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Abstract

Electronic health record (EHR) data provide promising opportunities to explore personalized 

treatment regimes and to make clinical predictions. Compared with regular clinical data, EHR data 

are known for their irregularity and complexity. In addition, analyzing EHR data involves privacy 

issues and sharing such data is often infeasible among multiple research sites due to regulatory and 

other hurdles. A recently published work uses contextual embedding models and successfully 

builds one predictive model for more than seventy common diagnoses. Despite of the high 

predictive power, the model cannot be generalized to other institutions without sharing data. In this 

work, a novel method is proposed to learn from multiple databases and build predictive models 

based on Distributed Noise Contrastive Estimation (Distributed NCE). We use differential privacy 

to safeguard the intermediary information sharing. The numerical study with a real dataset 

demonstrates that the proposed method not only can build predictive models in a distributed 

manner with privacy protection, but also preserve model structure well and achieve comparable 

prediction accuracy. The proposed methods have been implemented as a stand-alone Python 

library and the implementation is available on Github (https://github.com/ziyili20/

DistributedLearningPredictor) with installation instructions and use-cases.

Introduction

As promoted by the 2009 Health Information Technology for Economic and Clinical Health 

(HITECH) Act, more than ninety percent of the office-based physician practices adopted 

Electronic Health Records (EHR) systems to store patient clinical documents at the end of 

20171. As a substitution of paper-based records, EHR systems usually include information 

from multiple clinical aspects, such as symptoms, laboratory test results, prescriptions, 
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diagnoses, and doctor notes. This information not only contains the health history and 

disease progression of each patient, but also reflects how diseases are treated in general. 

Thus EHR data is a rich depository for understanding disease features and treatment 

regimes.

Although EHR data are informative, analyzing EHR data can be a challenging task. As 

described in Hripcsak2 and Cheng3, EHR data are usually complex, inaccurate, irregular, 

sparse and of high-dimensionality. The large volume of EHR data can make storage non-

trivial, and analyzing such data involves a lot of challenges. Besides its complexity, 

obtaining access or sharing EHR data can also be complicated, since the use of EHR data 

involves high-level privacy-preserving requirements4.

There has been a growing body of research on the analysis of EHR data. Existing work 

mainly utilizes information from EHR data for two goals: medical event phenotyping and 

predictive model construction. For the task of extracting features from EHR data (i.e. 

medical event phenotying), Batal5 uses temporal pattern mining to obtain abstraction 

sequences, which can be further applied in predictive models. Liu6 uses temporal graphs to 

construct graph-based frameworks from EHR data and to understand phenotype 

relationships. A recent work by Beaulieu-Jones7 maps patient trajectories through 

longitudinal extraction and deep learning models, which also provides meaningful 

embeddings for medical events. At the same time, the direction of obtaining low 

dimensional vector representation for medical events using deep-learning methods has 

advanced quickly. Several works have published applications on this topic8-12, showing 

dense and low-dimensional representation provides meaningful interpretation in terms of 

events similarity. Additional benefit is that low dimensional representations are easy to be 

applied in downstream analyses, such as identifying disease susceptible populations or 

disease subtypes as well as making predictions for diagnoses or clinical outcomes.

Among various tasks, prediction model construction is among the most important ones. 

Many attempts have been made recently and been shown promising3, 13-16. Although many 

predictive methods have been proposed, limitations and gaps still exist in real world 

applications. For one thing, most of the models proposed target only one or two diseases. In 

real life, at least a number of common diseases should be considered for prediction. And for 

another, almost all the current methods assume that training data come from one source or 

training data come from multiple datasets but are available from one single place. A real 

scenario might be that more than one database is available at different sites but cannot be 

transferred or shared. It would be preferable if a model can learn from multiple EHR 

datasets and at the same time predict the occurrence of multiple diseases.

In this article, we propose the Distributed Noise Contrastive Estimation (Distributed NCE), a 

neural-network-based technique for building predictive models of patient diagnoses. This 

method can learn from multiple EHR databases without sharing data among sites and make 

predictions for more than seventy common diseases. Our work is an extension of the 

Word2Vec model by Mikolov17 and the Patient-Diagnosis Projection Similarity Model by 

Farhan18. The main contribution of our work is to incorporate information from multiple 

data sources in one global model while preserving the privacy of underlying private data. As 

Li et al. Page 2

J Biomed Inform. Author manuscript; available in PMC 2020 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



many methods have been developed based on Word2Vec19-21, the proposed approach is 

notable in that it can be generalized to any Word2Vec-based model or other neural network 

based model to expand data sources while protecting patient privacy.

Two recent works has been published and are focusing on similar problem22, 23. Huang et al. 

uses a privacy-preserving harmonization approach based on an existing method called 

“Procrustes” to map the vectors learned from Word2Vec in one site to the vectors of another 

site22. Lee et al. does not use Word2Vec but develops a hashing technique to lower the 

dimension of patient features. They utilize a multi-hashing technique and demonstrate better 

results than existing uni-hashing methods23. Different from Lee et al., we propose to utilize 

Word2Vec to obtain lower-dimension representations of patient features, and different from 

Huang et al., our method directly modify the algorithm of Word2Vec to make it incorporate 

the information from two hospitals.

The remainder of this article is structured as follows. The preliminary works are presented in 

section 2, problem setting and the proposed method Distributed NCE in section 3, two 

alternative methods including Naive Updates and Dropout Updates in section 4, the 

numerical study using real data in section 5, and some comments and discussions in section 

6.

