype will 

produce different phenotypes under varied environmental conditions230. In many 

physiological and behavioural systems, response sensitization is advantageous for defending 

an organism’s integrity against the consequences of recurring challenges. For example, 

immune memory enables a more rapid, amplified response to be generated against a 

previously encountered pathogen. Rather than strict adherence to information carried in the 

genome, phenotypic plasticity involves mechanisms that alter genetic expression and 

neuroplasticity. Under some — but not necessarily all — conditions, the consequence of 

phenotypic plasticity is increased biological fitness.

Selection pressure and mismatch

Many species spent much of their evolutionary history under environmental conditions that 

posed a constant threat of circulatory collapse217. Acute extracellular fluid losses — from 

injury-induced blood loss, from pathogen-induced emesis and/or diarrhoea, and water and 

sodium loss via perspiration were (and still are) frequent threats to survival in hunter-

gatherer populations in the hot African savanna. Furthermore, under natural conditions, full 

recovery from severe hypovolaemia requires the behavioural competence necessary for 

acquiring adequate amounts of water and sodium, which are both necessary for restoring 

extracellular volume and for maintaining blood pressure. Access to these commodities can 

be severely limited, especially during a prolonged dry season. For an individual living under 
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such circumstances, survival of a hypovolaemic challenge might require adaptations that 

favour a phenotype that maintains blood pressure and staves off uncompensated 

hypovolaemic shock. Therefore, the capacity to enhance a sympathetically driven 

hypertensive response, mediated by neuroplasticity and CNS reprogramming, would confer 

biological fitness in an ecological niche where hypovolaemic shock and circulatory collapse 

had a high probability of occurrence. However, under different circumstances, such an 

environmentally triggered phenotypic adaptation might contribute to the pathogenesis of 

hypertension.

Essential hypertension and related cardiovascular diseases are pathologies of old age. At the 

time in human evolutionary history when selection for a phenotype that conferred protection 

against hypovolaemia and hypotension presumably occurred, the life span of most 

individuals was probably 30–40-years231, and morbidity and mortality from cardiovascular 

disorders would be limited. Moreover, as individuals would not develop hypertension and its 

consequences until after their prime reproductive years, the selection pressure for 

mechanisms that promoted survival in the face of circulatory shock would be greater than 

that exerted by the manifestations of cardiovascular disease in aged individuals.

Ambient conditions, at least in western societies, have changed dramatically since this 

selection for what was once an adaptive trait. This fact is particularly relevant in considering 

the functions of the RAAS, a system whose major components have been present since the 

divergence of bony fishes (about 400 million years ago)232. The interest in the RAAS for 

countless researchers and clinicians has been its role in body fluid homeostasis and blood 

pressure control. By contrast, the role of the RAAS as a major mediator of the stress 

response has received relatively little attention. Stressors increase activity in both the 

systemic and brain RAASs (reviewed elsewhere233). The RAAS is readily activated not only 

by challenges that produce hypovolaemia and blood pressure dyshomeostasis, but also by a 

wide range of stressors, including academic examinations234, restraint235, 

immobilization236, avoidance conditioning237, swimming238, pain238, hypoglycaemia239 and 

chronic mild stress240. Cumulative activation of the systemic and/or brain RAAS might 

induce a progressively greater and greater sensitized state of the CNS, and when sufficiently 

intense or sustained hypertensinogenic challenges are present (or when counter-regulatory or 

protective mechanisms begin to fail, as they do in ageing individuals), frank essential 

hypertension ensues. Thus, if plasticity-promoting phenotypic change was indeed 

incorporated into the ancestral human genome to protect against hypovolaemic shock, this 

trait may now have become a liability.

Conclusions

In summary, the recognition that a wide range of physiological and psychosocial challenges 

to actual or perceived potential homeostatic disruption can lead to HTRS provides a new 

paradigm for considering the causes and course of essential hypertension. Experiencing 

repeated challenges or stressors over the course of a lifetime can leave their mark by 

introducing neuroplastic changes in the brain network controlling sympathetic tone and 

blood pressure. By employing the IND-DEL-EXP experimental model, we have been able to 

begin to characterize the nature and range of stressors that induce HTRS and to investigate 
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the sites of cellular and molecular neuroplasticity that relate the encoding of earlier events to 

the ongoing control of sympathetic tone and blood pressure.

