Table 4. The quantitative validation of DoGNet trained on [Collman15] cAT dataset and applied to [Weiler14] dataset.
Method | # params | F1 Score | Prec. | Recall | AUC | |DiC| |
---|---|---|---|---|---|---|
ConvNets | ||||||
Direct | 3392 | 0.72 (0.03)↑ | 0.79 | 0.66 | 0.88 | 5.33 |
FCN | 3002 | 0.64 (-0.07)↓ | 0.85 | 0.51 | 0.84 | 19. |
Unet | 622 | 0.79 (0.06)↑ | 0.85 | 0.74 | 0.97 | 4.33 |
DoGNets | ||||||
Shallow Isotropic | 62 | 0.85 (0.1)↑ | 0.83 | 0.88 | 0.96 | 3.33 |
Shallow Anisotropic | 107 | 0.83 (0.08)↑ | 0.88 | 0.78 | 0.94 | 3.33 |
Deep Isotropic | 140 | 0.88 (0.15)↑ | 0.83 | 0.95 | 0.93 | 3.33 |
Deep Anisotropic | 230 | 0.71 (0.0) | 0.80 | 0.63 | 0.90 | 7.33 |
Manually tuned methods | ||||||
Nieland 2014 [38] | - | 0.64 (0.27)↑ | 0.66 | 0.62 | 0.44 | 2. |
Simhal 2017 [32] | - | 0.65 (0.0) | 0.81 | 0.55 | 0.55 | 13. |