1 Preliminaries

This section reviews two existing models, which form the foundation of the proposed 

methods. We first briefly discuss the skip-gram (SG) model, a popular model used in the 

Word2Vec algorithm. This model has a three-layer neural network and uses each single word 

to predict the context words surrounding it. Then we review the Patient-Diagnosis Projection 

Similarity (PDPS) model based on the SG model.

1.1 Skip-gram Model

Following the text-inspired notation in Mikolov24, suppose there is a training sequence 

consisted of words ω1, ω2,…, ωT. A three-layer neural network is constructed as 

demonstrated in Figure 1. The input layer is a vector representing a single word in the 

training sequence and the output layer is vectors representing the context words around the 

input word. The hidden layer has the same number of nodes as the dimension of vector 

representation, as the weights from input layer to hidden layer are used as lower-dimensional 

representations. The dimension of vector representation is a tuning parameter that the users 

can change, and we fix it as 350 in all the experiments. The weight matrix from input layer 

to hidden layer is denoted by W and the weight matrix from hidden layer to output layer by 

W*. The goal is to maximize the log-likelihood of context words given an input word:

1
T ∑

t = 1

T
log𝒫(ωt − c, …, ωt − 1, ωt + 1, …, ωt + c ∣ ωt) = 1

T ∑
t = 1

T
∑

−c ≤ j ≤ c
j ≠ 0

log𝒫(ωt + j ∣ ωt) (1)
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ωt is the input word and ωt−c,…, ωt−1, ωt+1,…, ωt+c are the context words around ωt. The 

conditional probability of observing an output word (or an aforementioned context word) ω0 

∈ {ωt−c,…, ωt−1, ωt+1,…, ωt+c} given the input word ωI is defined as:

𝒫(ωO ∣ ωI) =
exp(vωO

∗ TvωI
)

∑ω = 1
nw exp(vω

∗ TvωI
)

(2)

Here nw is the number of words in the vocabulary, vωI is the corresponding weight vector for 

word ωI in matrix W, and vωO
∗  is the corresponding weight vector for word ωO in matrix 

W*. Note that if ωI is the i—th word in vocabulary and ωO is the j—th word, vωI and vωO
∗

are the i—th column of W and the j—th column of W* respectively representing the input 

and output vector of ωI and ωO. Thus the SG model adjusts two neural network weight 

matrices W and W* by maximizing the sum of log-likelihood for pairs consisted of all input 

words and their context words.

1.2 Patient-Diagnosis Projection Similarity Model

Farhan18 proposed a Word2Vec-based model, known as the patient-diagnosis projection 

similarity (PDPS), to predict patient diagnoses based on EHR data. Assume one has 

obtained a vector for all events by building an SG model on training datasets. Given a new 

patient sequence S which consists of his/her medical event codes ordered by time, the goal is 

to seek the optimal predicted diagnosis d* using S and the vector representations for all 

known medical events belonging to this subject.

Specifically, let ℰ be the set of all possible events and 𝒟 be the set of all possible diagnoses, 

and then stipulate that 𝒟 is a subset of ℰ. For an event e ∈ ℰ, denote the vector 

representation of e by Ve. We represent a diagnosis element of 𝒟 by d and denote the vector 

representation for d by Vd. In order to incorporate the time effect of each medical event in 

sequence S, we calculate the time elapsed between the event e and the last event denoted by 

te.

To find the optimal prediction of diagnosis for a patient with EHR sequence S, PDPS finds

d∗ = arg max
d ∈ 𝒟

CS(Vd,
∑e ∈ sVeexp( − λte)
∑e ∈ S exp( − λte)

) (3)

where CS(x, y) is the cosine similarity between x and y, λ is the decay factor and usually 

takes a value between 0 and 1, 𝒟 is the list of all diagnoses in the vocabulary. PDPS makes 

prediction based on the tendency (a scaler between 0 and 1 with higher value indicates more 

tendency) for a specified diagnosis d  with CS(V
d

,
∑e ∈ SVeexp( − λte)

∑e ∈ Sexp( − λte) ) so that the importance 

of distant medical events decay over time (following an exponential distribution). PDPS has 
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previously demonstrated reasonable prediction performance (over more than 70 common 

diagnoses). But it was done in a centralized setting without considering the collaborative 

needs of privacy-preserving data sharing, which is common due to policy and regulation.

2 Distributed Noise Contrastive Estimation

To build a global model from multiple databases without sharing data, a novel technique is 

proposed and called Distributed Noise Contrastive Estimation (Distributed NCE). This 

section first presents the problem of interest. Then the proposed method Distributed NCE is 

elaborated. To allay the potential privacy concern when using Distributed NCE, Distributed 

NCE is further extended by adding differential privacy.

2.1 Problem Setting

Without loss of generality, we consider the case with two EHR databases D1 and D2, where 

the goal is to construct a predictive model on these two datasets with the constraint that D1 

and D2 cannot be shared between sites and have to be analyzed locally. As mentioned above, 

this scenario happens when hospitals are not willing to share their EHR data due to policy or 

other concerns but would like to collaborate. In this case, methods of constructing a 

predictive model distributedly are desired. In the following section, we propose a novel 

technique, Distributed NCE, which can incorporate multiple datasets distributedly. The 

proposed method can be applied on PDPS or other Word2Vec-based predictive models.

When D1 and D2 have the same vocabulary of medical events or D2 includes only a subset 

of D1’s vocabulary, the model built by D1 can be updated easily using D2 in the Word2Vec 

model. But D1 and D2 do not always have the same vocabularies. Different institutions 

might observe different medical events or measure different labs. Such inconsistency leads 

to the discrepancies in vocabulary.

