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Abstract

In the era of personalized and precision medicine, informatics technologies utilizing machine 

learning (ML) and quantitative imaging are witnessing a rapidly increasing role in medicine in 

general and in oncology in particular. This expanding role ranges from computer-aided diagnosis 

to decision support of treatments with the potential to transform the current landscape of cancer 

management. In this review, we aim to provide an overview of ML methodologies and imaging 

informatics techniques and their recent application in modern oncology. We will review example 

applications of ML in oncology from the literature, identify current challenges, and highlight 

future potentials.
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1. Introduction

MACHINE learning (ML) is an interdisciplinary field from artificial intelligence that draws 

upon advances in computer science, neuroscience, psychology and statistics for developing 

computer algorithms that can learn tasks from data, without being explicitly programmed for 

this purpose [1]. The application of ML is currently prevalent in a wide range of diverse 

fields (e.g., banking, sports, politics and advertising) producing reliable guidance to decision 

making and reducing manual labor [2]. A subarea of ML called deep learning, allowing 

abstract representation of data via deep neural networks (also known as multi-layer neural 

networks), has recently shown its potential in mimicking human cognition and challenging 

human intellectual abilities from video/board games to medicine. Recently, many high-

profile companies have implemented machine learning techniques in their practice. For 

example, the Google Cloud [3] can convert audio to text and translate an arbitrary string into 

any supported language. Spotify music utilizes convolutional and recurrent neural networks 
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for recognizing music genres and making recommendations for its users [4]. Rider sharing 

Apps like Uber and Lyft can predict rider demands using ML algorithms to minimize the 

waiting time of their customers [5].

In the field of medicine, information technology ventures are actively developing and 

seeking applications for their ML tools. For instance, Google DeepMind released mobile 

applications for diagnosis of eye disease, kidney injury and management of electronic 

patient records. In the field of oncology, there has been growing interest in applying machine 

learning for diagnosis, prognosis and treatment queries. For example, the IBM Watson for 

Oncology (WFO) system has demonstrated its effectiveness in making treatment 

recommendations for specific cancer patients. In breast cancer, WFO was able to learn an 

extensive corpus of medical journal, textbook and treatment guidelines information at 

Memorial Sloan Kettering Cancer Center (MSKCC) by natural language processing (NLP) 

to identify articles that are well-matched to the characteristics of specific patients. It also 

incorporated data from over 550 breast cancer cases in MSKCC, including variables like 

patient characteristics, comorbidities, functional status, tumor characteristics, stage, imaging 

and other laboratory findings [6]. WFO can further refine its analytical process according to 

feedback given by experts. The system can finally provide treatment planning 

recommendations (surgery, chemotherapy, immunotherapy, radiotherapy) and alternative 

options within each treatment plan (e.g., drugs or doses) to a specific patient. It has been 

tested at the Manipal Comprehensive Cancer Center, showing a high concordance (93%) 

with a multidisciplinary tumor board [7].

Algorithms based on deep learning, such as a convolutional neural network (CNN), have 

been applied in imaging diagnosis of a wide variety of cancers showing high accuracy 

comparable or superior to human experts. For instance, a CNN was able to distinguish 

between the most common and deadliest types of skin cancers by learning from a dataset 

consisting of 12,940 clinical images, outperforming two dermatologists on a subset of the 

same validation set [8]. In a challenge competition to develop automated solutions for 

detecting lymph node metastases in breast cancers from pathology images, the top-

performing algorithm was also based on a deep learning CNN [9], which achieved a better 

diagnostic performance than a panel of 11 pathologists under a simulated exercise designed 

to mimic routine clinical workflow. Besides the high prediction accuracy offered by ML 

algorithms, they also enjoy high efficiency and can be cost effective. For instance, a well-

trained CNN from previous clinical examples, can achieve accurate diagnosis in a fraction of 

a second at any time offering the possibility of a universal access to diagnostic care 

anywhere, anytime.

ML can be also an effective tool for molecular targeting by unveiling the complex 

relationships of underlying genetics and other biological information. A blood test called 

CancerSEEK [10] was reported to be able to detect eight common cancer types from very 

early stages of disease and localize the origin of cancer to a small number of anatomic sites 

by assessing the levels of circulating proteins and mutations in the DNA. This test can be 

applied in early detection of cancers and it can conceivably reduce deaths.
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In the future, cognitive learning systems such as WFO may potentially offer physicians the 

necessary tools to tailor their treatments to an individual patient based on the synthesized 

knowledge by ML algorithms from the existing literature and/or interactive learning from 

clinical oncology experts. Due to the sophisticated technical advances and the tremendous 

growth of genetic and clinical data, it is becoming harder for busy physicians to stay current 

about every emerging new finding. On the other hand, ML-based systems can acquire such 

knowledge from a large volume of unstructured and structured datasets, aggregate and 

effectively present such synthesized knowledge to practicing physicians as a second opinion 

to aid and support their decision making and improve cancer patients’ management.

In this article, we will review some of the basic concepts and methods commonly applied in 

ML. Then, we will present several examples of ML and imaging informatics applications in 

diagnosis, prognosis, and treatment of cancers. Finally, we will discuss current technical and 

administrative barriers for a more comprehensive and wider incorporation of ML techniques 

into clinical practice and offer some tentative recommendations to realize the tremendous 

potentials of ML for oncology and cancer patient’s care.

2. What Is Machine Learning?

Machine learning is broadly referred to as computer algorithms that can provide computers 

with the ability to learn patterns from data or make predictions based on prior examples. 

Machine learning, a term first coined by Arthur Samuel, is considered as a major branch of 

Artificial Intelligence (AI) (see Fig. 1), as proposed by John McCarthy [11] and was defined 

as “involves machines that can perform tasks that are characteristic of human intelligence”. 