One might be discouraged by realizing that stressor-induced insults are maintained as 

memories in the CNS and that the probability of expressing frank hypertension increases as 

time passes (TABLE 1). However, a basis for optimism remains, as pharmacological, 

surgical or behavioural interventions might be able to reverse the mediators and the 

expression of HTRS (TABLE 2).

The number of studies using the IND-DEL-EXP paradigm that link changes in the neural 

control of the circulation to mechanisms involving sensitization of the hypertensive response 

is as of yet small and the work is in its infancy. The recent demonstration of the phenomenon 

of HTRS and the identification of some accompanying indicators of CNS neuroplasticity 

allowing a sensitized state to be maintained over extended durations raises many new 

questions that need to be answered. Some examples of such new issues are presented in 

TABLE 3. Addressing many of these questions will provide deeper insights into the causes, 

treatment and prevention of essential hypertension.
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GLOSSARY

Response sensitization
Sensitization is operationally defined and occurs when repeated administration of a stimulus 

results in an increase in the magnitude of a response.

General adaptation syndrome
A term describing the three predictable stages of behavioural and physiological responses to 

stressors. The ‘alarm reaction’ stage provides a burst of energy to deal with the onset of a 

stressor. In the ‘resistance’ stage, the body attempts to overcome or adapt to the stressor. 

Maintenance of the resistance stage is hypothesized to lead to ‘exhaustion’, associated with 

depletion of bodily resources, morbidity and mortality.

Stressor
A threatening or noxious stimulus that produces a stress response and is associated with 

state defined as stress (i.e., an inferred state or hypothetical construct).

Classical or Pavlovian conditioning
A learning paradigm first developed by the physiologist Ivan Pavlov. A biologically potent 

stimulus (such as food or an electric shock) is paired with a previously neutral stimulus 

(such as a tone or light). Pairing produces an association between the two stimuli, such that 

the neutral stimulus comes to elicit a response similar to that originally produced by a 

prepotent stimulus.
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Limbic system
An extensive set of phylogenetically old, interconnected brain structures located in the 

rostral part of the nervous system (forebrain). The limbic system was originally identified as 

a functional system related to emotion. Today, limbic structures are implicated in the control 

of many physiological, behavioural and cognitive functions.

Lamina terminalis
The single layer of ependymal cells that form the rostral wall of the third cerebral ventricle. 

Four structures — the subfornical organ, median preoptic nucleus, the organum vasculosum 

of the lamina terminalis and the anterior commissure — lie immediately rostral to the lamina 

terminalis and are often, albeit technically erroneously, commonly referred to as the lamina 

terminalis.

Neuromodulator
A substance released by neurons that acts to increase or decrease the actions of 

neurotransmitters. Neuromodulators affect large numbers of neurons by acting in a diffuse 

paracrine fashion, in contrast to the tight coupling between neurons using synaptic 

neurotransmitters to communicate.

Cytokines
Proteins that are important in autocrine, paracrine, and endocrine signaling, particularly in 

the immune system. Pro-inflammatory cytokines promote inflammation whereas anti-

inflammatory cytokines reduce inflammation. Adipokines are cytokines secreted by adipose 

tissue.

Long-term potentiation
The strengthening of synapses that results from increased neural activity. Long-term 

potentiation facilitates synaptic transmission between adjacent neurons.

Operant conditioning
Also known as instrumental conditioning. A type of learning in which a response is 

modified by positive or negative reinforcement: that is, by association with the presentation 

of either a reward (such as food) or a punishment (such as electric shock).
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Key points

• The aetiology of essential hypertension is still unknown.

• Emerging evidence has shown that the hypertensive response can undergo 

sensitization.

• Hypertensive response sensitization (HTRS) involves neuroplasticity induced 

by a wide range of physiological and behavioural challenges (stressors) 

occurring throughout life.

• The cellular and molecular changes that mediate HTRS are located and 

maintained in the central neural network that controls sympathetic nervous 

system activity.