2.2 Distributed Noise Contrastive Estimation (NCE)

Our idea of the Distributed NCE is inspired by the main hurdle of learning from multiple 

databases - discrepancies between vocabularies. Our proposed solution is to obtain 

vocabularies from multiple sites first and initialize an empty neural network model. Then 

this model can be trained using separate data sites in a sequential order. It is worth noting 

that, the iterations of Word2Vec are performed within each site at training stage and no inter-

site iterations are required in the training phase. After all the data sites have trained the 

model, a global model is built and the weights between input and hidden layers are the final 

vector for medical events. This method is effective because it exactly mimics the process of 

training a Word2Vec model. The original training process feeds batches of the document 

corpus into the gradient-descent algorithms, which is what Distributed NCE would do 

except that Distributed NCE operates on a corpus in two separate locations. The Distributed 

NCE method is demonstrated in Figure 2.

Suppose one has access to two databases D1 and D2, the vocabulary of database D1 has size 

nw and the vocabulary of database D2 has nw
∗  new words. In the SG model, objective 

function (1) is unchanged but the conditional probability of observing an input work is 
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changed from function (2) to (4). The only difference in equation (2) and (4) is that in the 

proposed model, the training procedures take place with an expanded vocabulary nw + nw
∗  in 

all data sites even if some of the medical events in this vocabulary is present only in a subset 

of data sites.

𝒫(ωO ∣ ωI) =
exp(vωO

∗ TvωI
)

∑ω = 1
nw + nw

∗
exp(vω

∗ TvωI
)

(4)

One challenge of the calculation using equation (4) is that the denominator part iterates over 

all words in the expanded vocabulary, which can be computationally intensive. To tackle this 

challenge, we use NCE as an optimization technique to approximates the empirical 

distribution of “context” in equation (4) to avoid the step of iterating over all vocabularies25. 

In NCE, the global counts are used to obtain the “flattened” empirical unigram distribution 

(by exponentiating each probability by 0 < α < 1 and re-normalizing)26. In this way, we 

maintain a faithful language model in a global sense as opposed to the other sampling 

strategy (such as negative sampling), which fails to approximate the empirical distribution 

with their respective model distribution. There is an existing package called “Online 

Word2Vec”27 which has similar spirit. But Distributed NCE uses global vocabulary and 

count table in optimizations, resulting in closer results to a global model.

To illustrate how NCE works, we symbolically represent the weight matrices W and W* by 

θ = (W, W*). We denote uθ(ωO, ωI) = exp(vωO
∗ T

vωI
) to be the function that assign a score to 

the word ωO in context ωI. To facilitate the estimation, a “noise” distribution is assumed, 

and denoted by q(ω). NCE finds the optimal solution for θ which maximizes the objective 

function,

θ∗ = argmax
θ

∑
(ωO, ωI) ∈ V

log
uθ(ωO, ωI)

uθ(ωO, ωI) + kq(ω) + ∑
i = 1, ω‒ ∼ q(ω)

k
log kq(ω‒)

uθ(ω‒, ωI) + kq(ω‒) (5)

In optimizing equation 5, k negative samples are drawn from noise distribution q(ω) in each 

iteration and the global count table is used to estimate such q(ω). In another word, NCE uses 

an approximated objective function (5) to replace the previously computationally expensive 

function (4), and at the same time maintain the model structure close to the original model.

With N distinct datasets D1, D2, ⋯, DN, Distributed NCE can be similarly applied using the 

procedures described in Figure 2. The first step is to collect and merge vocabularies of all 

these databases and build an empty Word2Vec model. Then one can consecutively train the 

model using databases from D1 to DN.
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In implementation, we notice that Distributed NCE may have privacy concerns in the step of 

obtaining vocabulary counts if only two datasets are involved. The fact that one site can infer 

the medical event word counts of the other site from the global model may leak private 

information of patients, especially those with rare diseases. To address such concerns, the 

following section discusses how to add privacy protection in combined vocabulary and word 

counts.

2.3 Distributed Noise Contrastive Estimation with Privacy Protection

To protect data privacy when two datasets are analyzed by the Distributed NCE, a 

differential privacy (DP) component28 is added into Distributed NCE. We call this method 

Distributed NCE with DP. The DP procedures are conducted at each data site independently. 

Only the DP-added count table are shared across sites to present the leakage of sensitive 

patient event information.

The DP method is proposed by Xiao28 and its full name is differentially private histogram 
release through multidimensional partitioning. Given a vocabulary and the count table of all 

the words in vocabulary, in order to implement DP, the first step is to partition the count 

table into a few clusters. We use common methods such as k-means clustering or 

hierarchical clustering to partition the count list. In the next step, every value in one partition 

is replaced by the mean value plus random Laplace noise. The general workflow of adding 

DP to a one-dimensional data is illustrated in Figure 3. It is worth noting that we use global 

count to generate DP table, which is the only information shared and it helps harmonize the 

model.

Suppose the whole count table x1,…, xN is divided into s partitions using some clustering 

technique. N is the number of words in vocabulary. The i—th partition contains elements 

xi,1,…, xi,Ni, i = 1,…, s. Ni is the number of elements in the i—th partition. To use the DP 

on the i—partition, each element is replaced by

xi, j =
xi, 1 + ⋯ + xi, Ni

Ni
+

εi
Ni

, i = 1, …, s; j = 1, …, Ni . (6)

Laplace noise εi is generated from Lap(
SQ
α ). Here we follow the notations used in Xiao28. SQ 

is the sensitivity of a query and α is a parameter controlling the strength of privacy 

protection. α usually takes a value smaller than 1 and the smaller α leads to stronger 

protection.