Machine learning is generally designed to learn analytical patterns from data and making 

generalizations (predictions) based on its exposition to previous samples [12]. Thus, it is a 

field strongly tied to cognitive psychology, neuroscience, computational and statistical 

principles that also aim at data mining and performance predictions. To explain the concept 

of machine learning more concretely, the following provides more details.

2.1. Definition

A technical definition of machine learning is, quoted from [13], “a computer program is said 

to learn from experience E with respect to some class of tasks T and performance measure P 
if its performance at tasks in T, as measured by P, improves with experience E”. Tom 

Mitchell further illustrated this definition by showing an example of playing checkers, where 

E=playing checkers, P=ability to win, and T=game rules. In another words, ML provide 

computers with the ability to performs tasks beyond what they were originally programmed 

for, i.e., they learn how to perform tasks in a more or less similar fashion to an autonomous 

human operator.

2.2. Categories

There are mainly three categories recognized in machine learning: supervised learning, 

unsupervised learning, and reinforcement learning. Supervised learning requires a dataset 

containing input and output labels, which are the desired outputs or outcomes, so that a 

computer is trained by a labelled-dataset as if it were learning under the supervision of a 
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teacher. Technically, supervised learning aims to find a mathematical function that can map 

input data pairs into output labels. On the other hand, unsupervised learning can operate on a 

dataset without given labels. In such a case a computer algorithm is tasked to figure out 

(intrinsic) structures within the data (e.g., Fig. 3), where these intrinsic structures could 

mean clusters or support regions of data.

Some typical supervised learning algorithms include (logistic, LASSO, Ridge, etc.) 

regressions, support vector machines (SVMs), random forests, neural networks (NNs), etc. 

Examples of unsupervised learning are principal component analysis (PCA) [14], Laplacian 

eigenmaps [15], t-SNE [16], p-SNE [17], and autoencoders [18], etc. Illustrations of a 

supervised learning and an unsupervised learning are given in Fig. 2(a) and Fig. 3(a), 

respectively. A clinical application by Dawson et al. [19] utilized an unsupervised PCA to 

indicate the presence of linear separability in xerostomia (dry mouth) data of patients at high 

or low risks post-radiotherapy exposure of the parotid gland, Fig. 3(b). Intuitively, 

supervised learning usually can perform more effectively in classifying data due to the 

additional guidance of known answers (labels) provided to it. Thus, in this respect, 

unsupervised learning is generally considered a harder computational problem, where 

cognitive learning is assumed to be implicit.

From a probabilistic perspective, supervised learning algorithms can also be categorized into 

discriminant or generative models. It is usually assumed that inputs (x) and their labels (y) in 

supervised classification arise from a joint probability p(x,y). A discriminant classifier 

model, defined by the posterior probability p(y | x), can be used to map inputs (x) to class 

labels (y) without necessarily knowing the underlying joint probability function. Whereas a 

generative classifier attempts to learn the architecture of such joint probability p(x,y) first 

and then make their predictions by using Bayes rule to calculate conditional probabilities p(y 
| x) and choosing the most likely label y [22]. The advantage of the generative approach is 

that we can use the algorithm to generate new synthetic data similar to the existing ones, 

while the discriminant algorithm generally offers better performance for classification tasks 

[16] [23].

If a given dataset contains temporal information, one may utilize dynamic machine learning 

algorithms that can take time information into account such as a Recurrent Neural Network 

(RNN) or Long Short-Term Memory (LSTM) network [24]. In addition, classical Bayesian 

network techniques are able to perform both dynamic and static predictions, and recursive 

Bayesian methods can estimate an unknown probability density function recursively over 

time based on incoming information. If the variables are linear and normally distributed, the 

recursive Bayesian method become equivalent to the well-known Kalman filter widely used 

in control and signal processing applications [25] [26].

As for the third category, reinforcement learning (RL), it is designed to embody a software 

agent (which may represent a clinician in our case) to take actions when interacting with a 

given environment (e.g., clinical treatment). Usually there is a definite goal for the agent to 

reach, via a so-called a reward function (e.g., better treatment outcome). Winning a 

chess/GO game by an agent can be a goal of an RL algorithm in a board game, such as in the 

example AlphaGo of DeepMind [20]. It is worth noting that RL is a modern extension of 
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classical statistical decision-making schemes known as Markov Decision Processes (MDPs), 

which originally appeared in the 1950s [21] and are currently empowered by advanced 

computing technologies.

2.3. Deep Learning

Recently, an interesting and powerful branch in ML called deep learning is demonstrating 

tremendous success in solving pattern recognition and computer vision problems compared 

to classical ML techniques. These learning algorithms are generally based on neural network 

(NN) architectures with more than 2 hidden layers (Fig. 2 (b)), and hence the qualifier 

“deep”. Deep learning has empirically proven to be capable of efficient learning from 

complex tasks [27], which is essentially due to an inherent characteristic called the universal 

approximation property [28]. In CNNs, such a property can be interpreted as learning data 

representation in a hierarchal manner while optimizing prediction for the task at hand 

without the risk of overfitting [29], and avoiding the feature selection problem inherent in 

classical ML problems [27]. Some specialized (deep) NNs of a desired purpose are 

developed subsequently to perform different tasks such as Convolutional Neural Networks 

(CNNs), Fig. 4, for image recognition/classification and Recurrent Neural Networks (RNNs) 

for sequential learning such as text captions of images.