• The neuroplasticity of the sympathetic nervous system provides adaptive 

blood pressure control, such that an increased hypertensive response (to 

physiological or psychosocial stressors) is learned and subsequently 

remembered.

• Recognition of HTRS and the centrally mediated mechanisms driving the 

sensitized state provides a new paradigm for understanding essential 

hypertension and developing new strategies for its prevention and treatment.
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Box 1:

Experiments showing hypertensive response sensitization.

In induction-delay-expression (IND-DEL-EXP) experiments, a stimulus is presented 

during an induction phase typically lasting 1–3 weeks. Subsequently, the individual is 

challenged with the same or another stimulus, and the magnitude of the elicited response 

is measured during the expression phase, which generally lasts 2 weeks. Depending upon 

the experiment, the interval between induction and expression is of variable duration 

(ranging between no delay and many weeks), and is referred to as the delay phase.

The above illustration shows typical findings from an IND-DEL-EXP experiment 

showing hypertensive response sensitization (HTRS)1. Three groups of adult male rats 

underwent implantation of telemetry probes to enable continuous recording of blood 

pressure and heart rate. After recovery from surgery, the animals received either saline or 

subcutaneous angiotensin II (ANG II) 10 ng/kg/min. The induction and delay phases 

each lasted 1 week. Blood pressure usually changes little during the induction phase; a 

transient increase in blood pressure can occasionally be seen in some models, but always 

returns to baseline before the start of the expression phase. The delay phase enabled the 

persistence of the effects of HTRS Induction to be assessed and any remaining exogenous 

ANG II to be metabolized. At the beginning of the expression phase, the rats received a 

further stimulus with either saline or subcutaneous ANG II 120 ng/kg/min. As this slow-

pressor dose of ANG II does not immediately elicit hypertension, the initial rise in mean 

arterial blood pressure (MAP) seen in animals that received ANG II over the first 3–4 

days of the expression phase probably represents the systemic vasoconstrictor action of 

ANG II. After 4 days the vasoconstrictor effect of ANG II is replaced by increased 

sympathetic drive, which continues to increase blood pressure241. *P <0.05 versus 

baseline, or versus induction with ANG II then expression with saline. #P <0.05 versus 

induction with saline then expression with ANG II. Figure redrawn and based on data 

presented in 1.
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Figure 1: The hypothetical role of neuroplasticity and hypertensive response sensitization in the 
aetiology and progression of essential hypertension.
Left∣ In the stimulus-naive state, exposure to stressors earlier in life activates the central 

neural network that controls sympathetic nervous system tone and raises blood pressure. 

Over time, repeated exposure to the stressors result in activity-driven neuroplasticity, which 

reprograms the central sympathetic neural network to increase sympathetic drive. Right ∣ In 

the trained state, stressors produce increased sympathetic drive, which results in increased 

vasoconstriction and/or increased blood volume and cardiac output. Collectively, these 

changes trigger an increase in vascular resistance33–35. If the increase in vascular resistance 

is sustained, vascular remodeling and chronic hypertension result.
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Figure 2: A midline schematic representing the circuitry of a portion of neural network 
controlling sympathetic tone and blood pressure regulation.
Activation of the neural pathways arising from rostral structures located along the lamina 

terminalis and running caudally to the spinal cord are normally activated by the 

physiological stressors of falls in blood volume and blood pressure. In components of the 

neural network, structures located along the lamina terminalis [i.e., subfornical organ (SFO), 

median preoptic nucleus (MnPO), organum vasculosum (OVLT)] and the hypothalamic 

paraventricular nucleus (PVN) have been implicated as structures where stressors produce 

neuroplasticity that mediates a sensitized hypertensive response.