In the following applications, we adopt k-means clustering as the partition method and use 

different k values ranging from 10 to 150. The sensitivity of this problem is 2 since any 

change from one word to another in the histogram can only lead to change of the L — 1 

distance of two vectors by 2, which makes SQ equal 2. And we choose 0.001 as the value for 

α. Generally speaking, more partitions introduce more noise into the model, since creating s 

partitions means adding noise s times. But at the same time adding DP with more partitions 

results in tighter sub-groups and the group mean values closer to the original Distributed 
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NCE without DP. Thus choosing the number of partitions is a trade-off between value 

accuracy and noise.

3 Two alternative solutions

This section describes two additional methods as alternatives to Distributed NCE. They are 

compared with Distributed NCE in our experiments. The first one, called “naive updates”, 

directly expands vocabulary when updating an existing Word2Vec model with a new dataset. 

The second method, called “dropout updates”, is inspired by the dropout technique 

commonly used in neural networks to avoid overfitting.

3.1 Naive updates

Suppose a Word2Vec model M1 trained by the first dataset D1 (see Section 1.1) has already 

been obtained, it can be updated by expanding the vocabulary of M1 and adding input nodes 

and output nodes to the existing neural network. In the expanded model, denoted by M2, the 

weights inherited from M1 are initialized by the existing values in M1 and new weights are 

randomly initialized. Then we train M2 with new data D2.

Assume the input layer, hidden layer, and output layer of M1 have nodes {x1,x2,…,xN1}, 

{h1, h2,…, hL}, and {y1,y2,…,yN1} respectively. N1 is the number of words in vocabulary of 

D1 and L is the number of nodes in hidden layer. Note that only one input node among x1,x2,

…,xN1 is non-zero for SG model in each training iteration. By applying naive updates, it 

expands the existing input layer and output layer to {x1, x2,…, xN1, xN1+1,…, xN1 +K} and 

{y1, y2,…, yN1, yN1+1,…, yN1+K} respectively. K is the length of new words in D2 

compared with D1. This step is demonstrated in Figure S1. Then the expanded model M2 is 

trained with D2.

Compared with the proposed method DNCE, Naive updates fail to consider vocabularies 

that are exclusive to latter databases when training the model using the first database. This 

leads to different selected contrast words in applying noise contrastive estimation algorithm, 

and thus different training results from a global model.

3.2 Dropout updates

Following the same notation in section 3.1, dropout updates expand the input layer and 

output layer by a subset of new nodes. If we specify the proportion of random sample 

selected from new nodes as π, each time [π × K] new nodes {x(N1 +1),…,x(N1 +[π×K])} and 

{y(N1 +1),…,y(N1 +[π×K])} are selected from {xN1+1,…,xN1+K} and {yN1+1,… yN1+K} 

respectively. [·] is the floor operation. (·) means it is a random sample. After adding these 

nodes to existing model M1, the new model M2
(i) is trained by new data D2. We repeat this 

step N times and obtain N input weights Wnew
(i) , i = 1,…,N. From another perspective, this 

process is the same as randomly dropping a proportion of nodes in the updated model M2 in 

section 3.1. Since it has the similar flavor to the dropout technique usually used in neural 

network training to reduce over-fit, we call this model “dropout updates”.
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We use Figure S2 to demonstrate how existing models are updated through dropout method 

in N iterations. Wnew
(1) , Wnew

(2) , …, Wnew
(N)  are the weights of updated models M2

(1), M2
(2), …, M2

(N). 

We calculate the final vector representation Vi for word ωi by

V i =
∑

ωi ∈ Vocab( j)Wnew, i
( j)

∑ j = 1
N 𝟙(ωi ∈ Vocab( j))

. (7)

Vocab(j) is the vocabulary selected in j-th iteration, j = 1, …,N. Wnew, i
( j)  is the i—th row of 

weight matrix Wnew
( j) , i = 1,…,N1 + K.

4 Numerical study with real data

We conduct a series of simulation experiments using a real dataset. While our experiments 

focus on the situation where two datasets are used to build a global model, the results can 

provide insights on scenarios with more than two datasets as well since the proposed method 

can be extended to more than two datasets as described in Section 3. The results can be 

extended to multiple datasets scenarios by iteratively applying such one versus one 

combination method. We consider the scenarios when the first database is smaller than, 

equal to, or larger than the second database. For each setting, we separate the whole data to 

equal or unequal subsets to mimic real life when two datasets are available locally. We use 

the model trained with the whole data as the gold standard to compare with the proposed 

methods.

4.1 Data and Data pre-process

MIMIC-III (Medical Information Mart for Intensive Care III) is a publicly-accessible 

database and may be provided upon request after creating an account, completing an online 

training course, procuring suitable references, and agreeing to a number of terms and 

conditions7, 29. It consisted of de-identified clinical data including more than 40000 patients. 

All the patients have received treatments from the intensive care units (ICU) of Beth Israel 

Deaconess Medical Center between 2001 and 2012. The MIMIC-III dataset contains a 

variety of measurements such as laboratory test results, prescriptions, symptoms, and other 

clinical measurements.

Another important feature about MIMIC-III datasets that makes it appealing to the current 

study is that it consists of two Intensive Care Unit (ICU) systems: CareVue and MetaVision. 

