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Abstract

The primary female sex hormones, estrogens, are responsible for the control of functions of the 

female reproductive system, as well as the development of secondary sexual characteristics that 

appear during puberty and sexual maturity. Estrogens exert their actions by binding to specific 

receptors, the estrogen receptors (ERs), which in turn activate transcriptional processes and/or 

signaling events that result in the control of gene expression. These actions can be mediated by 

direct binding of estrogen receptor complexes to specific sequences in gene promoters (genomic 

effects), or by mechanisms that do not involve direct binding to DNA (non-genomic effects). 

Whether acting via direct nuclear effects, indirect non-nuclear actions, or a combination of both, 

the effects of estrogens on gene expression are controlled by highly regulated complex 

mechanisms. In this chapter, we summarize the knowledge gained in the past 60 years since the 

discovery of the estrogen receptors on the mechanisms governing estrogen-mediated gene 

expression. We provide an overview of estrogen biosynthesis, and we describe the main 

mechanisms by which the female sex hormone controls gene transcription in different tissues and 

cell types. Specifically, we address the molecular events governing regulation of gene expression 

via the nuclear estrogen receptors (ERα, and ERβ) and the membrane estrogen receptor (GPER1). 

We also describe mechanisms of cross-talk between signaling cascades activated by both nuclear 

and membrane estrogen receptors. Finally, we discuss natural compounds that are able to target 

specific estrogen receptors and their implications for human health and medical therapeutics.
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1. ESTROGENS: DEFINITION AND HISTORY

The term “estrogens” refers to a group of female hormones, including estrone, estradiol, 

estriol, and estretrol (Figure 1). Chemically, estrogens belong to the family of organic 

compounds known as steroids. As such, their core structure is composed of 17 carbon-

carbon bonds arranged as four fused rings (three cyclohexane rings and a cyclopentane ring). 
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All four estrogens contain 18 carbons (C18H24O2) and are collectively known as C18 

steroids. They consist of one benzene ring, a phenolic hydroxyl group, and a ketone group 

(estrone), or one (17β-estradiol), two (estriol), or three (estretrol) hydroxyl groups.

Estrogens are primarily synthesized in the ovaries, but also in the adrenal glands and adipose 

tissue. They were discovered in the early 1900s, when ovarian extracts (“liquour folliculi”) 

from cattle and hogs were injected in rodents, and found to be effective in inducing sexual 

activity or “estrus” (Allen & Doisy, 1983). It was later determined that the hormone was 

produced by mature ovarian follicles, and that it was likely common to all female animals. 

The term estrogen derives from the Greek words oistros (frenzy, in heat) and gennan (to 

produce). As mentioned above, estrogens are a group of C18 hormones with similar 

chemical structures and function (Figure 1). In addition, all four estrogens are able to bind to 

both nuclear and membrane estrogen receptors, with different affinity and strength of the 

response (Watson, Jeng, & Kochukov, 2008). However, the word estrogen is commonly used 

to refer to estradiol (or 17β-estradiol), due to its physiological relevance and predominance 

during reproductive years. While females produce all estrogens throughout life, the 

hormones 16-hydroxyestradiol (estriol) and 15α-hydroxyestriol (estretrol) are 

predominantly found during pregnancy, and estrone is usually found at higher levels during 

menopause (Samavat & Kurzer, 2015).

Estradiol, the predominant circulating estrogen in humans, it is mainly secreted by the 

granulosa cells of the ovarian follicles, and the corpora lutea. On the other hand, estretrol is 

synthesized exclusively by the fetal liver and reaches maternal circulation through the 

placenta (Coelingh Bennink, Holinka, Visser, & Coelingh Bennink, 2008; Holinka, 

Diczfalusy, & Coelingh Bennink, 2008). Estrone, which is produced by aromatization of 

androstenedione in extraglandular tissues, can be reversibly transformed to estradiol by the 

enzyme 17β-hydroxysteroid dehydrogenase in peripheral tissues (Bulun, Zeitoun, Sasano, & 

Simpson, 1999; RYAN, 1959).

2. ESTROGEN BIOSYNTHESIS

The main substrate for steroid hormone biosynthesis is dietary cholesterol, specifically low-

density lipoprotein (LDL)-cholesterol (Carr, MacDonald, & Simpson, 1982). Through a 

process called steroidogenesis, cholesterol is converted to the 21-carbon (pregnanes, 

progestogens), 19-carbon (androstanes), and 18-carbon (estranes) steroid hormones in 

gonads, adrenal cortex, and adipose tissue (Miller, 2017). The main site of estrogen 

synthesis is the ovaries, and specifically the granulosa cells (Figure 2).

The first step in the biosynthesis of steroid hormones is the translocation of cholesterol into 

the inner mitochondrial membrane, a process regulated by the steroidogenic acute regulatory 

protein STARD1 (also known as StAR), which is believed to act as a shuttle enzyme (Miller 

& Strauss, 1999). This is the rate-limiting step of steroidogenesis in all tissues. The 

expression of StAR is controlled by a mechanism involving binding of luteinizing hormone 

(LH) to its G protein-coupled receptor in the theca cells of the ovary and stimulation of 

adenylate cyclase, which catalyzes the production of cyclic adenosine monophosphate 

(cAMP) from adenosine triphosphate (ATP). The cAMP produced activates protein kinase 
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A, which catalyzes phosphorylation of cAMP response element binding protein (CREB) 

leading to activation of transcription of StAR and other factors associated with steroid 

hormone production (Figure 2). At the inner mitochondrial membrane, cholesterol is 

converted to pregnenolone by the enzyme P450scc, or cholesterol side-chain cleavage 

enzyme, encoded by the CYP11A1 gene (Belfiore, Hawkins, Wiltbank, & Niswender, 1994). 