CNNs are said to be inspired by the work of Hubel and Wiesel on the animal visual cortex 

[30]. In practice, a CNN is one particular type of NN (Fig. 4) usually consisting of three 

parts: (1) a convolutional layer, (2) a pooling (down-sampling) layer and (3) one final fully-

connected layer for classification purposes. The distinguished convolutional part is generally 

the most important piece (hence the name CNN) and it aims at learning and extracting 

features from the input data (e.g., edges, textures, etc., from images) [29]. The pooling layer 

serves as a data reduction mechanism and the last fully-connected layer makes final a 

judgment as to which class the input images may belong to.

A CNN can go deep by consecutively repeating the convolution and the pooling layers. With 

the ever-increasing computing power to deal with the growing size of data, deep learning can 

be efficiently trained and applied. As mentioned in [27], deep learning outperforms 

conventional shallow NNs and other ML algorithms by capturing complex structures in 

high-dimensional data. Each feature map via a convolutional kernel is considered a 

representation of higher or more abstract level [31]. Thus, representations of deeply 

transformed layers emphasize quantities that are crucial for computers to discriminate, such 

that they can be considered as latent (hidden) features in the data that are automatically 

learned by a CNN.

Certain CNN architectures have proven to be effective: LeNet is the first application of a 

CNN to read zip codes and digits by Yann LeCun in the 1990’s [32]; AlexNet, the champion 

of the ImageNet pattern recognition challenge 2012, demonstrated surprising performance 

compared to other common methods and is considered a watershed moment in modern ML 

applications [33]. GoogLeNet, the laureate of ILSVRC 2014, introduced an inception 

module into the architecture to reduce the huge number of parameters by up to 12 times over 

that of AlexNet and found out an optimal local sparse structure [34]. Also, a VGGNet, 

introduced in 2014, used a 3 × 3 filters only stacked to increase the learning depth [35]. 

Tseng et al. Page 5

Oncology. Author manuscript; available in PMC 2021 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



There are two other variants widely used in the literature, VGG16 and VGG19, of the 

original VGGNet, where the “16” and “19” refer to the layer depth, respectively. Notably, in 

general the depth of a layer could improve the classification accuracy, but this is not always 

the case. The learning accuracy empirically ceases to grow after a certain depth is reached. 

This is due to the vastly increasing amount of weights when adding more layers. In the case 

where using weights free of concern is a luxury, alternatives should be considered. 

Particularly, in the medical field where datasets are typically of small size, U-Net [36] may 

be a good choice for such scenarios.

The success of CNNs and RNNs owes to their design for taking related information into 

account, where a CNN considers multi-dimensional neighboring data (e.g., image pixels/ 

MRI voxels) and an RNN focuses on (1-dimensional) sequential (temporal) relations such as 

human voice recognition or texts. These features make them naturally suitable for decision 

support by incorporating both the spatial and the temporal information. Hence, making them 

strong candidates for aiding treatment planning and dose adaptation. Another possible way 

to achieve automatic decision support in radiotherapy, for instance, is via reinforcement 

learning, where desired benefits are maximally pursued by a software agent. It is the same 

principle that drove AlphaGo into winning the Chinese Go game. Thus, deep learning has 

the potential to optimize prediction of outcomes and identify optimal strategies for precision 

treatment in oncology. Later in Sec. III-B, we shall discuss how these technologies are 

currently applied to help extract useful cues from imaging data, as a valuable resource for 

precision oncology.

3. Machine Learning for Imaging Informatics in Oncology

Medical imaging has been widely applied clinically over the past decades. Recently, it is 

showing even more potential and utility due to the vast development of quantitative imaging 

techniques and recent breakthroughs in the machine learning community [31].

In general, there are two main types of imaging acquisitions: (1) anatomical imaging, 

including conventional X-ray, ultrasound, computed tomography (CT) and magnetic 

resonance imaging (MRI), etc.; (2) functional (molecular) imaging, including positron 

emission tomography (PET), single-photon emission computed tomography (SPECT) and 

diffusion-weighted MRI, etc. In order to combine the advantage of anatomical resolution 

and functional information of tissues, multimodality imaging techniques such as SPECT/CT, 

PET/CT, PET/MRI were also developed. With all these techniques available, images can 

provide valuable data encoded with patient individual information about tumor, tumor 

environment and genotype that can be data mined to help with the diagnosis, prognosis and 

prediction of oncology outcomes [37].

This raises the question: “how can we discover underlying biological relationships in these 

huge amounts of imaging data”? Beyond the already complex procedures clinicians use to 

read and interpret medical images for making routine decisions, they are also extracting 

other information; however, in a relatively qualitative way (for example, the boundary of the 

tumor, or its heterogeneity, etc.). Fortunately, with the development of advanced pattern 

recognition techniques and statistical learning tools, digital medical images can now be 
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converted into mineable high-dimensional data via high-throughput extraction of 

quantitative features. This has shown great potential for precision medicine in oncology. The 

conversion of medical images into a large number of advanced features and the subsequent 

analysis that relates these features with biological endpoints and clinical outcomes give rise 

to the field of Radiomics.

3.1. Radiomics

Medical imaging plays an important role in oncological practice from diagnosis, staging of 

tumors, treatment guidance, evaluation of treatment outcomes, and follow-up of patients. 

Being a noninvasive method, images are able to provide both spatial and temporal 

information of the tumor. Extraction of quantitative features from medical images together 

with subsequently relating these features to biological endpoints and clinical outcomes is 

referred to as the field of Radiomics. “Radio” comes from radiology, which refers to 

radiology images, e.g. CT, MRI and PET. “-omics” stands for the technologies that aim at 

providing collective and quantitative features for the entire system and explore the 

underlying mechanisms. It is widely used in biology, such as in the study of genes 

(genomics), proteins (proteomics) and metabolites (metabolomics) [38]. The origin of 

radiomics is medical image analysis and understanding. The goal of radiomics is to take 

advantage of the digital data stored in those images to develop diagnostic, predictive, or 

prognostic radiomic models to help understand the underlying biological/clinical processes, 

support personalized clinical decisions and optimize individualized treatment planning. The 

core of radiomics is the extraction of quantitative features, with which we can apply all the 

advanced machine learning algorithms and build models to bridge between images and 

biological and clinical endpoints. A central hypothesis of radiomic analysis, is that the 

imaging features are able to capture distinct phenotypic differences, like genetics and 

proteomics patterns or other clinical outcomes so that we can infer these endpoints. This 

hypothesis has been proven recently by many researches. Segal et al. showed that the 

dynamic imaging traits (features) in CT systematically correlate with the global gene 

expression programs of primary human cancer [39]. Aerts et al. [40] found that a large 

number of radiomic features extracted from CT images have prognostic power in 

independent datasets of lung and head neck cancer patients. It is interesting to note that the 

study identified a general prognostic phenotype for both lung and head neck cancers. 

Vallieres et al. [41] extracted features from FDG- PET and CT images and performed risk 

assessment for locoregional recurrences (LR), distant metastases (DM) and overall survival 

(OS) in head and neck cancer. These studies assured the potential of radiomic features for 

analyzing the properties of specific tumors. A central component of all the examples stated 

above is the ability to obtain or infer the hidden information from the pixels (voxels) in the 

digital images. Generally, there are two main processes to help relate raw images to the 

endpoints: (1) feature extraction; (2) classification or regression using the extracted features. 

There are two general ways to extract useful features: (1a) hand-crafted techniques or 

directly using existing radiomic signatures; (1b) automatic learning of image representation 

by deep NNs (e.g. CNNs). For oncology classification problems, methods and tools for 

feature extraction via both conventional machine learning algorithms (e.g., SVMs, random 

forests) and newly emerging deep learning algorithms are growing at a rapid pace.
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3.2. Hand-crafted feature extraction (conventional radiomics)

The regions of interest (ROIs) in cancer diagnosis/prognosis are generally spatially and 

temporally heterogeneous. It has been shown that radiomics features for capturing these 

intra-tumor heterogeneities were powerful in prognostic modeling of aggressive tumors. 

These changes in 4D (3D space + 1D time) space play an important role in analyzing and 

monitoring the disease status [40]. Thus, it is natural to divide radiomic features further into 

two types: spatial (static) and temporal (dynamic) [42]. Static features are based on intensity, 

shape, size (volume), texture and wavelet, while dynamic features are based on kinetic 

analysis using time-varying acquisition protocols, such as dynamic PET or MRI. Both of 

these features offer information on the tumor phenotype and its microenvironment (habitat). 

Examples of static features are: (a) morphological (shape descriptors), (b) first-order, and (c) 

second-order (texture) features. Texture features, specifically, can provide statistical 

interrelationships between voxels and capture special patterns in the ROIs to compensate for 

the loss of information from the first-order features due to the spatial information associated 

with the relative positions of the intensity levels of the voxels.

These features can then provide a quantitative representation that to some degree can mimic 

the features that clinicians may pay attention to, while also offer the potential of obtaining 

more information invisible to the human eye. After producing isotropic interpolated voxel 

sizes and discretize grey level images, features can be calculated from varying common 

texture matrices such as: the grey-level co-occurrence matrix (GLCM) [43], grey-level run-

length matrix (GLRLM) [44], grey-level size zone matrix (GLSZM) [45], grey-level 

distance zone matrix (GLDZM) [46], neighborhood grey tone difference matrix (NGTDM) 

[47], and the neighboring grey level dependence matrix (NGLDM) [48]. These gray level 

matrices provide statistical methods to capture the spatial dependence of gray level 

intensities that constitute the textures of an image. For a more detailed introduction to 

radiomics analysis, one may refer to [49].

For time varying acquisition protocols, such as dynamic PET and MR, radiomic features are 

extracted based on kinetic analysis of the dynamic images. Compartment models are widely 

used for tracer transport, its binding rates and metabolism modeling. For example, FDG-

PET imaging has shown great success in tumor detection and cancer staging using18F 

labelled fluorodeoxyglucose (FDG) as the tracer of choice to visualize intra-tumoral glucose 

metabolism. Beyond these common radiomic features (mostly statistical texture features), 

one can also apply other advanced pattern recognition features like fractal features, which 

are based on the concept of fractional Brownian motion and represent the normalized 

average absolute intensity difference of pixel pairs on a surface at different scales (a); Scale 

Invariant Features, which are invariant to image spatial scaling and rotations, and are able to 

provide robust matching across a large range of affine transformation [50]; or Histograms of 

Oriented Gradients (HOG) features, which are obtained by counting occurrence of gradient 

orientation in localized parts of an image [51]. In addition, one may also develop their own 

new ad hoc features based on the understanding of the specific task at hand.
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3.3. Machine-engineered feature extraction (deep radiomics)

An alternative approach for feature extraction is driven purely by the data itself using 

machine learning techniques such as CNNs and is usually referred to as “feature 

engineering”. Unlike obtaining hand-crafted features as mentioned above, CNNs are able to 

engineer important features considered critical for computers to learn characteristics from 

various image data automatically, although these latent features are not always human-

recognizable. But owing to the powerful performance of CNNs, computer scientists have 

managed to unveil the feature maps a computer can recognize, making such features more 

interpretable [31].