CareVue is a clinical information system provided by Philips while MetaVision is provided 

by iMDSoft. Patients in the CareVue system are admitted between 2001-2008 and patients in 

the MetaVision system are admitted at a later date (2008 and after). The clinical data from 

these two systems are archived in different formats, and patient populations also have slight 

differences as shown in Table 2. Although they are not from two hospitals, the system and 

population differences between CareVue and MetaVision make them a ”natural experiment” 

for two different EHR systems.
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After MIMIC-III data are obtained, they are pre-processed into temporal sequences so that 

they can be accepted by the proposed models. Data pre-processing step has been described 

in detail by Farhan18 and we briefly summarize it here. For each subject in the database, we 

concatenate the medical events from multiple hospital admissions and sort the sequence by 

time. Using such procedures, temporal information of medical events can be preserved. In 

addition, different prefixes are added to events so that the code from different categories do 

not duplicate. For instance, ‘p_’, ‘l_’, ‘s_’, ‘c_’, and ‘d_’ are added at the beginning of 

corresponding terms to represent prescriptions, lab test keys, symptoms, conditions, and 

diagnoses. We save the latest diagnosis for all patients as the ground truth of prediction and 

exclude them from training data set. To ensure all patients have enough record for 

prediction, only those with multiple hospital admissions are kept in the final dataset. After 

the above preprocessing steps, a dataset including the temporal sequences of 5,642 patients 

is obtained. One example of such temporal sequences is presented in Supplementary 

Material Figure S3. Table 1 shows the top 5 most common diagnoses, prescriptions, and 

symptoms of all 5642 patients. Table S1 presents the top 10 most common diagnoses, 

prescriptions, lab tests, symptoms and conditions, for readers to have a better understanding 

of the subjects studied here.

4.2 Settings

In the first setting of our numerical study, the MIMIC III data are manually divided into 

different proportions to mimic two locally-available datasets. First, the whole dataset is 

randomly divided into subsets containing ninety percent versus ten percent of data, and the 

former part is used as the training set and the latter part as the testing set. Second, the 

training set (ninety percent of total data) is further divided into 10% plus 80%, 20% plus 

70%, 30% plus 60%, 45% plus 45%, 60% plus 30%, 70% plus 20%, 80% plus 10%. Data 

ordering is kept during the process of dividing thus 20% plus 70% is not equivalent to 70% 

plus 20%.

In the second setting, we examine the performance of the proposed methods on data from 

two systems: CareVue and MetaVision, both of which are parts of MIMIC-III database. 

Specifically, we want to compare the predictive accuracy of training model with data from 

both systems versus using data from one system. We first randomly divide the data to 90% 

as training set and 10% as testing set, and then we separate the subjects from training set 

based on the ICU systems that they use. The 10% testing set has patients from both systems.

In the third setting, we aim to separate the training subjects to subsets that have more distinct 

features. Here we use age to divide population into subgroups, in order to evaluate the 

performance of the proposed methods on different populations. In the first case, the whole 

patient body is divided into two groups using a probabilistic age-based cutoff, which is 

generated by Logit(Pr(S = 1)) = 1 + b1 × Age. Here S = 1 means subject is assigned to 

Group2. This case is designed to mimic real situations with heterogeneous populations from 

multiple sites. In addition, we consider an extreme case where the data are divided to two 

groups using a strict age cutoff (53, 66, or 77 years old). This case, while unrealistic, is 

designed to assess robustness of our methods. As in the previous setting, 10% of data is 

randomly chosen as testing data and selection of testing data is not correlated with age.
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We define the global model as the model trained with all the training data (90% of data) and 

the global model is used as the gold standard with which the proposed methods are 

compared. It is worth mentioning that the algorithm for training neural networks has 

different levels of randomness with different settings of parameters. We discuss more about 

parameter selection in later sections.

We use two criteria to evaluate the performance of the proposed models. The first criterion is 

called Area Under Curve (AUC). For each disease, the true positive rate is plotted versus the 

false positive rate and the area under this classification curve is calculated. A good classifier 

should have true positive rate increase quickly and its AUC should be close to 1. There are 

more than seventy diagnoses, and the numbers of patients per disease group are highly 

variable, thus we calculate AUC for each disease and report the average of all the AUCs as 

the final evaluation, Avg-AUC. Avg-AUC reflects the diagnostic ability of proposed models. 

Since our data is unbalanced, we find AUC a better evaluation criterion than other metrics 

such as percentage of prediction accuracy.

The second criterion is called Precision Top K (PTK). Given two sets of vector 

representations with the same vocabulary, for each word, we calculate the proportion of 

overlaps between the K most-similar words using the first set and the second set of vector 

representations. The similarity between vectors is measured by cosine similarity30. We 

repeat this procedure over all the words in vocabulary and take average of the calculated 

proportions as PTK. PTK reflects the similarity between two sets of vector representations. 

For example, if the top 3 most similar words of one diagnosis “d_24435” are lab test 

“l_104”, prescription “p_28390”, and symptom “s_335” using one model, and the top 3 

most similar words using another model for the same diagnosis are “p_28390″, “l_104″ 
and condition “c_9002”, we notice the overlaps between these two sets of results are 

“p_28390” and “l_104”. Thus the PTK (K=3) in this example is 0.667 if the first set of 

vector representations is obtained from the gold standard model. We only take K=3 as an 

example, in the analysis, K=10 is used as the default value and K ranges from 1 to 500. In 

the calculation of PTK, the gold standard model is defined as the global model trained using 

one worker with all the training data (90% of data).

Distributed NCE and its two alternatives are first evaluated in all scenarios using PTK and 

AUC. Better methods should have higher values on both criteria. In the next step, we report 

the results of Distributed NCE and Distributed NCE with DP using different parameter 

values in the first setting.

4.3 Tuning parameters

Like other deep learning models (or statistical models), the proposed methods and the 

algorithm used to train neural networks involve a number of parameters that are specified 

beforehand. This section briefly discusses the functions of these parameters and their impact 

on the randomness and efficiency of constructed models.