Pregnenolone then acts as a precursor for all steroid hormones (Figure 3), and can diffuse 

between adjacent granulosa and theca cells of the ovary. The synthesis continues with the 

conversion of pregnenolone to androstenedione by the enzymes CYP17A1 (steroid 17-α-

hydroxylase/17,20-lyase) and 3β-HSD (3β-hydroxysteroid dehydrogenase/Δ5−4 isomerase), 

via dehydroepiandrosterone (DHEA). Androstenedione can be either converted to other 

androgens, such as testosterone and dihydrotestosterone, or diffuse to the granulosa cells 

through the basal lamina (Figure 2). At the granulosa cells, androstenedione is converted to 

estrone by the enzyme CYP19A1 (also known as aromatase). Estrone is then converted to 

estradiol by the enzyme 17β-HSD (17β-hydroxysteroid dehydrogenase). In the granulosa 

cells, the expression of both aromatase and 17β-HSD is controlled by follicle stimulating 

hormone (FSH) stimulation. Interestingly, testosterone can be metabolized to estradiol and 

estrone by the action of aromatase in peripheral tissues, including adipose cells and bone 

(Simpson et al., 2002). Males also produce local estrogen by aromatization in cells of the 

reproductive tract, including Sertoli cells, Leydig cells, and mature spermatocytes. Overall, 

estrogens are normally produced by the ovaries and in smaller amounts by other tissues such 

as the liver, pancreas, adrenal glands, adipose tissue, and breast (Barakat, Oakley, Kim, Jin, 

& Ko, 2016). In specific physiological conditions, such as pregnancy, estrogen is also 

synthesized by the placenta. However, the biosynthesis of estrogen in non-gonadal sites 

follows rather unusual mechanisms, since these tissues are not able to generate C19 steroids 

from cholesterol. In these tissues, estrogen production is largely dependent on C19 steroids 

transported from other tissues and conversion by local CYP19A1 aromatase (Labrie et al., 

1998; Nelson & Bulun, 2001).

Estradiol, the predominant circulating estrogen in humans, it is mainly secreted by the 

granulosa cells of the ovarian follicles, and the corpora lutea, by the mechanisms indicated 

above. On the other hand, estretrol is synthesized exclusively during pregnancy by the fetal 

liver and reaches maternal circulation through the placenta (Coelingh Bennink et al., 2008; 

Holinka et al., 2008). Estriol, which is also primarily synthesized during pregnancy, is 

almost exclusively produced by the placenta. To produce estriol, dietary cholesterol is 

converted to pregnenolone and progesterone in the placenta, and these steroids are further 

metabolized to DHEA and DHEA-sulfate (DHEA-S) in the fetal adrenal glands. DHEA-S is 

later hydroxylated to 16α-OH-DHEA-S in the fetal liver by the action of the CYP3A7 

enzyme, and transported back to the placenta where it is converted to 16α-OH-DHEA by the 

steroid sulfatase. The enzyme 3β-HSD1 converts 16α-OH-DHEA into 16α-OH-

androstenedione, which is later aromatized to 16α-OH-estrone. In the final step, 16α-OH-

estrone is converted to estriol by the 17β-HSD enzyme, and secreted into maternal 

circulation (ITTRICH & NEUMANN, 1963; WILSON, ERIKSSON, & DICZFALUSY, 

1964). In non-pregnant women, estriol is produced mainly in the liver by 16α-hydroxylation 

of estradiol and estrone by CYP enzymes (Samavat & Kurzer, 2015; Tsuchiya, Nakajima, & 

Yokoi, 2005). Finally, estrone is mainly produced during menopause by aromatization of 
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androstenedione in extra-glandular tissues, where it can act locally as a paracrine or 

intracrine factor (Simpson, 2003). Estrone can also be transformed to estradiol by the 

enzyme 17β-hydroxysteroid dehydrogenase in peripheral tissues, including adipose and 

breast tissue, vascular endothelium, smooth muscle cells, brain tissue, and bone cells, where 

it is metabolized or enters the circulation in small quantities (Bulun et al., 1999; RYAN, 

1959; Simpson, 2003).

3. ESTROGEN METABOLISM

Physiologically, the metabolic conversion of estrogens allows their excretion from the body 

via urine, feces, and/or bile, along with the production of estrogen analogs, which have been 

shown to present antiproliferative effects (Tsuchiya et al., 2005). In target cells, there are 

different pathways capable of metabolizing estradiol and estrone. Members of the 

cytochrome P450 superfamily of enzymes (CYP1A1, CYP1B1, and CYP1A2) catalyze 

hydroxylation of estrone and estradiol at positions C2, C4 and C16. Due to the high 

expression of these enzymes in the liver, a large proportion of estrogen metabolism occurs in 

this tissue, although CYP1B1 is also expressed in target tissues such as mammary gland, 

uterus, kidney, brain, and pituitary gland, where estradiol and estrone can also be 

metabolized. Estradiol hydroxylation is followed by conversions to 2-hydroxyestrone, 4-

hydroxyestrone, 2-hydroxyestradiol, 4-hydroxyestradiol, and 16α-hydroxyestrone, which 

are also known as catechol estrogens, due to their presence of pharmacological properties of 

both catecholamines and estrogens. The hydroxylation of estradiol or 16α-hydroxyestrone 

forms estriol. In addition, catechol estrogens can be methylated via the catechol-O-

methyltransferase (COMT) enzyme to methoxy estrogens (Samavat & Kurzer, 2015). These 

compounds have gained significant attention due to their little estrogenic effects, 

antiproliferative properties, and ability to control estrogen synthesis (Purohit & Reed, 2002; 

Purohit et al., 2006). Moreover, catechol estrogens can also be conjugated by estrogen 

sulfotransferases and UDP-glucuronyltransferases (Cheng et al., 1998; Garbacz, Jiang, & 

Xie, 2017). In a conjugation reaction, hormones become water soluble and excreted from the 

body (Lakhani, Venitz, Figg, & Sparreboom, 2003).

4. PHYSIOLOGICAL FUNCTIONS OF ESTROGENS

Estrogens are sex steroid hormones, and as such display a broad spectrum of physiological 

functions. These include regulation of the menstrual cycle and reproduction, bone density, 

brain function, cholesterol mobilization, development of breast tissue and sexual organs, and 

control of inflammation (Liang & Shang, 2013). While estrogens play diverse roles in 

normal male and female physiology, in certain physiological situations they can play similar 

roles in both sexes (Rotstein). In females, estrogens are responsible for primary and 

secondary sexual characteristics. Estradiol promotes epithelial cell proliferation in the 

uterine endometrium and mammary glands starting in puberty (Gruber, Tschugguel, 

Schneeberger, & Huber, 2002; Koos, 2011; Simpson et al., 2005). During pregnancy, 

estrogens produced by the placenta help prepare the mammary gland for milk production 

(Voogt, 1978). On the other hand, lower levels of estrogens produced in men are essential for 

functions including sperm maturation, erectile function and maintenance of a healthy libido 

(Schulster, Bernie, & Ramasamy, 2016). It is important to mention here that all the 
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estrogenic physiological functions previously described are mediated by estrogen receptors, 

which we describe in the next sections.