The SFO is the primary forebrain target for ANG II and cells in the OVLT function as osmo- 

or Na+ -receptors. The MnPO, which lies inside the blood-brain barrier, receives input from 

both the SFO and OVLT and probably functions to process information about the status of 

intracellular and extracellular fluid compartments and blood pressure. The SFO, MnPO, and 

OVLT all provide input to the PVN. In turn, the PVN integrates this information with input 

from other sources (not shown) to influence preganglionic sympathetic neurons in the spinal 

cord [interomediolateral cell column (IML)] both directly and via the rostral ventrolateral 

medulla (RVLM). Represented are some additional areas implicated in cardiovascular 

control. These include the area postrema (AP), caudal ventrolateral medulla (CVLM), 

nucleus of the solitary tract (NTS) and parabrachial nucleus (PBN), which either directly or 

indirectly influence activity in the RVLM. Additional abbreviations: AC, anterior 

commissure; OC, optic chiasm. (Modified Figure based on figure in reference 116)
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Figure 3: Mechanisms involved in hypertensive response sensitization (HTRS) and 
neuroplasticity.
By studying changes after the induction of HTRS, important memory-related molecular 

changes have been identified that are maintained until the end of the delay period. Many 

neural systems involve ‘signature’ neurotransmitters or neuromodulatory mechanisms. For 

example, substance P and calcitonin gene-related peptide and their receptors are ubiquitous 

in pain signaling pathways97,98,242. As components of the brain renin–angiotensin–

aldosterone system (RAAS) are upregulated after induction of hypertensive response 

sensitization (HTRS), RAAS components might reasonably be considered a signature of the 

pathways controlling sympathetic tone and blood pressure. Considerable evidence indicates 

that glutamate and glutamate receptors are critically involved in nearly all forms of 

neuroplasticity243,244, and most cells in the nervous system express at least one type of 

glutamate receptor245. This neurotransmitter depolarizes neurons by acting on ionotropic N-

methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

(AMPA) receptors. Most, if not all, cells in the network controlling sympathetic tone have 
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both NMDA and AMPA receptors and receive glutamatergic input from other network 

neurons. Growth factors have multiple roles in neuroplasticity including altering membrane 

potentials, increasing protein synthesis, promoting cell viability, and morphological changes. 

Brain-derived neurotrophic factor (BDNF, probably the best-studied CNS growth factor) is 

associated with almost every aspect of neural and functional plasticity246 and acts through 

TrkB (also known as BDNF/NT3 growth factors receptor). Finally, long-term neuroplastic 

changes require the synthesis of new proteins, which requires activation of transcription 

factors, including c-Fos, FOSB and cAMP response element-binding protein (CREB). Red 

rectangles indicate signaling mechanisms implicated in the neuroplasticity underlying 

HTRS247. In future work, it will be important to determine how many structures in the 

neural network controlling sympathetic tone and blood pressure manifest detectable changes 

and how long such changes persist. Figure based on and modified from REF.116.
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Figure 4: How a high-fat diet and obesity might induce hypertensive response sensitization.
High-fat diet and obesity both increase circulating levels of both angiotensin II (ANG II) and 

leptin. Circulating ANG II and leptin act on the subfornical organ (SFO) and/or the 

hypothalamic arcuate nucleus (ARC), both of which have projections to the hypothalamic 

paraventricular nucleus (PVN). Actions of ANG II and leptin in the SFO, ARC, and/or PVN 

activate the brain renin–angiotensin–aldosterone system and inflammatory mechanisms that 

result in inducing sensitization by increasing synaptic efficiency in the SFO and/or PVN.
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Table 1.

Stimuli used to induce sensitization of the hypertensive response

Stressor Route of administration Duration of challenge Ref.

Systemic stressors

Non-pressor ANG II Subcutaneous 1 week 1

Non-pressor ANG II Intracerebroventricular 1 week 1

Non-pressor aldosterone Subcutaneous 1 week 2

Non-pressor aldosterone Intracerebroventricular 1 week 2

High-sodium diet Food 2 weeks 116

High-fat diet Food 3 weeks 131

Low-sodium diet Food 2 weeks 116

Hypotensive haemorrhage NA 3 times in 1 week 248

Lipopolysaccharide Intraperitoneal 3 times in 1 week Unpublished

Leptin Intracerebroventricular 1 week 134

TNFα Intracerebroventricular 1 week 131

Processive stressor

Resident-intruder social defeat External and/or psychosocial 3 times in 1 week 132, 133

Perinatal challenge to offspring

Maternal gestational hypertension ANG-elicited hypertension 3 weeks of pregnancy 191

Maternal high-fat diet Food 3 weeks of pregnancy 135

Maternal high-fat diet Food 3 weeks of lactation 135

Maternal high-fat diet Food 3 weeks of pregnancy plus 3 weeks of lactation 135

Expression of sensitization of the hypertensive response was tested by subcutaneous administration of angiotensin II 120 ng/kg/min. ANG, 
angiotensin; NA, not applicable; TNF, tumour necrosis factor-α.
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Table 2.