Learning rate is a hidden parameter inside the learning process of a neural network. The 

magnitude of learning rate decides how large the “step size” is for each update step. The 

default learning rate automatically decreases proportionally from a max value (0.025) to a 
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min value (0.001) during the training process of one dataset. This is problematic when one 

want to train the model sequentially and obtain a global model. In Distributed NCE, we are 

able to adjust this parameter since both data sizes can be obtained when collecting 

vocabularies from different sites. The learning rate decreases proportional to data size as the 

way used in the global model. On the contrary, the learning rates in naive updates and 

dropout updates cannot be adjusted since the size of the second data set is usually unknown 

when applying these two methods.

Iteration is a parameter that controls the number of times the model is trained iteratively over 

the entire data. Default value for iteration used in Word2Vec is 5. More iterations result in 

more stable results but too many iterations would also linearly increase computing time for 

proportionally little gain. Figure S5 demonstrates the PTK performance of Distributed NCE 

using different data partitions and various iterations. When the number of iterations 

increases, the performance of unequal partitions stabilizes but the performance of equal 

partitions decreases. This happens because when applying Distributed NCE, the model is 

trained with the first dataset repeatedly for Niter times and then trained with the second 

dataset repeatedly for Niter times. But when applying the global model, models are trained 

with the whole dataset repeatedly for Niter times. Unequal partitions tend to have one large 

dataset which dominates the training process and thus have stabler performance than equal 

partitions.

Maximum number of words controls the amount of word fed to the Word2Vec model in each 

training iteration. A large maximum number means large training batches but also large 

learning rate jumps, which may result in poor estimation. A small maximum number makes 

learning process slow and training batches more susceptible to data partition. The default 

value is 10 000.

Number of workers : Our algorithm can use parallel computation to speed up the training 

process and the default number of workers is 20. Figure S6 shows the PTK change of two 

repetitive global models versus number of workers. Generally, more workers increase 

computing speed but also add randomness to final results. When the number of workers 

equals one, two repetitive global models have the same set of results thus PTK equals one. 

PTK value decreases when number of workers increases and the reduction flattens out after 

more than ten workers are used. To reduce randomness in results, one worker is used in the 

numerical study.

As discussed, multiple workers, change of sentence ordering, and a small number of 

iterations all contribute to model randomness. Multiple workers, change of feeding batches 

resulted from data partition, and more iterations contribute to the performance gap between 

Distributed NCE and the gold standard model. Parameter selection is a trade-off between 

computing time, stability, and convergence. We believe the parameter set used here (iteration 

= 5, max number of words = 10 000, workers = 1 for stable results or 20 for faster speed) 

have achieved a good balance.
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4.4 Results

The results from Setting 1 are summarized in Table 3, Table S6 and Figure S5. Table 3 

presents the PTK and AUC of three proposed methods. To emphasize the main findings, 

only three settings are demonstrated: 45% and 45% of all data as training data plus 10% as 

testing data, 10% and 80% as training data plus 10% as testing data, 80% and 10% as 

training data plus 10% as testing data. These three scenarios represent three extreme 

conditions: two training sets are of equal sizes; the first set is much smaller than the second 

set; the first set is much larger than the second set. In this experiment, 1 worker and 5 

iterations are used to reduce result randomness. The default parameter selection of the 

original Word2Vec program is 20 workers and 5 iterations, which can greatly improve 

computing speed but introduce some result randomness. A complete table of results can be 

found in Table S6, where the separation of training set ranges across 10:80, 20:70, 30:60, 

45:45, 60:30, 70:20, and 80:10.

Table 3 shows that Distributed NCE has the best performance among the proposed methods, 

especially comparing the measurement PTK. Dropout updates perform worst. Partition of 

data heavily influences on the performance of Dropout updates. Figure S5 re-confirms the 

findings from Table 3. In this figure, PTK of three methods is plotted against a wide range of 

K selection under three scenarios. Although the performance of all methods fluctuates across 

three settings, it is consistent that Distributed NCE always has the highest PTK values. 

Again, the same parameter selection is used as mentioned above (workers = 1, iterations = 5) 

during this experiment.

Both Table 3 and Figure S5 indicate that Distributed NCE outperforms other proposed 

methods with regard to the evaluation criterion PTK. As mentioned in Section 2.3, privacy is 

a potential concern for the current Distributed NCE, thus Distributed NCE with DP is 

proposed to provide better privacy protection. Table S5 demonstrates Precision-Top-K of 

Distributed NCE with DP using different numbers of clusters comparing with Distributed 

NCE without DP. As mentioned above, selection of K is a trade-off between cluster mean 

accuracy and added noise. Table S5 indicates that PTK of Distributed NCE with DP is 

closest to Distributed NCE when number of clusters is around 30 to 50. And generally 

speaking, adding privacy protection does not decrease PTK greatly.

To decide the most appropriate selection for cluster number, we also plot the sum of squared 

errors using noise-added centroids by the number of clusters. This type of plot is usually 

used to identify the optimal number of clusters in k-means clustering. Consistently, the 

elbow place of Figure S6 is around 30 to 50. Thirty clusters may be an optimal number of 

clusters according to both Table S5 and Figure S6.

In the second setting, we divide the training dataset to two subsets based on the two ICU 

systems, CareVue and MetaVision. Both Table 2 and Table S2 show the characteristics 

between the patients of these two systems. There are many differences between these two 

systems. For example, the most common diagnostic in patients of MetaVision is disorders of 

fluid, electrolyte, and acid-base balance, while the most common diagnostic in patients of 

CareVue is Heart failure. And the MetaVision patients have more averaged total event counts 

than CareVue patients. Table S3 and Table S4 present the top 10 most common diagnoses, 
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prescriptions, lab tests, symptoms, conditions for CareVue patients and MetaVision patients. 

