Table 3. Comparison of several variations of DoGNets and several baselines on the [Collman15] dataset.
Method | params | F1 Score | Precision | Recall | AUC | |DiC| |
---|---|---|---|---|---|---|
ConvNets | ||||||
Direct | 3392 | 0.69 | 0.79 | 0.62 | 0.88 | 11.19 |
FCN | 3002 | 0.71 | 0.72 | 0.70 | 0.79 | 4.12 |
Unet | 622 | 0.73 | 0.73 | 0.73 | 0.91 | 4.26 |
DoGNets | ||||||
Shallow Isotropic | 62 | 0.75 | 0.74 | 0.76 | 0.90 | 4.25 |
Shallow Anisotropic | 107 | 0.75 | 0.75 | 0.76 | 0.88 | 4.26 |
Shallow3D | 61 | 0.68 | 0.62 | 0.77 | 0.65 | 9.13 |
Deep Isotropic | 140 | 0.73 | 0.77 | 0.71 | 0.97 | 4.99 |
Deep Anisotropic | 230 | 0.71 | 0.77 | 0.33 | 0.87 | 7.72 |
Manually tuned methods | ||||||
Nieland 2014 [38] | - | 0.37 | 0.49 | 0.32 | 0.63 | 16.5 |
Simhal 2017 [32] | - | 0.65 | 0.52 | 0.89 | 0.74 | - |