Skip to main content
. 2019 May 13;15(5):e1007012. doi: 10.1371/journal.pcbi.1007012

Table 4. The quantitative validation of DoGNet trained on [Collman15] cAT dataset and applied to [Weiler14] dataset.

Differences with F1 scores on [Collman15] cAT dataset are shown in parentheses.

Method # params F1 Score Prec. Recall AUC |DiC|
ConvNets
Direct 3392 0.72 (0.03)↑ 0.79 0.66 0.88 5.33
FCN 3002 0.64 (-0.07)↓ 0.85 0.51 0.84 19.
Unet 622 0.79 (0.06)↑ 0.85 0.74 0.97 4.33
DoGNets
Shallow Isotropic 62 0.85 (0.1)↑ 0.83 0.88 0.96 3.33
Shallow Anisotropic 107 0.83 (0.08)↑ 0.88 0.78 0.94 3.33
Deep Isotropic 140 0.88 (0.15)↑ 0.83 0.95 0.93 3.33
Deep Anisotropic 230 0.71 (0.0) 0.80 0.63 0.90 7.33
Manually tuned methods
Nieland 2014 [38] - 0.64 (0.27)↑ 0.66 0.62 0.44 2.
Simhal 2017 [32] - 0.65 (0.0) 0.81 0.55 0.55 13.