Figure 4 shows the applications of the proposed methods on CareVue and MetaVision 

together versus PDPS using CareVue only or MetaVision only. We find both Naive updates 

and Distributed NCE can utilize the information from two databases efficiently and have 

better PTK and average AUC than PDPS using one data source alone.

In addition to AUC and PTK, we also present accuracy, sensitivity, positivie predictive value 

and F-measure of all the methods on using CareVue alone, MetaVision alone, and the 

combined dataset in Figure 5. The threshold of disease/non-disease diagnosis for each 

disease is chosen by largest F-measure along ROC curve. We find DNCE has reached the 

highest accuracy, sensitivity (recall), positive predictive value (precision) and F-measure. 

The benefits of using all data are obvious for the improvement of these commonly-used 

evaluation metrics.

Table S7 and Table S8 show the simulation results in the third simulation setting with age-

correlated subsets. In Table S7, b1 = −0.04 has uneven population separation than b1 = −0.02 

and b1 = −0.002. Both Naive updates and Dropout updates have worse results when subset 

differences are larger. But Distributed NCE and Distributed NCE with DP not only have best 

PTK and AUC, but also perform stably for all three separations. In Table S8, Distributed 

NCE and Distributed NCE with DP have the best performance for all three age cutoffs. 

Although Table S8 shows an extreme case of population separation, it demonstrates the 

robustness of our method.

5 Conclusion and Discussion

In this work, we propose and investigate several methods to extend current neural network 

based predictive models for medical events. The proposed methods allow researchers to 

build predictive models using multiple EHR datasets sequentially and distributedly, avoiding 

the potential hurdles associated with sharing EHR data. In practice, our model can be used to 

identify patients that have an underlying medical condition that has gone undiagnosed, and 

then alert healthcare providers to order additional gold tests to confirm the possible 

diagnoses. As such, it enables detection and hence treatment of a disease in an earlier stage 

of its natural history, which is known to be associated with better outcomes.

To validate an established model, a few downstream analyses can be performed, including 

grouping medical concepts from different institutions, finding similar patients by 

constructing patient profiles from observations, and making predictions based on records. 

For example, biomedical ontologies are increasingly used in the context of health system 

interoperability, which are the keys to understanding the semantics of information 

exchange31. The diversity of biomedical ontologies call for advanced tools to harmonize 

them and the ability to find similar concepts without exchanging raw data is highly 

appreciated. Our model can evaluate when two similar concepts (in a global sense) are 

presented in a distributed setting (e.g., appearing in different sources). We can test their 

similarity using our proposed method against the baseline approach (concepts trained in a 

centralized manner) to see how well the semantics are preserved. Such evaluation can be 

extended to search similar patients (based on profiles synthesized by distributed embedding 
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of their corresponding concepts). In this sense, we would expect similar patients (in a global 

setting) remain similar after the distributed training approach is adopted.

It should be clarified that this work is constructed on the ‘old’ EHR system and on 

standardized clinical data. The ‘old’ EHR systems use ICD-10 for medical event prototyping 

in contrast to the ‘new’ systems which support medical event prototyping through both 

ICD-10 and e-prescription. In addition, the latest systems use different standardization, 

which is a challenge to be tackled. And difficulties also exist in data harmonization, 

especially when different data sources are highly heterogeneous in terms of format. From 

raw EHR data to standardized EHR data, we envision Common Data Models (CDM) such as 

Observational Medical Outcomes Partnership (OMOP)32 will bridge the gap. In addition, 

since data harmonization is not a unique issue in the distributed analysis and is needed 

whenever people try to use multiple data sources, ongoing efforts exist to overcome such 

hurdles.

Our work has some limitations. First, although we have demonstrated that the proposed 

methods can handle patients from different sources (such as CareVue and MetaVision in our 

experiment, mimicking two EHR datasets from two hospitals), the scenarios in practice 

could be even more complicated. Within Beth Israel Deaconness Medical Center, CareVue 

was the original system which was then replaced by MetaVision. So the latter contains the 

more recent patients, and the datasets are slightly different in their distributions. It would be, 

however, taking too far to compare these two systems to different hospitals. In practice, the 

data from different hospitals have heterogeneity in terms of coding system, clinical 

standards, patient profiles, and etc., which are not addressed in this work. In some sense, 

MIMIC is an excellent natural experiment, as it involves two different (critical care) EHRs, 

but since they are from the same institution the aforementioned coding differences should be 

minimized, and the creators of MIMIC put a tremendous amount of effort into reducing 

heterogeneous aspects of the systems. Thus this allows us to isolate the problem of 

distributed learning from the many other problems that impact EHRs.

Technically, the proposed models can handle datasets with different levels of differences. 

Based on our experience, utilizing information from two hospitals has disadvantages when 

large discrepancy exists in two coding systems or patient profiles. But merging information 

can be especially beneficial if two hospitals have similar patient populations but not enough 

size on their own or the information from both hospitals are complementary. Such data 

usually exist in distributed medical data sets of clinical data research network (CDRN). 

Compared with two different hospitals, CDRNs use the same or similar coding systems and 

clinical standards. And the patient profiles are more homogeneous. Our proposed method 

will be a good fit to datasets in such distributed data networks. Of note, one of our numerical 

experiments is designed to mimic heterogeneous data sources.

Another limitation is that, although the proposed methods can learn predictive model 

sequentially and distributedly, the learning process is not completely independent among 

datasites. Using the proposed methods, the second datasite need to wait until the first 

datasite finishes learning, which may not be efficient enough in real life. To learn a global 

model parallelly, one could obtain vector from separate datasites and conduct downstream 
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combining, which may be a more complicated problem than the current situation. Also, one 

can consider combining Bayesian ideas with neural network and imposing different prior 

probability on nodes when updating neural networks.