The idea of CNNs has been applied to medical image processing as early as 1993, Zhang et 

al. used a shift-invariant NN to detect clustered microcalcifications in digital mammograms 

[37]. Sahiner et al. investigated the classification of ROIs on mammograms using a CNN 

with spatial domains and texture images [38]. Recently, a large number of inspiring works 

applying deep CNNs to medical image analysis have been presented. For example, Shin et 

al. used three CNN architectures, namely CifarNet, AlexNet and GoogLeNet with transfer 

learning for computer-aided detection (CAD) problems. They reported that the applications 

of CNN image features can be improved by either exploring the hand-crafted features or by 

transfer learning (i.e., using information from other domain such as natural images to inform 

the medical application at hand) [39]. Although CNN methods require little engineering by 

hand and learn their features automatically, they are also limited by the available data size. 

In the medical field, it is relatively difficult to collect such large amount of data comparable 

to that in other fields such as computer vision or board games. Another limitation is the lack 

of labelling for the data (clinical outcomes). Even if the former two issues are resolved, the 

features obtained from CNNs may be hard to interpret in the clinical sense, which may not 

be reassuring for medical practitioners and patient care. Transfer learning, data 

augmentation, Generative Adversarial Nets (GAN) [40], semi-supervised learning among 

others have been proposed to address the data limitation problem by providing additional 

data for training, while deep learning interpretation is still in its infancy.

3.4. Feature selection, model construction and validation

In imaging tasks for radiation oncology such as sementation or tumour contouring, 

supervised learning is typically useful. As mentioned earlier, in supervised learning one 

finds a “good fit” for the labeled data among several ML and statistical models, where such 

a “good fit” is usually determined by training error and internal/external validation 

performance. It can be challenging to find an accurate and stable model fitting data with a 

large number of features extracted from medical images, especially when the sample size 

(patients’ number) is much less than the data features. In these situations, overfitting and 

high variance are the major concerns due to the so-called the curse of higher dimensionality. 
One viable method is to trim the data with feature selection, namely selecting a subset of 

variables that are indicative for one’s classification purpose. Such feature selection of data 

may be useful when features are redundant, highly correlated, or sometimes irrelevant with 

respect to the classification task.
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By performing feature selection, the variable space is reduced to mitigate the tendency of 

overfitting such that it helps building a more robust predicting model. Furthermore, 

computation cost and storage of data can be reduced. It may also be beneficial for 

interpreting and understanding the underlying data mechanism if selected structures properly 

reflect the classification purpose. Common feature selection methods are filtering methods 

and wrapper methods [52], where the former selects variables by ranking them with 

correlation coefficients and the latter searches for an optimal set of features by evaluating 

"usefulness" towards a given predictor using different combinations of features within a 

learning scheme.

After feature selection of data, one proceeds to build a classification model by evaluating the 

performance on training data and generalization error on independent test (validation) set. A 

complex model can fit the training data well (low bias), while its generalization performance 

to out-of-sample may be poor (high variance).

Such bias–variance tradeoff is due to complexity of a model. A fundamental quantity called 

Vapnik–Chervonenkis dimension (VC-dimension) characterizes such model complexity for 

a class of models, e.g., NNs, linear classifiers, and SVMs. It is known that linear classifiers 

on 2D plane have VC-dim=3, while NNs have VC-dim= 0(n log n) where n is the total 

number of parameters (weights) in the network [53]. One then easily sees that NNs are 

equipped with stronger capacity to fit (training) data, which meets our empirical 

understanding. Therefore, the purpose of validation and model selection aims to choose a 

proper class of classifiers with suitable VC-dimension to characterize the data. In fact, 

Vapnik has proved a useful formula describing the relation between training/testing error and 

VC-dimension [54]:

Pr test error ≤ training error +
D log 2N

D + 1 − log η
4

N

= 1 − η

With 0 ≤ η ≤ 1 and D ≪ N when D is the VC-dimension and N is the size of training set. 

This equation exactly describes that when the probability of test error is likely to be larger 

than training error and by how much amount (the square root term) determined by D. In 

particular, when the VC-dimension is large, the test error is most likely to be larger than the 

training error, and hence meets our intuition of over-fitting. With the knowledge where 

overfitting/underfitting comes from, one is then dedicated to select a proper model 

describing data.

To perform model assessment and overcome model selection, two major methods of 

validation may be utilized: K-fold cross-validation (CV) and bootstrap method, where K-

fold (K: a positive integer, e.g., K = 5, 8, 10,…) CV randomly splits data K times into 

approximately K equal-sized and mutually-exclusive parts with one part reserved as 

validation data and the other K – 1 ones served as training set. Choice of K is arbitrary, 

however K = 5, 10,N are commonly used with N as the total sample size. In general, large K 
leads to low bias and overestimates the true prediction error since the training sets will be 
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approaching to the entire dataset but tends to give higher variance [55]. In an extreme case 

where K = N, called Leave-One-Out CV (LOOCV), is almost unbiased but will have higher 

variance [56] and thus it is suitable for smaller datasets. Other choices like K = 5, 10 will 

provide good compromise between bias and variance tradeoff [57]. Some studies further 

reported that 10-fold CV yielded the best results with experiments on real-world data of 

certain types [58].