Treatments that block or reverse sensitization of the hypertensive response.

Blocking treatment Route of administration Sensitizing challenge Ref.

Mineralocorticoid antagonist Intracerebroventricular Blocks induction with subcutaneous aldosterone 2

Leptin inhibitor Intracerebroventricular Blocks induction with high-fat diet feeding 134

Minocycline Intracerebroventricular Blocks induction with high-fat diet, intracerebroventricular ANG 
II and intracerebroventricular leptin

131,134

Pentoxifylline Intracerebroventricular Blocks induction with high-fat diet, intracerebroventricular ANG 
II and intracerebroventricular leptin

131,134

AT1 antagonist Intracerebroventricular Blocks induction with high-fat diet, subcutaneous ANG II and 
intracerebroventricular leptin

1,131,134

Renal denervation NA Reverses sensitization induced by maternal gestational 
hypertension

191

Spontaneous exercise NA Delays expression of sensitization by maternal gestational 
hypertension

Unpublished

Oestrogen Intracerebroventricular Blocks induction with subcutaneous ANG II in male rats and 
ovariectomized female rats

192

Raloxifene Intracerebroventricular Blocks induction with subcutaneous ANG II in male rats and 
ovariectomized female rats

Unpublished

Valproate Subcutaneous Blocks induction with subcutaneous ANG II Unpublished

Sodium butyrate Intraperitoneal Blocks induction with subcutaneous ANG II Unpublished

Dizocilpine (MK-801) Subcutaneous Blocks induction with subcutaneous ANG II 247

AP-5 Intracerebroventricular Blocks induction with subcutaneous ANG II 247

ANG1–7 Intracerebroventricular Blocks induction with subcutaneous ANG II 192

ANG, angiotensin; AP-5, (2R)-amino-5-phosphonovaleric acid, an N-methyl-D-aspartate receptor antagonist; AT1, type-1 angiotensin II receptor; 
NA, not applicable.
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Table 3:

Important Questions to be Addressed for a Better Understanding of the Role and Mechanisms of 

Neuroplasticity in Hypertensive Response Sensitization

• What are the limits for maintaining the sensitized state when it is induced in adult animals?

• How extensive is the distribution of CNS sites involved in maintaining the sensitized state?

• How do glial cells communicate with neuronal components in the neural network controlling the sympathetic nervous system to 
induce neuroplasticity and sensitization?

• What epigenetic changes are likely to maintain the sensitized state?

• How do dietary factors such as high fat or high salt intake interact with the sensitized state to produce frank hypertension in the 
course of ageing?

• In the course of ageing, are counter-regulatory mechanisms lost that buffer against the sensitized state producing a rise in blood 
pressure in the face of new or sustained stressors?

• What interventions can reverse the neuroplasticity that maintains the sensitized state and when is the best time to apply them?

Nat Rev Nephrol. Author manuscript; available in PMC 2019 December 01.


	Abstract
	Introduction
	Physiological and psychosocial stress
	Essential hypertension
	The role of tissue perfusion factors
	The role of SNS overactivity

	The central sympathetic nervous system
	The renin–angiotensin–aldosterone system
	Microglia and pro-inflammatory cytokines
	Plasticity in neural networks
	Hypertensive response sensitization
	IND-DEL-EXP experiments
	Neuroplasticity accompanying hypertensive response sensitization
	Cross-sensitization
	High dietary fat intake and the role of central leptin and inflammation.
	Gestational hypertension and maternal high dietary fat intake.
	Psychosocial stressors.
	Salt-sensitive hypertension.


	The functional relevance of adaptation
	Phenotypic plasticity
	Selection pressure and mismatch

	Conclusions
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Table 1.
	Table 2.
	Table 3:

