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Abstract

Both cancer and therapies used in the treatment of cancer can have significant dele-

terious effects on the skeleton, increasing the risks for both bone loss and fracture

development. While advancements in cancer therapies have resulted in enhanced

cancer survivorship for patients with many types of malignancies, it is increasingly rec-

ognized that efforts to reduce bone loss and limit fractures must be considered for

nearly all patients undergoing cancer therapy in order to diminish the anticipated

future skeletal consequences. To date, most studies examining the impact of cancer

therapies on skeletal outcomes have focused on endocrine‐associated cancers of

the breast and prostate, with more recent advances in our understanding of bone loss

and fracture risk in other malignancies. Pharmacologic efforts to limit the adverse

effects of cancer therapies on bone have nearly universally employed anti‐resorptive

approaches, although studies have frequently relied on surrogate outcomes such as

changes in bone mineral density or bone turnover markers, rather than on fractures

or other skeletal‐related events, as primary study endpoints. Compounding current

deficiencies for the provision of optimal care is the recognition that despite clearly

written and straightforward society‐based guidelines, vulnerable eligible patients are

very often neither identified nor provided with appropriate treatments to limit the

skeletal impact of their cancer therapies.
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1 | INTRODUCTION

Even before the initiation of cancer treatment therapies, patients with

cancer are at increased risk for accelerated bone loss, as evidenced by

lower bone mineral density in cancer patients relative to subjects

without cancer, regardless of cancer type.1 Adding to this underlying

skeletal insult is the further damage that results from many cancer

therapies. Thus, bone loss in patients with cancer reflects both the

effects of the cancer itself, as well as the skeletal response to thera-

pies currently used to treat cancer including a wide range of chemo-

therapeutics, as well as agents such as glucocorticoids, aromatase

inhibitors (AIs) and androgen deprivation therapies. In addition, bone

is also a very common site of cancer metastasis, with tumour cells
wileyonlinelibrary.com/jou
exerting both direct and indirect effects on bone cells to cause sys-

temic as well as localized bone loss. When viewed through the prism

of the increased survivorship now commonly seen in patients with

many types of malignancies, efforts to limit bone loss and fractures

that can significantly diminish quality of life, have become increasingly

important for the care of cancer patients.

This paper will focus on currently used cancer therapies, the impact

of these therapies on the skeleton, and available data for limiting bone

loss and fractures in cancer patients treatedwith these therapies. Given

that the majority of work to date has focused on patients with breast

and prostate cancers, this review will emphasize those cancers, but will

also include discussion of more general treatments such as glucocorti-

coids, aswell as data on cancer therapies for haematologicmalignancies.
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2 | BREAST CANCER

Age‐associated declines in sex steroid levels (oestradiol in women; tes-

tosterone which undergoes aromatization to oestradiol in men) under-

lie normal age‐associated bone loss in both women and men.2 In the

most common hormonally‐associated malignancies (breast cancer in

women and prostate cancer in men), however, therapeutic approaches

frequently are focused on severely reducing sex steroid levels and/or

antagonizing their effects at the receptor level. Collectively, these

interventions have the potential to induce additional bone loss above

and beyond that already occurring in individuals who are frequently

of advanced age at the time of cancer diagnosis. Further, there is

good evidence that despite the well‐recognized risks of bone loss

and fracture seen with hormonal therapy both in patients with breast

and prostate cancers and despite well‐established guidelines put forth

by professional societies, systematic skeletal health evaluations are

only infrequently performed and vulnerable patients are thus left

untreated.3

2.1 | Breast cancer in premenopausal women

In premenopausal women receiving chemotherapy for breast cancer,

menopausal onset occurs on average roughly 10 years earlier than

would occur naturally, usually as a result of chemotherapy‐induced

ovarian failure.4 With advances in lifespan from time of diagnosis

resulting from both therapeutic advances and earlier detection, many

premenopausal women diagnosed with breast cancer now endure

prolonged skeletal insults from a combination of hormonal therapies,

chemotherapy and glucocorticoids that are frequently prescribed to

combat nausea.

2.1.1 | Aromatase inhibitor therapies

Aromatase inhibitors lower endogenous oestradiol levels via inhibition

of the enzyme aromatase. In premenopausal women, physiologic

oestradiol levels regulate bone mass by attenuating receptor activator

of nuclear factor kappa B (RANK) ligand (RANKL) signalling via the

RANK receptor,5 thereby inhibiting osteoclast formation and reducing

bone turnover. Sustained reductions in oestradiol levels, as occur with

prolonged aromatase inhibitor treatment, lead to rapid bone loss pri-

marily due to increased osteoclast‐mediated bone resorption and

result in marked increases in cortical porosity and trabecular deteriora-

tion,6 factors which ultimately increase fracture risk.7 In premeno-

pausal women in whom endogenous estrogen levels have not been

(or cannot be) accurately determined (such as women in the perimen-

opause and those with presumed chemotherapy‐induced ovarian fail-

ure), AI treatment as monotherapy is not recommended. Rather, in

such women, the use of an AI with either concomitant oophorectomy

or GnRH agonist therapy is considered standard of care.

In order to evaluate whether treatment with the potent intrave-

nous bisphosphonate zoledronic acid provided every six months is

able to limit bone loss in premenopausal women treated for breast

cancer, the ABCSG‐12 investigators performed a sub‐study of a large
phase 3 trial in which subjects received a gonadotropin‐releasing hor-

mone agonist (to indirectly suppress endogenous estrogen production)

in addition to treatment with either tamoxifen or an aromatase inhib-

itor.8 As assessed by dual‐energy x‐ray absorptiometry (DXA), endo-

crine therapy for 36 months reduced bone mineral density (BMD) at

the lumbar spine by −11.3% and hip by −7.3%. Whereas women

treated with tamoxifen lost an average of −9.0% at the lumbar spine,

subjects treated with an aromatase inhibitor suffered even greater

reductions in BMD (−13.6%). In comparison, women who received

either endocrine therapy but who were simultaneously treated with

zoledronic acid showed no BMD differences from baseline at 36

months. Other studies have shown comparable effects for a protective

skeletal role with zoledronic acid treatment in premenopausal women

receiving neoadjuvant or adjuvant chemotherapies for breast cancer.9

Premenopausal women who experience return of menses after com-

pletion of adjuvant chemotherapy may regain some of the bone min-

eral density lost during treatment.10

2.1.2 | Selective estrogen receptor modulators

Tamoxifen, a selective estrogen receptor modulator (SERM), functions

as a partial estrogen receptor antagonist on breast tissue, a property

which allows it to be used for treatment in women with estrogen

receptor positive breast cancers or as prophylactic therapy in women

at high risk of breast cancer. However, tamoxifen also functions as a

partial agonist/antagonist on estrogen receptors in bone. Thus, in pre-

menopausal women treated with tamoxifen as prophylaxis against the

development of breast cancer, and premenopausal women who do not

undergo menopause during adjuvant chemotherapy treatment, tamox-

ifen has been associated with bone loss.11
2.2 | Breast cancer in postmenopausal women

The majority of women diagnosed with breast cancer are postmeno-

pausal. In addition to the skeletal insult imposed by menopause, breast

cancer therapies are now well recognized as agents which further

increase bone loss and fracture risk.

2.2.1 | SERMs

Unlike in premenopausal women in whom tamoxifen functions as an

antagonist at the estrogen receptor to induce bone loss, tamoxifen

has weak agonist activity in postmenopausal women, thereby reducing

bone loss and fracture risk,12 particularly when compared to aroma-

tase inhibitors.

2.2.2 | Aromatase inhibitors

In women with hormone‐responsive breast cancers, therapies which

reduce endogenous oestradiol levels have consistently demonstrated

superior clinical efficacy. Due to these effects, AIs, as compared to

SERMs, are generally considered to be first‐line adjuvant therapies in

the majority of postmenopausal women presenting with hormone‐
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responsive breast cancer.13 However, by further reducing already low

endogenous postmenopausal oestradiol levels, AI therapies induce

additional bone loss and raise fracture risk in postmenopausal women.

As shown in multiple studies in which postmenopausal women

with hormone responsive breast cancer have been treated with an

aromatase inhibitor or a SERM, either alone (or in combination as in

the ATAC study14), AI treatment results in significant BMD declines

at both the hip and spine as compared to tamoxifen treatment, and

incurs increased fracture risk.15-17 Notably, AI‐induced bone loss

occurs with both steroidal and non‐steroidal based agents.18

Due to the large increases in osteoclast activity that occur with

suppression of oestradiol levels, pharmacologic efforts to reduce AI‐

induced bone loss and fractures have focused almost exclusively on

the use of anti‐resorptive agents. Multiple well‐designed studies have

examined the impact of antiresorptive therapies in postmenopausal

women with breast cancer receiving AI therapy. Both oral19-22 and

intravenous23 bisphosphonates have been shown to be effective for

reducing AI‐associated bone loss and fracture risk. In particular, initia-

tion of bisphosphonate therapy early rather than later (i.e. prior to

rather than following on from fracture or decline in BMD) appears to

be much more effective for limiting AI‐associated skeletal effects.24

Similar to the bone protective effects of bisphosphonates, treatment

with denosumab, a fully humanized monoclonal antibody directed

against the osteoclast activating factor RANKL, has been clearly

shown to reduce bone loss and fractures in postmenopausal women

receiving AI therapy.25,26 Collectively, these data have led to the

establishment of clear guidelines recommending that skeletal health

be carefully evaluated in all women with breast cancer at the time of

AI therapy initiation, that thresholds for intervention with

antiresorptive agents be lowered in AI‐treated women relative to

women not receiving AI therapy, and that treatment be continued

for the duration of AI therapy in women with sufficiently low BMD

(T‐score < −2.0) at time of AI initiation, <−1.5 with one additional risk

factor, or in women with two or more risk factors.27 Recommenda-

tions are lacking regarding when one might consider a “holiday” from

anti‐resorptive therapy in women treated with long‐term AI therapy,

which in some cases may last up to a decade, reflecting the absence

of available data on this important subject.
3 | PROSTATE CANCER

Whereas breast cancer is the most common hormonally‐associated

cancer in women, prostate cancer is the most common hormone‐

related cancer in men. As in women with breast cancer, early cancer

detection in men with prostate cancer has improved survival length,

but has also introduced challenges with respect to treatment‐related

side effects, including bone loss and increased fracture risk.28

Prostate cancer is primarily a disease of the elderly (median age at

diagnosis in the United States of 66 years),29 the same population

demographic afflicted by normal physiologic age‐associated bone loss.

In most men, prostate cancer is testosterone dependent at the time

of diagnosis, such that approaches aimed at lowering endogenous
androgen levels (collectively referred to as androgen deprivation ther-

apy [ADT]) have become the foundation of treatment for most

affected men.