Another validation method called bootstrapping has a basic idea of randomly drawing 

samples with replacement from the training data, called bootstrap samples, with each 

bootstrap sample having the same size as the original training set. To apply the bootstrap 

idea for assessing models, several statistical estimators have been proposed: in particular, 

Leave-One-Out bootstrap, “.632 estimator” [56] , and “.632+ estimator” [59]. are commonly 

used. Leave-One-Out bootstrap mimicking LOOCV keeps tracks of predictions from 

bootstrap samples not containing certain observation i, such that its error estimator can 

overcome overfitting problem when compared to pure bootstrap method, where the estimator 

is given as the following:

Err = 1
N ∑

i = 1

N 1
∣ C−i ∣

∑
b ∈ C−i

L(yi, f ∗ b(xi))

“.632 estimator” [56] further alleviate bias towards estimates of prediction error. Another 

technique “.632+ estimator” [59] further improves .632 estimator by considering the amount 

of overfitting. It is known that bootstrap can be shown to fail in certain exquisitely designed 

statistical examples as well as in a case that memorizer module is added [58]. However, such 

artificial counterexamples require more mathematical labor that is beyond the scope of this 

paper, therefore interested readers are encouraged to view the construction in [55]. In many 

occasions, both CV and bootstrap methods are shown to be valuable and have compatible 

results. As in [55], a comparison of CV and bootstrap is demonstrated for particular 

problems and fitting models. They found that either cross-validation or bootstrap yields a 

model fairly close to the best available. Therefore, one usually needs to determine which 

validation method actually provides the best description based on the field test with one’s 

data at hand.

As a final remark, model selection and feature selection should not exhaust all samples, 

since the features or model selected by exhausting all samples may derive more optimistic 

performance estimation. To avoid this issue, in small-sample-size problems, nested cross-

validation techniques can be utilized to make full use of the data as well as to give an 

unbiased prediction estimation, where typically an outer loop is created for performance 

estimation, and an inner loop (in contrast to the outer loop) is established for searching 

optimal hyper-parameters, model training, or feature selection. In any case, the gold standard 

for validating a model is performing external validation on independent datasets. This is 

highlighted in the Transparent Reporting of a multivariable prediction model for Individual 

Prognosis Or Diagnosis (TRIPOD) recommendations [60].
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4. Examples of Machine Learning Application in Oncology

In this section, we illustrate how machine learning can extract relevant imaging information 

for oncology applications. Three examples shall be investigated, where the first two compare 

the radiomics using classical analysis and the modern deep CNN method; the last one 

directly utilizes deep learning for identifying metastatic breast cancer motivated by a recent 

grand challenge [9] [61].

Radiomics signatures have been built with the power to detect tumor heterogeneity, predict 

outcomes, (e.g., recurrence, distant metastases, response to certain treatment), and conduct 

survival analysis of various cancers. We will review several results obtained with radiomics, 

using conventional machine learning methods (such as random forests, SVMs), and compare 

them with deep learning methods: e.g. CNNs, and present one example that fuses both 

conventional and deep models (i.e., deep radiomics).

Example 1. Conventional radiomics for predicting failure risks in head and neck cancers

Vallieres et al. [41] built a radiomics model based on pre-treatment FDG-PET and CT 

images to analyze the risk assessment of loco-regional recurrences (LR), distant metastases 

(DM) and overall survival (OS) in a head-and-neck cancer. 1,615 radiomic features from 300 

patients from four institutions were extracted and divided into training and testing datasets. 

Considering the large number of features, feature set reduction was first applied by ranking 

the features based on an information gain criterion, where, the correlation of the feature with 

endpoints and features their inter-correlations were considered. The goal was to maximize 

the relevance of features with outcomes and minimize the redundancy. Subsequently, a 

forward feature selection method was applied to determine the final model. Feature 

selection, prediction performance estimation, choice of model complexity and final model 

computation processes were carried out using logistic regression (classification), Cox 

regression (survival analysis) and bootstrap resampling. Prediction models consisting of 

radiomic information only were first constructed for each of the three H&N outcomes. 

Meanwhile, clinical factors (e.g., tumor volume, age, T-stage) were analyzed by stratified 

random sub-sampling in the training set and resulted in three groups of clinical variables for 

each outcome. Final prediction models were constructed by combining the selected radiomic 

and clinical features via random forests. The performance of prediction models was 

estimated using receiver operating characteristic metrics (ROC), the concordance index (CI) 

and the p-value obtained from Kaplan-Meier analysis using the log-rank test between two 

risk groups (LR: AUC=0.69, CI=0.67; DM: AUC=0.86, CI=0.88). The analysis showed that 

radiomics can provide important prognostic information for the risk assessment of the three 

outcomes in head-and-neck cancer in this study.

Example 2. Deep radiomics for breast cancer diagnosis

Antropova et al. [62] devised a method that extracted low- to mid- level features using a 

pretrained CNN and combined them with hand-crafted radiomic features for breast cancer 

diagnosis. Full-field digital mammography (FFDM), breast ultrasound, and dynamic contrast 

enhanced-MRI (DCE-MRI) images were used in this study. Three datasets were used 

separately to test the methodology. CNN features were extracted with VGG19 architecture, 
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pretrained on ImageNet. There are five stacks in the architecture, with each stack containing 

two or four convolutional layers and a max pooling layer, followed by three fully connected 

layers. Images were duplicated to be input to the three-color channels for FFDM and 

ultrasound data extracted at precontrast and the first two postcontrast time points for the 

DCE-MRI dataset. CNN features were then obtained from each of the five max-pool layers. 

Five feature vectors were obtained by average-pooling along spatial dimensions. This 

method avoided the preprocessing step for images with varying sizes by preserving the 

spatial structure. Radiomic features describing lesion properties such as size, shape, texture, 

and morphology were also extracted from ROIs. A nonlinear SVM with a radial basis 

function (RBF) kernel was used to build models for both CNN and radiomic features. The 

two classifiers were fused by averaging the outputs to give the final model. From ROC 

analysis, they claimed that the fusion-based method, on all imaging modalities, performed 

significantly better than conventional radiomic models in the task of distinguishing benign 

and malignant lesions, with an AUC = 0.89 for DCE-MRI, AUC = 0.86 for FFDM and AUC 

= 0.90 for ultrasound. In summary, their analysis showed the feasibility of combining deep 

learning and conventional feature extraction methods for breast cancer diagnosis.

Example 3. A deep CNN for Detection of Lymph Node Metastases

An automated detection of cancer challenge, Camelyon16, was setup [9] to develop 

algorithms for lymph node detection of metastases in women with breast cancer, where a 

training dataset of 399 whole-slide images (WSIs) collected from two institutions, Radboud 

University Medical Center (RUMC) and University Medical Center Utrecht (UMCU), was 

provided. The competition was intended to motivate machine learning algorithms in the 

application of medical cancer imaging, where two independent tasks were asked to be 

evaluated. In task#1, the participants were asked to demonstrate the ability of localizing 

tumor; in task#2, the participants were asked to discriminate images with or without sentinel 

axillary lymph nodes (SLNs), i.e., an image classification problem. During the competition, 

a panel of 11 pathologists participated and independently reviewed the same dataset. Of all 

the 23 teams participating, the best results (algorithms) were derived by a joint team led by 

Harvard Medical School (HMS) and Massachusetts Institute of Technology (MIT), where 

Wang et al. [61] designed a composite image classifier using a deep CNN, GoogLeNet of 27 

layers and in total more than 6 million parameters. Essentially, their neural networks were 

trained by millions of patches (out of the whole slide image, see Fig. 7(a)) for patch-level 

predictions to discriminate tumor patches from normal patches. These patch-bypatch 

predictions were then gathered to form a complete tumor probability heat map for one whole 

slide, as in Fig. 7(b). Furthermore, to decrease the computational time, several techniques 

were applied, including transforming images from RGB color into HSV color and 

identifying tissues via meaningless white background removed.

In fact, before Wang et al. presented their final winning model, several existing advanced 

architectures were tested for selecting strong candidates, such as GoogLeNet [34], AlexNet 

[63], VGG16 [64], and a face orientated deep network [65] giving the following testing 

performance:
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patch-wised classification
accuracy

GoogLeNet 98.4 %

AlexNet 92.1 %

VGG16 97.9 %

FaceNet 96.8 %

Naturally, due to this experiment, GoogLeNet appeared to be the strongest candidate for 

their task, and thus were utilized as the winning model. By their delicate design of data 

preprocessing, model selection between several viable CNN architectures, and final data 

post-processing, their classifiers were able to achieve an AUC=0.925 for task#2 of whole 

slide image classification and a score of 0.7051 for the tumor localization of task#1, where a 

human pathologist independently cross-validated the image data, obtaining a whole slide 

image classification AUC=0.966 and a tumor localization score of 0.733. In terms of AUC 

score, it can be concluded that the designed CNN classifiers reached similar accuracy as a 

board-certified expert. Interestingly, they found that the errors made by the pathologist and 

the deep learning system were not strongly correlated. Therefore, by combining their deep 

learning classifiers with the human pathologist’s diagnoses the pathologist’s accuracy was 

increased to AUC=0.995, reducing in an approximately 85% human error rate. It was also 

noted in [9] that this was the first study to recognize that machine learning algorithms can 

rival human pathologists’ performance. Another interesting observation was that deep 

learning-based algorithms significantly outperformed other conventional ML methods, 

where the top 19 out of all 23 teams utilized deep CNNs.

5. Discussion

Modern machine learning algorithms serve as powerful tools to improve medical practice by 

reducing human labor and possible errors. They can potentially improve a patient’s 

diagnosis and treatment precision by complementing human perception. With the latest 

innovations in machine learning techniques, we are looking towards an exciting data 

revolution in the medical field in general and in oncology in particular. ML is expected to 

allow efficient utilization of resources and to save time and unnecessary medical expenses to 

patients, their doctors, and the society at large.

However, and before having a full-fledged embracement of this new digital revolution, one 

needs to validate whether these innovative technologies can be widely adopted in medicine. 

For example, it may still be unclear clinically how to decide which kind of features are better 

suited for solving a specific diagnostic or therapeutic task using a machine learning 

algorithm (e.g., hand-crafted features vs. machine-learned features). In the example of 

identifying metastatic breast cancer, researchers found that the recognition of deep learning 

systems and human pathologists can be complimentary, where the system helped reduce the 

pathologist error rate from over 3% to less than 1%. Therefore, at the current stage deep 

learning systems are more suited as a secondary opinion to aid in decision support or quality 

checks, rather than a stand-alone system.
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One key factor for improving machine learning performance is the available quality and 

quantity of data. Before full development of AI (as in Fig. 1), computers are unlikely able to 

comprehend complex physical laws out of only a few examples, but rather are only capable 

of deducing empirical relations based on large observations by statistical inference 

algorithms. In the medical field where datasets tend to be small, partially observed or 

labeled, and sometimes noisy, the full optimization of machine learning can be a challenge. 

In the medical imaging scope, if a given dataset is too small and/or noisy, although hand-

crafted features can be timeconsuming to generate, they can take advantage of prior domain 

knowledge and may outperform undertrained deep NN/CNN methods. However, there are a 

few steps that may mitigate the small data problem: (1) data preprocessing (e.g., PCA or 

autoencoders) for reducing the number of fitting parameters a priori; (2) data augmentation 

techniques such as transfer learning and GANs in attempt to overcome sample size 

limitations. In certain experiments such as image segmentation, diagnosis and endpoint 

prediction tasks [66] data augmentation techniques methods have demonstrated promising 

results; and (3) considering the combination of traditional features and CNNs features 

applied to images.