For future research, the proposed models should be further evaluated using data from 

different hospitals and data from distributed medical systems, if such data are available. It is 

also desirable to develop model construction technique which can learn model structure 

completely parallel. Last but not least, we believe the prediction of other items, such as the 

probability of re-admission, adverse treatment outcomes, risk of infections etc. are equally 

or even more important than prediction of diagnoses, especially for patients with multiple 

admissions to ICU. Efforts toward these directions are our on-going works.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Demonstration of SG model structures. One square is a vector representation of one word. 

Circles represent elements in each vector. W is the weight between input layer and hidden 

layer, W* is the weight between hidden layer and output layer.
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Figure 2. 
Distributed NCE. Squares represent medical events. Crosses represent counts of medical 

events. After obtaining the vocabularies from datasets D1 and D2, the event lists and event 

counts are merged. Neural network is trained sequentially using D1 and D2.
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Figure 3. 
A symbolic illustration of implementing differential privacy on one-dimensional data. To 

apply DP on one-dimensional vectors, partition counts to subgroups in the first step. For 

each subgroup, calculate summations and add noise to group summations. Last, average 

summations to individual cells.
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Figure 4. 
Prediction results of using different data sources. Figure (a) shows Precision Top K (PTK) 

and Figure (b) shows Receiver Operating Characteristic (ROC) curves of existing method 

and the proposed methods. The numbers in the legend of Figure (b) represent the averaged 

AUC over 80 diagnoses of the corresponding method.
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Figure 5. 
Barplot of accuracy, sensitivity and positive predictive value with error bars. Figure (a) 

shows accuracy, Figure (b) shows sensitivity (recall), Figure (c) shows positive predictive 

value (precision) and Figure (d) shows the F-measure of existing method and the proposed 

methods. The height of bars represents the mean accuracy (or sensitivity/positive predictive 

value/F-measure) over 80 diagnoses of the corresponding methods. The error bars represent 

two times standard errors.
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Table 1.

Total number and top 10 diagnostics and prescriptions, and average number of events of all 5642 patients. The 

average number of event per person has mean 297.2 and standard deviation 237.2.

Diagnostic Freq Prescription Freq (Person) Symptom Freq (Person)

Num of Terms 712 3553 174

Top 5
most

common

Cardiac dysrhythmias 2086 INSULIN 26409 (4157) Septic shock 890 (757)

Essential hypertension 2021 FURO40I 26080 (3380) Becteremia 567 (505)

Heart failure 2003 NACLFLUSH 22650 (4576) Convulsions 556 (409)

Disorders of fluid, electrolyte, and acid-base 
balance 1974 VANC1F 17958 (3645) Hypoxemia 448 (402)

Diabetes mellitus 1787 VANCOBASE 17943 (3646) Ascites NEC 381 (281)
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Table 2.

Total number and top 5 diagnostics and prescriptions, and average number of events of patients from 

MetaVision system and CareVue system.

Meta Vision CareVue

Num of Terms = 635 Freq Num of Terms = 579 Freq

Disorders of fluid, electrolyte, and acid-
base balance 1107 Heart failure 1093

Diagnostic Essential hypertension 1047 Cardiac dysrhythmias 1042

Cardiac dysrhythmias 1038 Essential hypertension 970

Other and unspecified anemias 916 Diabetes mellitus 884

Disorders of lipoid metabolism 912 Disorders of fluid, electrolyte, and acid-
base balance 859

Num of Terms = 2572 Freq Num of Terms = 2374 Freq

NACLFLUSH 14763 (2680) FURO40I 15134 (1753)

Prescription MAG2PM 13576 (2253) INSULIN 13644 (2065)

INSULIN 12588 (2067) D5W250 10228 (1896)

NS1000 11801 (2175) MAGS1I 9698 (1734)

FURO40I 10813 (1610) MICROK10 8889 (1809)

Num of Terms =160 Freq Num of Terms =138 Freq

Septic shock 563 (471) Convulsions 370 (251)

Symptom Hypoxemia 350 (309) Septic shock 323 (282)

Ascites NEC 344 (251) Bacteremia 288 (259)

Bacteremia 277 (244) Prev matern surg aff NB 176 (142)

Diarrhea 261 (223) Cardiogenic shock 147 (135)

Total event 
counts per 
person: mean 
(sd)

330.2 (247.6) 266.5 (223.0)
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Table 3.

Results of all methods using Skip — Gram model. Results are summarized over 10-folds cross validation. 

Distributed NCE is Distributed Noise Contrastive Estimation. PTK is Precision-Top-K. K equal 10 in all 

experiments. Avg-AUC is averaged Area-Under-Curve. 45 : 45 : 10 means that the two training datasets are 

45% and 45% of total data. Testing dataset is 10% of total data. Global model uses all 90% data as training 

data.

45 : 45 : 10 10 : 80 : 10 80 : 10 : 10

PTK Avg_AUC PTK Avg_AUC PTK Avg_AUC

Naive updates 0.52 (2e-3) 0.77 (8e-3) 0.50 (2e-3) 0.77 (8e-3) 0.49 (3e-3) 0.78 (8e-3)

Dropout updates 0.22 (3e-3) 0.72 (7e-3) 0.13 (9e-4) 0.72 (5e-3) 0.37 (4e-3) 0.73 (7e-3)

Distributed NCE 0.58 (2e-3) 0.77 (8e-3) 0.64 (2e-3) 0.77 (8e-3) 0.65 (3e-3) 0.77 (7e-3)
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