Historically, surgical orchiectomy was used to lower circulating

androgen levels. The use of both gonadotropin‐releasing hormone

(GnRH) agonist and antagonist‐mediated approaches, however, is

now commonplace. Both GnRH agonists and antagonists reduce pitu-

itary release of luteinizing hormone (LH) and lead to reductions in

total, bioavailable and free testosterone concentrations, resulting in

circulating testosterone levels within the castrate range.30 Conse-

quently, levels of oestradiol (produced via testosterone aromatization

to oestradiol) are also severely reduced. Although testosterone is the

dominant male sex steroid, there is good epidemiologic evidence that

(as in women) bioavailable oestradiol levels more closely correlate with

BMD in men,2 with abrupt lowering of oestradiol levels as occurs with

ADT leading to bone loss,31 bone microarchitectural deterioration32

and increased fracture risk.33 More recently, both abiraterone acetate

(which inhibits the key enzyme that catalyses androgen biosynthesis

[CYP17]) and enzalutamide (an androgen receptor antagonist) have

been developed and approved for the treatment of men with castra-

tion‐resistant prostate cancer. While both agents have been shown

to reduce skeletal‐related event incidence, their direct impact on bone

mineral density and bone turnover remains unclear.34,35

Although the deleterious impact of ADT on the male skeleton is

well described, most men initiated on ADT do not receive appropriate

therapy to limit these effects.36 However, the routine incorporation

of screening (via DXA imaging) and subsequent treatment algorithms

in men with newly diagnosed prostate cancer who are initiated on

ADT has been shown to significantly reduce fracture incidence in

at‐risk men.37

Akin to studies in women with breast cancer receiving hormonal

therapies, efforts to limit bone loss and fracture risk in men treated

with ADT have primarily focused on the use of anti‐resorptive agents,

with multiple agents as well as denosumab having been studied, albeit

in studies which involved fewer subjects than the pivotal trials

conducted in women with breast cancer. Among the oral

bisphosphonates, both alendronate38 and risedronate39 have been

shown in randomized, double‐blind, placebo‐controlled trials in men

with prostate cancer initiated on ADT to both increase BMD at the

lumbar spine and hip, and to limit the rise in biochemical markers of

bone turnover that occurred with placebo treatment. As also seen in

women treated with hormonal therapy for breast cancer, a delay in

bisphosphonate initiation results in bone loss from baseline, loss which

is only partially ameliorated when oral bisphosphonate therapy is sub-

sequently initiated.40 Only limited data on fracture risk reduction with

oral bisphosphonate therapy exists, but is consistent with the antici-

pated effects of BMD preservation in that bisphosphonate therapy

reduces fracture risk.41

Similar results to the oral bisphosphonates have also been demon-

strated in men treated with intravenous bisphosphonates. Treatment

with either pamidronate42 or zoledronic acid (19758618) maintains

or increases BMD at the lumbar spine, femoral neck and total hip rel-

ative to placebo, even in men with osteoporosis at time of ADT
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initiation.43 Accordingly, a systematic review and meta‐analysis which

evaluated relative bisphosphonate efficacy in men treated with ADT

for prostate cancer determined that the use of bisphosphonates

results in significant reductions in both osteoporosis (relative risk

[RR] 0.39; P < 0.001) and fracture risk (RR 0.80; P < 0.01), with the

most significant impact seen in studies of zoledronic acid.44

In addition to the clearly defined skeletal benefits of the

bisphosphonates, good evidence exists from randomized, double‐

blind, placebo‐controlled trials that denosumab treatment in men

receiving ADT for prostate cancer significantly increases BMD as early

as one month after therapy initiation at all skeletal sites examined

(lumbar spine, hip and distal radius),45,46 and significantly reduces

new vertebral fracture risk.47 As a result of these findings, denosumab

has also been approved for the treatment of men receiving ADT who

are deemed to be at high fracture risk.

As noted previously, the aromatization of testosterone to

oestradiol is a key feature needed for bone health maintenance in

men. With ADT treatment, however, low substrate testosterone levels

result in reduced oestradiol levels, ultimately leading to bone loss. This

provides a physiologic rationale for treatment with oestradiol or estro-

gen‐like molecules to limit bone loss in men. While the majority of

studies have examined the impact of anti‐resorptive therapies for lim-

iting the impact of ADT in men with prostate cancer, both oestradiol

and SERMs have been studied in randomized, placebo‐controlled

studies to determine their ability to limit bone loss and fracture risk.

Relative to placebo, treatment with the SERM toremifene for 24

months significantly increased BMD at the lumbar spine and hip,

reduced biochemical markers of bone turnover, and reduced lumbar

spine fractures.48,49 Notably, however, venous thromboembolic

events were increased 2.4‐fold in toremifene‐treated men, and were

most commonly seen in men aged 80 years and older. When only

men aged less than 80 years were considered, however, no significant

differences in venous thromboembolic events were identified.50 No

SERMs have yet been approved to treat bone loss in men. More

recently, a study which examined treatment with low‐dose oestradiol

in men receiving ADT for prostate cancer demonstrated that topical

oestradiol significantly reduced serum levels of the bone resorption

marker CTX relative to placebo.51 Given the short study duration,

however, no efforts to assess changes in BMD or fracture risk were

undertaken.
4 | GLUCOCORTICOIDS

Overall, glucocorticoid use is the most common iatrogenic cause of

bone loss across all clinical indications. Glucocorticoid effects on the

skeleton are particularly relevant in cancer therapies, in which gluco-

corticoids are frequently provided at doses many‐fold higher than

required for physiologic glucocorticoid replacement, and are often

continued for prolonged periods as integral components of standard

chemotherapy regimens. For example, prednisone at a higher than

physiologic replacement dose is provided to men treated with

abiraterone acetate for castration‐resistant prostate cancer.
With regard to bone anabolism, glucocorticoids reduce bone for-

mation rates via direct effects on mature osteoblasts. Glucocorticoids

also simultaneously increase rates of osteocyte apoptosis. On the

bone resorption side of the equation, glucocorticoids induce an initial

increase in osteoclast lifespan but ultimately lead to a decrease in

osteoclastogenesis.52 Due to disruption of the normal physiologic

coupling that occurs between osteoclasts and osteoblasts, this

decrease in osteoclastogenesis also leads to further suppression of

osteoblast activity.

In addition to directly affecting bone cells, supraphysiologic gluco-

corticoid therapy imparts myriad additional effects which negatively

impact bone health and fracture risk. These include diminishing intes-

tinal calcium absorption, increasing urinary calcium losses, inducing

hypogonadism, and producing proximal muscle weakness.53 Collec-

tively, each of these non‐bone cell effects is detrimental to bone

health via the induction of mineral loss from the skeleton and/or via

increasing the propensity for falls and fractures. Both anti‐resorptive

and skeletal anabolic approaches have been shown to be effective

and are recommended to prevent and treat glucocorticoid‐associated

bone loss.54
5 | HAEMATOLOGIC MALIGNANCIES

5.1 | Monoclonal gammopathies

Multiple myeloma is a plasma cell malignancy and is the second most

common haematologic cancer.55 Intrinsic to myeloma is the growth

of terminally differentiated plasma cells within the bone marrow,

where they reside in close proximity to bone. Due to the elaboration

of multiple paracrine factors which function to cause simultaneous

increases in osteoclast activity and suppression of osteoblast activity,

patients with multiple myeloma are frequently found to have

osteolytic lesions at the time of diagnosis. In addition, multiple mye-

loma treatment regimens often incorporate high dose glucocorticoids,

which as noted above, are detrimental to skeletal health. Large ran-

domized, placebo‐controlled studies have clearly demonstrated that

both of the intravenous bisphosphonates pamidronate56 and zoledro-

nic acid57 are efficacious for limiting the significant skeletal destruc-

tion that characterizes myeloma in most patients. In comparison,

treatment with the oral bisphosphonate clodronate has been shown

to be comparatively less effective at limiting skeletal‐related events

in patients receiving anti‐myeloma therapies.58 More recently, a large

randomized, double‐blind, placebo‐controlled study demonstrated

that treatment with denosumab was non‐inferior to zoledronic acid

for the prevention of skeletal‐related events in patients undergoing

treatment for newly diagnosed multiple myeloma.59

All multiple myeloma is preceded by monoclonal gammopathy of

undetermined significance (MGUS), a pre‐malignant condition with

an approximately 1% annual risk for progression to multiple myeloma.

MGUS is common and affects approximately 3% of adults aged >50

years, with a prevalence that increases with age. As a pre‐malignant

condition, MGUS is left untreated, and affected individuals typically
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followed by a ‘watchful waiting’ approach. However, there is good epi-

demiologic that MGUS is associated with a substantially increased risk

for fracture.60 In turn, this increased fracture risk may in part result

from cortical and trabecular bone microarchitectural deterioration

leading to reduced biomechanical strength, as has recently been doc-

umented in subjects with MGUS.61,62 Limited data demonstrate that

bisphosphonate treatment may be effective to limit bone loss in

patients with MGUS, although data on fracture risk in response to

anti‐resorptive treatment is lacking.63,64 Finally, in a Phase 3 trial of

patients with smouldering myeloma, a condition intermediate between

MGUS and multiple myeloma, treatment with zoledronic acid did not

reduce the risk for progression to myeloma, although skeletal out-

comes were not reported.65
5.2 | Paediatric acute lymphoblastic leukaemia (ALL)

Impairment in normal bone mass accrual and an increased prevalence

of osteoporotic‐type fractures have long been recognized as treat-

ment‐associated complications in children with ALL. As recently

described by a large consortium which studied 186 children with a

median age of 5.3 years over the course of 6 years, the cumulative

fracture incidence for vertebral fracture was 32.5%, and 23.0% for

non‐vertebral fractures.66 As anticipated based on known skeletal

effects, the cumulative glucocorticoid dose was a positive predictor

for both types of fractures, with a recent publication demonstrating

that bone marrow oedema, evident by imaging in paediatric leukaemia

patients receiving glucocorticoids, is predictive of osteonecrosis and

eventual bone collapse, particularly in weight‐bearing bones.67
5.3 | Bone marrow transplantation