Gathering and sharing datasets across institutions certainly serves as another viable way to 

increase data size and improve machine learning utility. However, certain problems may also 

arise: e.g., how to train models from heterogenous datasets from different institutes that may 

also have varying data formats? The harmonization and standardization of naming 

conventions (abbreviations, code names, etc) alone can easily confuse computers and even 

lead to miscalculation by various feature definitions pertaining to one’s institute. Another 

important challenge is maintaining the confidentiality and the privacy of patient information 

in such data sharing processes where administrative (Institutional Review Boards), 

regulations, laws (e.g. HIPAA Privacy Rule) could be at risk of violation. For the purpose of 

privacy protection, a newly developing cryptography technology especially for datamining 

and statistical data queries called differential privacy [67] [68] can be applied to shared 

medical datasets, where the basic idea is the injection of proper noise level, hashing, or 

subsampling to scramble the original dataset from possible unwarranted probing. Large 

companies such as APPLE, GOOGLE, Facebook and Microsoft are applying and promoting 

such technologies for their customer privacy concerns [69]. Another approach is the 

utilization of distributed (rapid) learning presented in Eurocat [70] [71], where algorithms 

instead of data are shared across the different institutions. With all these exciting 

breakthroughs in machine learning and their potential in oncology, one still needs to be 

careful when wielding such methods and meticulously design the data validation 

experiments to avoid pitfalls of overfitting and mis-information [72].

6. Conclusion

The past few years have observed tremendous rise in machine learning applications to wide 

range of areas in oncology including: building predictive models of disease diagnosis, 

treatment response, and automation of workflow and decision support. But as methods and 

techniques in machine learning keep evolving, one can expect the role of machine learning 

to continue reshaping the field of oncology and cancer management. Machine learning is 

expected to alter the way patients receive treatments and doctors reach their clinical 
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decisions. Diagnostics will be faster, cheaper, and more accurate than ever. However, to 

usher the advent of machine learning era, one has to be mindful of the characteristics and the 

limitations of this technology too. Machine learning methods require large amounts of data 

for their training and validation, which also beg the questions of computerized trust, data 

sharing and privacy concerns. With the pre-existing domain knowledge, the merits of man-

crafted features standing for accumulative knowledge based on numerous observations 

should be incorporated and inherently infused with modern machine learning architectures. 

With the assistance of the state-of-the-art machine learning algorithms, imaging informatics 

holds the potential to provide better precision health care for cancer patients as well as 

revealing underlying biological patterns. The application of machine learning algorithms in 

the medical realm is promising, yet there remain many challenges before they can realize 

their potential into routine clinical oncology practice.
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Fig. 1. 
A schematic of the relation between AI, ML, Deep Learning, Big Data, and Data Science. It 

is noted that machine learning is a computational branch from AI that aims to provide 

computers with ability to perform tasks beyond their original programming such as data 

mining and big data analytics.
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Fig. 2. 
(a) (Left) An illustration of supervised learning using neural networks (right figure) 

classifying synthetic data of binary labels (blue and red scatter dots), where the nonlinear 

decision boundary is shown in white. (b) A multi-layer (deep) neural network with two 

hidden layers. The so-called deep learning usually refers to learning algorithms heavily 

relying on such computational units.
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Fig. 3. 
(a) [Left] An illustration of an unsupervised learning using p-SNE with open image database 

Olivetti faces, where similar images (same person) are clustered automatically without 

providing any identity information. (b) [Right (reprint permission granted)] Dawson et al. 

[13] demonstrated that PCA can be used to observe clinical data structure. In this case the 

data describing the xerostomia occurrences due to parotid gland dose distributions is linearly 

separable.
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Fig. 4. 
The structure of an CNN, usually consisting of three distinct layers: the convolution layer, 

the pooling layer, and a final fully-connected layer (Fig. 2(b)), where the convolution layer 

and pooling (subsampling) layer may be connected several times before a final fully-

connected layer is encountered. An image mapped by a convolution layer is called a feature 

map, which triggers attention of many computer scientists. Figure created by Aphex34 

distributed under a CC BY-SA 4.0 license (from Wikimedia Commons).
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Fig. 5. 
(a)[Left] The workflow of the model built by Vallieres et al. [41] The best combinations of 

radiomic features were selected in the training set, where these radiomic features were then 

combined with selected clinical variables in the training set. Independent prediction analysis 

was later performed in the testing set for all classifiers fully constructed in the training set. 

(b)[Right] Risk assessment of tumor outcomes in [41]. (1) Probability of occurrence of 

events for each patient of the testing set. The output probability of occurrence of events of 

random forests allows for risk stratification. (2) Kaplan-Meier curves of the testing set using 

a risk stratification into two groups as defined by a random forest output probability 

threshold of 0.5. All curves show significant prognostic performance. (3) Kaplan-Meier 

curves of the testing set using a risk stratification into three groups as defined by random 

forest output probability thresholds of 1/3 and 2/3.
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Fig. 6. 
Lesion classification pipeline based on diagnostic images. Two types of features are 

extracted from a medical image: (a) CNN features with pretrained CNN and (b) handcrafted 

features with conventional CADx. High and low-level features extracted by pretrained CNN 

are evaluated in terms of their classification performance and preprocessing requirements. 

Furthermore, the classifier outputs from the pooled CNN features and the handcrafted 

features are fused in the evaluation of a combination of the two types of features. 

[permissions required!!]
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Fig. 7. 
One proposed framework for cancer metastases detection by Wang et al. [61] who won the 

first prize in Camelyon16 cancer detection competition [9]. The model was based on deep 

CNNs, GoogLeNet of 27 layers.
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