5. THE ESTROGEN RECEPTORS: HISTORY AND DISCOVERY

In 1958, Elwood Jensen discovered the estrogen receptor, the first receptor ever encountered 

for any hormone, by showing that reproductive female tissues were able to uptake estrogen 

from the circulation by binding to proteins. He later demonstrated that estrogen-bound 

receptors were able to migrate to the nucleus, where they could stimulate gene transcription 

(Jensen et al., 1967; Jensen et al., 1968). More than 20 years later, the first human estrogen 

receptor (known today as ERα) was cloned using RNA from the human breast cancer cell 

line MCF-7 (Green et al., 1986; Greene et al., 1986). Similarly, the second estrogen receptor 

(known today as ERβ) was described ten years later by the research team lead by Dr. Jan-

Ake Gustafsson (Kuiper, Enmark, Pelto-Huikko, Nilsson, & Gustafsson, 1996). 

Gustafsson’s lab discovered that a newly identified protein that was mainly expressed in the 

secretory epithelial cells of the prostate and in the granulosa cells of the ovary, shared a high 

degree of homology with the ERα (DNA-binding domain, 95%; ligand-binding domain, 

55%). As a result of these similarities, the team suggested for the protein be named ERβ.

More recently, a new type of estrogen binding protein was discovered in target cells: The G 

Protein-Coupled Estrogen Receptor GPER1, or membrane estrogen receptor. Unlike the 

nuclear estrogen receptors ERα and ERβ, which were isolated by traditional biochemical 

approaches, GPER1 was identified by molecular cloning methods (E. J. Filardo & Thomas, 

2012). Almost two decades ago, several research laboratories had reported the isolation of a 

G Protein-Coupled Receptor homologue, which was ascribed the orphan term GPR30 

(Carmeci, Thompson, Ring, Francke, & Weigel, 1997; Feng & Gregor, 1997; Kvingedal & 

Smeland, 1997; O’Dowd et al., 1998; Owman, Blay, Nilsson, & Lolait, 1996; Takada, Kato, 

Kondo, Korenaga, & Ando, 1997). It was assumed that the ligand for GPR30 was a hormone 

or chemotactic peptide due to its structural similarities to the receptors for angiotensin II and 

other peptides such as such as interleukin-8, monocyte chemotactic proteins, and 

complement factors (E. J. Filardo & Thomas, 2012). However, after screening of multiple 

chemotactic peptides and factors, no molecules with binding affinities to GPR30 were 

found, the receptor continued to be classified as orphan (Feng & Gregor, 1997). However, in 

the year 2000, a research team was able to show that fast estrogen-mediated activation of 

extracellular signal-regulated kinases (ERKs) was dependent on GPR30 (E. J. Filardo, 

Quinn, Bland, & Frackelton, 2000). Five years later, this and other groups were able to 

demonstrate direct binding of 17β-estradiol to GPR30 in GPR30-transfected cells and breast 

cancer cell lines (Revankar, Cimino, Sklar, Arterburn, & Prossnitz, 2005; Thomas, Pang, 

Filardo, & Dong, 2005). Finally, in 2007 GPR30 was officially named G protein-coupled 

estrogen receptor 1 (also known as GPER or GPER1), and its role in mediating fast 

responses to estrogens and overall physiological and pathological processes has been studied 

extensively in human and animal models (Boonyaratanakornkit & Edwards, 2007; E. Filardo 

et al., 2007; Molina, Figueroa, Bhoola, & Ehrenfeld, 2017; Prossnitz & Barton, 2014; 

Sharma & Prossnitz, 2016).

Fuentes and Silveyra Page 5

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2019 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. STRUCTURAL PROPERTIES OF ESTROGEN RECEPTORS

The full-length size of ERα is 595 amino acids and 67kDa. ERβ is 530 amino acids in 

length and 59kDa. The main difference between the two proteins is that ERβ has a shorter 

amino terminal domain than ERα (Figure 4).

As members of the nuclear hormone receptors superfamily of transcription regulators, the 

structures of the estrogen receptors ERα and ERβ are composed of various functional 

domains and have several structural regions in common (Schwabe & Teichmann, 2004). The 

principal functional domains are termed A/B, C, D, and E/F, and are present in both receptor 

full-length structures (Figure 4). The A/B region represents the amino-terminal domain 

(NTD), which is involved in gene transcription transactivation, and contains a zinc-finger 

that mediates binding to target sequences. The C region corresponds to the DNA binding 

domain (DBD), which contributes to estrogen receptor dimerization and binding to specific 

sequences in the chromatin. These canonical sequences known collectively as estrogen 

response elements (ERE) (Scheidereit et al., 1986; Truss & Beato, 1993). The D domain is a 

hinge region that connects the C and E domains, and is able to bind to chaperone proteins. 

This region also contains the nuclear localization signal, that is unmasked upon estrogen 

binding, allowing for the receptor-ligand complexes to translocate to the nucleus. In the 

carboxy-terminal E/F region, also known as the ligand binding domain, contains the 

estrogen binding area, along with binding sites for coactivators and corepressors. Finally, 

two additional regulators of the estrogen receptor transcriptional activity known as activation 

function (AF) domains AF1 and AF2, are located within the NTD and DBD, respectively 

(Kumar et al., 2011). The mechanisms of transcriptional regulation mediated by these 

receptors appear to involve a synergistic effect of AF1 and AF2 (Tora et al., 1989). 

Contrarily to AF2, AF1 does not require binding to hormones or steroids to be activated 

(Kumar et al., 2011).

In humans, the ERα is encoded by the gene ESR1, located on chromosome 6, locus 6q25.1 

(Gosden, Middleton, & Rout, 1986). In addition to the full-length ERα isoform (66kDa), 

several shorter isoforms (36kDa, 46kDa) have been identified as a result of the presence of 

alternate start codons, or as productos of alternative splicing (Figure 5). Some of these 

shorter isoforms do not have the NTD and thus lack the AF-1 domain. Therefore, they 

cannot activate transcription. Instead, they are able to form heterodimers with the full-length 

ERα and inhibit its ability to control transcriptional. The shorter isoform, ERα−36, lacks 

both AF-1 and AF-2 transcriptional activation domains, and it has been shown to exert 

membrane-initiated signaling events upon binding to estradiol, estriol, and estretrol (Y. Gu et 

al., 2014), as well as to medicate GPER1 responses (Arnal et al., 2017; Romano & Gorelick, 

2018).

On the other hand, ERβ is encoded by the ESR2 gene located in chromosome 14 (14q23–

24), and has five known isoforms (Enmark et al., 1997) (Figure 6). The main difference 

between the full-length ERβ and the shorter ERβ isoforms is on the C-terminal LBD. 

Therefore, ERβ isoforms that have no transcriptional activity can also suppress ERα 
signaling by dimerizing with ERα (Vrtačnik, Ostanek, Mencej-Bedrač, & Marc, 2014).
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Finally, the gene coding for the membrane receptor GPER1 is located in chromosome 7 

(locus 7p22.3). In terms of structure, GPER1 does not share similarities with ERα or ERβ. 

As a typical G protein coupled receptor, its structure consists of 7 transmembrane α-helical 

regions, 4 extracellular segments, and 4 cytosolic segments (Barton et al., 2018). This 

receptor has low binding affinity (17B-estradiol) when compared to other estrogen receptors 

(Prossnitz & Barton, 2014). However, this may be important as GPER1 is accountable for 

rapid responses to estrogen, and activation of intracellular signaling cascades mediated by 

second messengers (E. J. Filardo & Thomas, 2012).

7. MECHANIMS OF ESTROGEN RECEPTOR SIGNALING

As a steroid hormone, estrogen can enter the plasma membrane and interact with 

intracellular ERα and ERβ to exert direct effects by binding to DNA sequences. 

Alternatively, estrogen can activate intracellular signaling cascades via interaction with the 

GPER1 and/or ERα and ERβ. Due to differences in the cellular and molecular events 

leading to gene expression regulation in which estrogen-receptor complexes can either bind 

directly or indirectly to DNA, estrogen-mediated signaling events ca be divided into 

genomic and non-genomic. Genomic effects are those involving migration of the estrogen-

receptor complexes to the cell nucleus, and direct interaction with chromatin at specific 

DNA sequences known as estrogen response elements (EREs). While EREs have been 

identified in several gene promoters and regulatory regions, it has been reported than more 

than one third of human genes regulated by estrogen receptors do not contain ERE sequence 

elements (O’Lone, Frith, Karlsson, & Hansen, 2004). On the other hand, non-genomic 

effects involve indirect regulation of gene expression through a variety of intracellular 

signaling events. The known mechanisms for genomic and non-genomic control of gene 

expression by estrogens are described below.

8. NUCLEAR ESTROGEN RECEPTORS: DIRECT GENOMIC SIGNALING

Direct genomic signaling is known as the classical mechanism of estrogen signaling. In this 

process, the nuclear estrogen receptors ERα and ERβ act as ligand-activated transcription 

factors (Marino, Galluzzo, & Ascenzi, 2006; O’Malley, 2005). Upon binding of estradiol to 

ERα or ERβ in the cytoplasm, a conformational change occurs inducing receptor 

dimerization (Le Dily & Beato, 2018) (Figure 7). This complex is then translocated to the 

nucleus, where it binds to the chromatin at ERE sequences, enhancer regions within or close 

to promoters, and/or 3’-untranlated regions of target genes (Klinge, 2001).

Recent advances in computational biology have facilitated the identification of EREs in 

many gene promoters, and allowed prediction of genes regulated by estrogen and other 

hormones in the genomes of many species (Bajic et al., 2003; Bourdeau et al., 2004). A 

recent genome-wide screening study identified over 70,000 EREs in the human and mouse 

genomes (Bourdeau et al., 2004). Interestingly, 17,000 of these EREs were located near 

mRNA transcriptional start sites, and only 660 were conserved sites. The efficacy of this 

computational approach was further supported by functional validation of estrogen receptor 

interaction sites (Carroll & Brown, 2006). While these elements share a high degree of 

sequence similarity, it is important to recognize that the intrinsic sequence composition of 
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the EREs can alter the affinity of the receptor to bind DNA. For example, ERα has a high 

binding affinity for the canonical ERE sequence located within the vitellogenin A2 gene, but 

with less affinity for the EREs located in the oxytocin gene (Sausville, Carney, & Battey, 

1985). This moderately explains why differences in ERE sequences, such as those resulting 

from inter-individual gene variability or mutations, can affect the activation of gene 

expression (Loven, Wood, & Nardulli, 2001; Yi et al., 2002). In addition, specific ERE 

sequences can cause allosteric changes in the receptor’s structure, and thus alter the ability 

of the complex to recruit coactivators and transcription factors that may contribute to ER 

biological activity (Hall, McDonnell, & Korach, 2002; Yaşar, Ayaz, User, Güpür, & Muyan, 

2017).

9. NUCLEAR ESTROGEN RECEPTORS: INDIRECT GENOMIC SIGNALING

As mentioned earlier, the transcription of several genes that do not contain EREs in their 

promoter regions can also be regulated by estradiol, without direct binding of the estrogen 

receptors to the DNA. According to the most recent reports, an estimated 35% of genes 

targeted by estrogen lack ERE-like sequences (Marino et al., 2006; Vrtačnik et al., 2014). In 

these, the mechanisms by which estrogen affects gene expression are collectively known as 

“indirect genomic signaling” or “transcriptional cross-talk”, and are based on activation of 

gene expression by estrogen receptors not binding DNA directly. Rather, the estrogen 

receptor complexes act through protein-protein interactions with other transcription factors 

and response elements (Aranda & Pascual, 2001; Göttlicher, Heck, & Herrlich, 1998). In 

this way, estrogens indirect signaling influences activation or suppression of target gene 

expression.

An important mediator of indirect genomic signaling is the stimulating protein-1 (Sp-1). 

Binding of this transcription factor to promoter regions at GC-rich sites is enhanced by the 

presence of estrogen receptors (Bajic et al., 2003; O’Lone et al., 2004). Examples of genes 

induced by estrogen via the Sp-1 mechanism are: low-density lipoprotein (LDL) receptor (C. 

Li, Briggs, Ahlborn, Kraemer, & Liu, 2001), progesterone receptor B (O’Lone et al., 2004), 

endothelial nitric oxide synthase (eNOS) (Chambliss & Shaul, 2002), GATA binding protein 

1 (GATA1), signal transducer and activator of transcription 5 (STAT5) (Björnström & 

Sjöberg, 2005), and the retinoic acid receptor-1α genes (Sun, Porter, & Safe, 1998). A few 

studies have shown that ERα can also interact with the c-rel subunit of the nuclear factor-κB 

(NF-κB) complex, preventing NF-κB from binding to cytokine genes promoters (Galien & 

Garcia, 1997; Kalaitzidis & Gilmore, 2005). Moreover, ERα can also interact with other 

transcriptional modulators such as the activating transcription factor (ATF)-2, c-jun, the 

ATF-1/cAMP response element binding protein (ATF-1/CREB), and the nuclear 

transcription factor-Y (NF-Y) (O’Lone et al., 2004).

The nuclear estrogen receptors also induce the expression of genes containing the activator 

protein-1 (AP-1) sites though protein-protein interactions (Gaub, Bellard, Scheuer, 

Chambon, & Sassone-Corsi, 1990). AP-1 is a transcription factor that regulates key cellular 

processes such as cell differentiation, proliferation, and apoptosis. The structure of AP-1 

consists of a heterodimer composed of proteins belonging to the c-Fos, c-Jun, ATF, and the 

Jun dimerization partners (JDP) families (Piu, Aronheim, Katz, & Karin, 2001). The ERα 
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also interacts with c-Fos and c-Jun at these binding regions (O’Lone et al., 2004). Some 

examples of genes induced by ERα via the AP-1 mechanism are insulin-like growth factor-1 

(IGF1), collagenase, IGF1-receptor, ovalbumin, and cyclin D1 (Fujimoto, Honda, & 

Kitamura, 2004; Marino, Acconcia, Bresciani, Weisz, & Trentalance, 2002). However, 

previous studies have shown that ERα and ERβ signal in different ways depending on the 

ligand and response elements present at the AP-1 sites. In fact, 17β-estradiol activates AP-1-

dependent transcription via ERα, whereas ERβ inhibits this mechanism (Paech et al., 1997). 

Likewise, 17β-estradiol binding to ERα induces transcription when linked to Sp-1 in GC-

rich regions, but not when 17β-estradiol is bound to ERβ. One example of this is the 

contrasting action of ERα and ERβ on the control of cyclin D1 gene expression (Liu et al., 

2002), where estrogen-bound ERβ suppresses cyclin D1 expression (Marino et al., 2006) 

and blocks ERα-mediated production when both receptors are present (Acconcia et al., 

2005; Matthews & Gustafsson, 2003). The diversity of mechanisms of transcriptional 

regulation in different cells by the two estrogen receptors and their interactions with local 

transcription factors may explain the differences observed in tissue specific biologic 

responses to estrogens.

10. MEMBRANE RECEPTOR: INDIRECT NON-GENOMIC SIGNALING

As mentioned above, not all estrogen responses fit the classical genomic model of steroid 

action. The observation of excessively fast estrogen-induced biological responses led to the 

development of the hypothesis that estrogen could be acting by mechanisms not involving 

direct target gene transcription and protein synthesis, and the subsequent discovery of the 

GPER1 (Prossnitz & Barton, 2011). Non-genomic actions of estrogen often involve 

activation of signal-transduction mechanisms with the subsequent production of intracellular 

second messengers, cAMP regulation and protein-kinase activation of signaling cascades 

that result in indirect changes in gene expression (Lösel & Wehling, 2003) (Figure 7). The 

protein-kinase cascades can be classified into four major ones: 1) the phospholipase C 

(PLC)/protein kinase C (PKCs) pathway (Marino, Pallottini, & Trentalance, 1998), 2) the 

Ras/Raf/MAPK cascade (Dos Santos et al., 2002; Watters, Campbell, Cunningham, Krebs, 

& Dorsa, 1997), 3) the phosphatidyl inositol 3 kinase (PI3K)/Akt kinase cascade (Marino, 

Acconcia, & Trentalance, 2003), and 4) the cAMP/protein kinase A (PKA) signaling 

pathway (Q. Gu & Moss, 1996; Picotto, Massheimer, & Boland, 1996). Additionally, 

GPER1 binding to estrogens promotes estrogen-dependent activation of adenylyl cyclase 

and epidermal growth factor receptor (EGFR). Subsequent phosphorylation of transcription 

factors by the protein kinases mentioned above can alter their function and ability to bind to 

genomic sequences to affect gene expression. Examples of transcription factors that are 

affected by these signaling mechanisms include: Elk-1, CREB, CCAAT-enhancer-binding 

protein beta (C/EBPβ), the NF-κB complex, and the signal transducer and activator of 

transcription (STAT) family (Cavalcanti, Lucas, Lazari, & Porto, 2015; Fox, Andrade, & 

Shupnik, 2009; Furth, 2014; Kousteni et al., 2003; Laliotis et al., 2013; Ozes et al., 1999; 

Romashkova & Makarov, 1999). Thus, by activating these non-genomic to genomic 

mechanisms, the estrogen receptors ERα and ERβ indirectly regulate gene transcription at 

alternative DNA response elements, in addition to the abovementioned genomic effects 

involving direct binding to EREs (Figure 7). Another interesting fact is that both ERα and 
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ERβ are also targets for phosphorylation by protein kinases including MAPKs, indicating 

that non-genomic actions of estrogens may also involve self-regulation of receptor 

expression (de Leeuw, Neefjes, & Michalides, 2011; Kato et al., 1995).

Both the membrane bound estrogen receptor GPER1, and some variants of the ERα and 

ERβ have been associated to non-genomic estrogen signaling (Barton et al., 2018; E. J. 

Filardo & Thomas, 2012). It has been suggested that non-genomic actions of the ERα and 

ERβ could be mediated through a sub-population of receptors that located at the cell 

membrane and can activate intracellular signaling cascades (Razandi, Pedram, 

Merchenthaler, Greene, & Levin, 2004). At the cell membrane, the ERα and ERβ can 

interact with scaffold proteins such as caveolin-1 and MNAR/PELP-1 (modulator of non-

genomic activity of estrogen receptor) (Chambliss et al., 2000; Cheskis et al., 2008; Shaul & 

Anderson, 1998). By proximity, the ERα and ERβ also interact with G proteins, various 

membrane receptors (e.g. tyrosine kinase, insulin growth factor 1, and epidermal growth 

factor receptors), and signaling molecules including ras, Src and PI3 kinases, ErbB2 

(HER-2/neu) and Shc that are located at or near the membrane (Boonyaratanakornkit, 2011; 

L. Li et al., 2007; Migliaccio et al., 1996; Song et al., 2010; Song, Zhang, Chen, Bao, & 

Santen, 2007; Song, Zhang, & Santen, 2005). Interactions with these molecules promotes 

intracellular activation of mitogen activated protein kinases (MAPK) and protein kinase B 

(Akt) signaling pathways that can affect transcriptional regulation (Y. Li et al., 2010). While 

there is no clear consensus among the experts in the field about binding of ERα and ERβ to 

the plasma membrane, it appears that the mechanisms described above are cell-type specific 

and activated under certain physiological events, and by specific receptor variants (L. Li, 

Haynes, & Bender, 2003).

11. GENOMIC AND NON-GENOMIC SIGNALING CROSSTALK

As exemplified in the previous sections, it is evident that the mechanisms of action of 

estrogen in the various cell targets represent a combination of complex multifactorial 

processes. Besides the independent genomic and non-genomic pathways described above, 

many authors have proposed the existence of additional convergent pathways involving both 

genomic and non-genomic factors that result in regulation of gene transcription (Björnström 

& Sjöberg, 2005; Silva, Kabil, & Kortenkamp, 2010; Vrtačnik et al., 2014). Two 

mechanisms of “cross-talk” have been described, and involve protein-protein interactions of 

components of both pathways. In one mechanism, estrogen-bound nuclear estrogen receptor 

complexes are dimerized and translocated to the nucleus, where they bind to phosphorylated 

transcription factors resulting from GPER1-mediated signaling. The complexes then bind to 

either ERE sequences via the nuclear estrogen receptors, or to AP-1, STATs, ATF-2/c-Jun, 

Sp1, and/or NF-κB cognate DNA binding sites (Björnström & Sjöberg, 2005). In the second 

mechanism, interaction of GPER1 and ERα and ERβ located at the plasma membrane 

activate protein kinase cascades that result in phosphorylation of AP-1, STATs, Elk-1, 

CREB, and NF-κB, and other transcription factors, as well as estrogen receptors themselves, 

that can then interact with DNA sequences to regulate transcription (Björnström & Sjöberg, 

2005). Thus, convergence of the two classical estrogen receptor regulation pathways can 

result in enhanced transcriptional activity in specific tissues and physiological processes.
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12. ESTROGEN RECEPTOR LIGAND INDEPENDENT SIGNALING

An interesting phenomenon observed in many cells is that estrogen receptors can actually be 

activated in the absence of estrogens or other receptor agonists (Bennesch & Picard, 2015; 

Maggi, 2011; Vrtačnik et al., 2014). This ligand-independent estrogen receptor activation is 

mainly triggered by phosphorylation on specific residues (e.g. serine and tyrosine) in the 

receptors themselves, or their association with coregulators (described below). This 

independent mechanism requires the action of regulatory molecules necessary for 

phosphorylation, such as protein kinase A (PKA), protein kinase C (PKC), MAPK 

phosphorylation cascade components, as well as inflammatory cytokines (e.g. interleukin-2), 

cell adhesion molecules (e.g. heregulin), cell cycle regulators (e.g. RAS p21 protein 

activator cyclins A and D1), and peptide growth factors including EGF, insulin, IGF1, and 

transforming growth factor beta (TGFβ) (Nilsson et al., 2001).

13. ESTROGEN RECEPTOR COREGULATORS AND TRANSCRIPTIONAL 

CONTROL

In addition to the regulatory pathways described above, the cell also expresses a battery of 

coregulators that can either enhance or decrease transcriptional activity of steroid hormone 

receptors. These are called estrogen receptor coactivators and corepressors, respectively. 

Coregulators are involved in many steps of the gene expression process, including chromatin 

modification and remodeling, transcription initiation, elongation of RNA chains, mRNA 

splicing, mRNA translation, miRNA processing, and degradation of the activated NR-

coregulator complexes (Lonard & O’malley, 2007). Currently, there are hundreds of 

coregulators of nuclear receptors described that play a key role in promoting gene expression 

and transcriptional activity. Coregulators are a dynamic group of proteins able to act as 

integrators of signals from steroid hormones, and have been linked to many diseases affected 

by sex hormones, such as cancer (Lonard & O’Malley, 2006). One of the first coregulators 

of ERα, known as steroid receptor coactivator (SRC-1), was identified in 1995 (Oñate, Tsai, 

Tsai, & O’Malley, 1995). Since then, many additional coregulators have been discovered for 

ERα, although very few are known for ERβ (Lonard & O’Malley, 2006). Coregulators for 

ERα comprise members of the steroid receptor coactivator (SRC)/p160 group, the histone 

acetyltransferase cAMP responsive element binding protein (CREB)-binding protein (CBP)/

p300, ATP-dependent chromatin remodeling complexes like SWI/SNF, E3 ubiquitin-protein 

ligases, and steroid RNA activator (SRA) (Lonard & O’Malley, 2006; Manavathi, 

Samanthapudi, & Gajulapalli, 2014). Therefore, as indicated above, even though both 

nuclear estrogen receptors are able to use estradiol as their physiological ligand, they exert 

multiple effects and functions in different cells and tissues that are mediated by several 

intermediaries and differential utilization of coregulators (Manavathi et al., 2014).

The mechanisms by which coregulators control the actions of estrogen receptors are still a 

topic of ongoing research. From studies in cancer cells, we have learned that a large group of 

coregulators have specific structural motifs that than affect their contact with ER ligand-

binding domains (Heery, Kalkhoven, Hoare, & Parker, 1997). The specific motifs are called 

NR boxes or LXXLL motifs (X, any amino acid; L, leucine). On the other hand, we know 
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that corepressors block ER-mediated gene transcription via 1) direct interaction with 

unbound estrogen receptors; 2) using their corepressor nuclear receptor box; 3) competing 

with coactivators (X. Hu & Lazar, 1999). It has also been reported that the concentration of 

several coregulators depends on estrogen induced-transcriptional regulation via the estrogen 

receptors (Mishra, Balasenthil, Nguyen, & Vadlamudi, 2004). Additionally, several post-

translational modifications such as phosphorylation, methylation, ubiquitination, 

SUMOylation, and acetylation can impact the action of coregulators targeting gene 

expression (Han, Lonard, & O’Malley, 2009; Lonard & O’malley, 2007; O’Malley & 

McKenna, 2008).

14. ENDOGENOUS AND EXOGENOUS ESTROGEN RECEPTORS LIGANDS

Apart from the estrogens that are naturally produced by gonadal and other tissues in the 

body, there is a diverse variety of organic and inorganic molecules that are able to recognize 

the estrogen receptors ligand-binding domains in a precise manner (Table 1). Most of these 

ligands display higher selectivity toward ERα, however, several selective compounds for 

ERβ have recently been described (Farooq, 2015). There are five main classes of ER 

ligands: endoestrogens, phytoestrogens, xenoestrogens, selective estrogen receptor 

modulators (SERMs) and metalloestrogens.

Endoestrogens are physiological estrogens that are endogenously produced by the body. 

Most endoestrogens (i.e. estradiol, estriol, estretrol, and estrone) were previously discussed 

in the chapter. Briefly, endoestrogens are steroidal compounds produced from cholesterol in 

the male and female gonads and other organs (Farooq, 2015). In contrast, phytoestrogens are 

non-steroidal compounds produced by plants. There are three known groups of 

phytoestrogens: isoflavones, coumestans, and lignans (Basu & Maier, 2018). Because 

phytoestrogens are chemically and structurally similar to estradiol, they can participate in 

both estrogenic and antiestrogenic effects through activation or blocking of the estrogen 

receptor ligand-binding domains (Turner, Agatonovic-Kustrin, & Glass, 2007). Interestingly, 

the phytoestrogens genistein, coumestrol, and liquiritigenin have been reported to display 

more affinity towards ERβ than to ERα, but the implications of these differences remain 

unknown (Kuiper et al., 1998; Manas, Xu, Unwalla, & Somers, 2004; Mersereau et al., 

2008; Nilsson, Kuiper, & Gustafsson, 1998).

Xenoestrogens are another group of ligands that comprise an extensive variety of non-

natural synthetic chemical compounds with estrogenic effects. The family of xenoestrogens 

can be divided into five major types: medicinal drugs, food additives, body cosmetics, 

environmental pesticides, and industrial chemicals (Farooq, 2015). Drugs such as 

diethylstilbestrol (DES) and ethinyl estradiol were specifically synthesized to mimic the 

action of endoestrogens, and have been extensively to treat many conditions in women 

(Gennari, Merlotti, Valleggi, Martini, & Nuti, 2007; Maximov, Lee, & Jordan, 2013). 

However, it has been found that these compounds can affect cellular and molecular 

processes leading to severe effects on health, and their use in medical therapeutics remains 

controversial (Aravindakshan, Gregory, Marcogliese, Fournier, & Cyr, 2004; Aravindakshan, 

Paquet, et al., 2004; Arukwe, Celius, Walther, & Goksøyr, 2000; Christin et al., 2004; 

Golden et al., 1998; Iorga et al., 2017; Vajda et al., 2008; Williams, Lech, & Buhler, 1998). 
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In the past few years, a wealth of evidence has been accumulated demonstrating that 

estrogens regulate many facets of the inflammatory response and the immune system via 

complex molecular mechanisms that are also sex dependent (Khan & Ansar Ahmed, 2015). 

It is now plausible that any immune cell that expresses estrogen receptors can potentially 

respond to ligand binding in a context-dependent manner, which will affect the outcome of 

the overall immune response. Thus, given the known spatial and temporal expression of the 

estrogen receptors, it is important to consider this aspect when designing potential 

therapeutic therapies targeting the estrogen receptor signaling pathways (Arnal et al., 2017). 

Additionally, precise timing of treatment initiation and duration may be required to 

determine the true efficacy of estrogen treatment (Burns & Korach, 2012; Hamilton, Hewitt, 

Arao, & Korach, 2017).

The selective estrogen receptor modulators (SERMs) are another type of estrogen receptor 

ligands. The main difference between SERMs and xenoestrogens relies on the fact that 

SERMs present functional duality and are able to act both as agonists and antagonists of the 

estrogen receptors in different tissues (Martinkovich, Shah, Planey, & Arnott, 2014; Shang 

& Brown, 2002; Smith & O’Malley, 2004). At the molecular level, SERMs employ their 

antagonistic actions by competing with estradiol for binding to an inner hydrophobic pocket 

within the ligand-binding domain of ERα (Bourguet, Germain, & Gronemeyer, 2000; Shiau 

et al., 1998; Wärnmark et al., 2002). Binding of this estradiol agonist induces a 

conformational change in the LBD that results in sealing the ligand binding pocket. Some of 

the most important SERMs include tamoxifen, raloxifene, clomifene, ormeloxifene, and 

toremifene (Farooq, 2015). One of the most used SERMs in the treatment of breast cancer, 

tamoxifen, acts as an antagonist in breast tissue, but as an agonist in the uterus. Therefore, 

while tamoxifen is often the selected treatment for ER-positive breast cancer, it can also 

stimulate endometrial cell growth leading to uterine cancer (R. Hu, Hilakivi-Clarke, & 

Clarke, 2015). While most SERMs are mainly selective for ERα, there are a few synthetic 

steroidal analogs that can regulate the actions of ERβ, or both receptors (Blizzard, Gude, 

Chan, et al., 2007; Blizzard, Gude, Morgan, et al., 2007; Blizzard et al., 2006; 

Papapetropoulos, 2007).

Finally, in addition to the organic ligands mentioned above, there are also inorganic 

compounds in the form of heavy metal ions that present estrogenic activity. These are 

collectivelly known as metalloestrogens. Examples of these include: aluminum (Al3+), 

antimony (Sb3+), barium (Ba2+), cadmium (Cd2+), chromium (Cr2+), cobalt (Co2+), copper 

(Cu2+), lead (Pb2+), mercury (Hg2+), nickel (Ni2+), arsenite (AsO3 3-), selenite (SeO3 2-) and 

vanadate (VO4 3-) (Farooq, 2015). Studies have have shown that these metalloestrogens are 

able to coordinate to specific amino acid residues within the ligand-binding domain of the 

nuclear estrogen receptors, thus blocking binding of estradiol in a non-competitive manner 

(Stoica, Katzenellenbogen, & Martin, 2000; Stoica, Pentecost, & Martin, 2000a, 2000b).