Bone marrow transplantation (either autologous or allogeneic) is a

used frequently for the treatment of haematologic cancers, and

involves bone marrow ablation with chemotherapy and/or radiation

during the pre‐transplant conditioning period. With improvements in

stem cell transplant methodologies, long‐term survivorship has

increased, but has brought with it attendant problems including

increases in skeletal fragility and fracture risk, reflecting multiple fac-

tors including conditioning regimens, glucocorticoid use, deficits in

nutritional support and often prolonged periods of hypogonadism.68

In addition to clinical risk factor assessment, the judicious use of

anti‐resorptive therapies, particularly intravenous bisphosphonates,

has been shown to limit bone loss, typically when provided at dosing

schedules more intensive than those used for the treatment of osteo-

porosis.69 No clinical trials on the use of denosumab in patients under-

going bone marrow transplant have yet been reported.
5.4 | Bortezomib

Bortezomib is the first clinically approved member of the proteasome

inhibitor class of chemotherapeutic agents, and has received approval

for the treatment of both multiple myeloma and mantle cell
lymphoma. In contrast to the other chemotherapeutic agents

described, which all result in bone loss and increased fracture risk,

bortezomib has been shown in pre‐clinical models to have salutary

skeletal effects via inhibition of osteoclast differentiation in an ovari-

ectomy‐induced model of osteoporosis.70 In pre‐clinical models of

multiple myeloma, bortezomib inhibits RANKL‐induced osteoclast

differentiation and reduces levels of the inhibitor of osteoblast

differentiation factor dickkopf‐1 (DKK1), thereby leading to increases

in osteoblast differentiation and activity. In patients with myeloma,

treatment with bortezomib has been shown to increase circulating

levels of the bone formation markers bone alkaline phosphatase and

pro‐collagen type I N‐terminal peptide (PINP),71 and to increase bone

volume fraction as well as trabecular thickness in a majority of

patients.72 It is likely that these skeletal effects are not specific to

bortezomib, but rather represent a class effect as, at least in

preliminary evaluations, increases in biochemical markers of bone

formation have also been noted in patients treated with the closely

related proteasome inhibitor carfilzomib.73,74
5.5 | Imatinib

Imatinib is a tyrosine kinase inhibitor (TKI) approved for the treatment

of chronic myelogenous leukaemia (CML), gastrointestinal stromal

tumours and other uncommon haematologic malignancies. In a small

study of children with CML, imatinib treatment appeared to reduce

linear growth.75 Consistent with these results, a pre‐clinical young

rodent model showed that continuous imatinib exposure was associ-

ated with dose‐dependent reductions in long‐bone length and BMD,

as well as decreased resistance to fracture and lower circulating levels

of the bone formation marker osteocalcin.76 The impact of imatinib

treatment in adults is somewhat less clear, but in general available

data suggest that over the first 18–24 months of treatment, imatinib

may increase early osteoblast differentiation leading to an increase

in bone formation.77 With prolonged imatinib treatment, however,

patients frequently develop mild secondary hyperparathyroidism with

associated hypophosphataemia.78 Beyond 24 months of therapy,

BMD changes appear to be minimal.79
5.6 | Other tyrosine kinase inhibitors

Although best described for imatinib, other tyrosine kinase inhibitors

also appear to have effects on bone mineral metabolism, with

hypophosphataemia, and in some cases hypocalcaemia, fairly common

findings reported in clinical trial results.80 Long‐term skeletal out-

comes in patients treated for prolonged periods with these other TKI

therapies, however, have yet to be reported.
6 | CONCLUSION

Tremendous progress in the “war on cancer” over the past several

decades has led to widespread improvements in survivorship for

patients with many types of malignancies, largely the result of a
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continuously expanding armamentarium of pharmacologic agents spe-

cifically designed to treat malignancy. However, with such improve-

ments in lifespan have frequently come unintended and

unanticipated negative consequences, often as a direct result of the

cancer therapies themselves. There is now well‐established and

ever‐accumulating evidence, however, that these adverse conse-

quences include heightened risks for both bone loss and fractures.

Given these concerns, it is critical for providers and patients alike to

recognize that attention to skeletal health is fundamental for maintain-

ing quality of life outcomes. Accordingly, the implementation of com-

prehensive and well‐structured approaches for initial, as well as

ongoing, assessments of skeletal health as a cornerstone of care must

be considered in these vulnerable patients with cancer.
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