15. DISCUSSION

Estrogen receptors regulate a multitude of biological and physiological processes. These are 

tightly controlled by complex mechanisms involving either genomic nuclear direct binding 

to specific DNA sequences, or activation of intracellular cascades resulting in non-genomic 
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control of transcription. Over the past 60 years since the discovery of the first nuclear 

estrogen receptors, and the almost 20 years since the discovery of the membrane receptor, 

multiple mechanisms of action have been discovered and characterized. These involve a 

multitude of intracellular kinases, transcription and growth factors, membrane receptors, 

coregulators, and natural and synthetic ligands. The information obtained in these studies 

has helped in the design of therapeutic strategies for diseases involving the estrogen 

receptors such as many cancers, as well as in the treatment of endocrine conditions affecting 

fertility and resulting from menopause. While there are still many diseases for which 

estrogens have been implicated but the role of their receptors has not been elucidated, the 

knowledge gained in the past six decades together with new advances in precision medicine 

and molecular diagnostic techniques will allow for the development of more personalized 

strategies to prevent and treat conditions that are affected by estrogens and other steroid 

hormones.
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Figure 1. Chemical structures of endogenous estrogens.
Estrone (E1; orange), estradiol (E2; blue), estriol (E3; green) and estretrol (E4; yellow).
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Figure 2. Association of theca and granulosa cell in estrogen synthesis.
The luteinizing hormone (LH) induces the production of androgens in theca cells. The 

follicle-stimulating hormone (FSH) stimulates granulosa cells via aromatization of 

androgens to estrogens and by using cholesterol to produce pregnenolone. The process 

occurs in the ovarian follicle, which is composed of granulosa cells, oocyte, basal lamina 

and theca cells. CREB, cyclic AMP response element binding protein; PKA, protein kinase 

A; LDL, low density lipoproteins; cAMP, cyclic adenosine monophosphate; StAR, steroid 

acute regulatory protein; P450c17, 17α-hydroxylase/lyase; 17βHSD, 17β-hydroxysteroid 

dehydrogenase.
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Figure 3. Estrogen biosynthesis pathway.
The estrogen biosynthetic pathway involves the conversion of cholesterol to progestogens, 

androgens and finally estrogens. The conversion of androgen to estrone (E1) and estradiol 

(E2) catalyzed by aromatase is the final step for synthesis of estrogen.
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Figure 4. Structural organization of estrogen receptors.
Structural domains of estrogen receptor α (ERα) (595aa) and ERβ (530aa) are labeled A-F. 

Both receptors have 6 different structural and functional domains: N- terminal (NTD, A/B 

domains, AF-1), DNA binding domain (DBD, C domain), the hinge (D domain), the C-

terminal region containing the ligand binding domain (LBD, E/F domain, AF-2).

Fuentes and Silveyra Page 26

Adv Protein Chem Struct Biol. Author manuscript; available in PMC 2019 May 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. Estrogen receptor alpha (ERα) isoforms.
The domain organization of the full-length 595 amino acid ERα (67kDa), and truncated 

shorter isoforms (62kDa, 53kDa, 46kDa, 45kDa, and 36kDa) resulting from alternative 

splicing and/or alternate translation start sites are illustrated. Protein domains are labeled as 

A to F with numbering denoting amino acid sequence number based on the full-length 

protein (595 aa). ERα domains: N-terminal (NTD, A/B domains, AF-1), DNA binding 

domain (DBD, C domain), hinge (D) domain, and C-terminal region containing the ligand 

binding domain (LBD, E/F domain, AF-2).
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Figure 6. Estrogen receptor beta (ERβ) isoforms.
The domain organization of the full-length 530 amino acid ERβ (59kDa), truncated shorter 

isoforms (54 kDa, 49 kDa, and 44 kDa), and elongated isoform (61kDa), resulting from 

alternative splicing and/or alternate translation start sites are illustrated. Protein domains are 

labeled as A to F with numbering denoting amino acid sequence number based on the full-

length protein (595 aa). ERβ domains: N-terminal (NTD, A/B domains, AF-1), DNA 

binding domain (DBD, C domain), hinge (D) domain, and C-terminal region containing the 

ligand binding domain (LBD, E/F domain, AF-2).
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Figure 7. Genomic and non-genomic estrogen signaling pathways.
There are different estrogen-mediated signaling mechanisms. 1) Direct genomic signaling: 

estrogen binds to ERs. The complex dimerizes and translocate to the nucleus inducing 

transcriptional changes in estrogen-responsive genes with or without EREs. 2) Indirect 

genomic signaling: the membrane bound receptor induces cytoplasmic events such as 

modulation of membrane-based ion channels, second-messenger cascades and transcription 

factors. 3) ER-independent: estrogen exerts antioxidant effects in an ER-independent 

manner. 4) Estrogen independent: ligand-independent genomic events.
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Table 1.

Types of Estrogen Receptor Ligands

Endoestrogens Phytoestrogens Xenoestrogens SERMs Metalloestrogens

estrone
17β-estradiol
estriol
estretrol

Isoflavones:
genistein, daidzein, 
formononetin, glycitein
Coumestans:
coumestrol, repensol, 
trifoliol
Lignans:
lariciresinol, 
matairesinol, 
pinoresinol, 
secoisolariciresinol, 
podophyllotoxin, 
steganacin

Medicinal drugs:
diethylstilbestrol, ethinyl estradiol
Food additives:
butylated hydroxyanisole, erythrosine
Body cosmetics:
4-methylbenzylidene camphor, methylparaben, 
ethylparaben, propylparaben
Environmental pesticides:
atrazine, dichlorodiphenyldichloroethylene, 
dichlorodiphenyltrichloroethane, methoxychlor, 
dieldrin, endosulfan, heptachlor, lindane
Industrial chemicals:
bisphenol A, nonylphenol, monochlorobiphenyl 
and dichlorobiphenyl, di-2-ethylhexyl phthalate, 
diisodecyl phthalate, diisononyl phthalate

Tamoxifen
Clomifene
Toremifene
Raloxifene
Ormeloxifene

Cations:
aluminum (Al3+), antimony 
(Sb3+), barium (Ba2+), 
cadmium (Cd2+), 
chromium (Cr2+), cobalt 
(Co2+), copper (Cu2+), lead 
(Pb2+), mercury (Hg2+), 
nickel (Ni2+)
Anions:
arsenite (AsO3

3−), selenite 
(SeO3

2−), vanadate (VO4
3−)
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