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In the past 25 years, the tissue engineering field has made incredible strides in developing tangible therapies for
patients in need. Applications of the tissue engineering paradigm, involving varying configurations of cells,
materials, and biochemical factors, have been explored for their regenerative capacity of virtually all tissue types.
The impact and learning opportunities of current tissue engineering that inspired clinical successes are sum-
marized. In addition, challenges associated with the translation and scale-up of therapies and replacements for
complex organs, such as the heart and liver, are addressed. Platforms of research thrusts, specifically cell source,
materials, fabrication, scalability, and Food and Drug Administration regulatory changes, and their respective
innovations are identified for their potential to address these problems. Ideally, through their progress, tissue
engineering strategies can be used to create a diverse range of easily accessible patient-specific treatments that
more effectively improve quality of life.
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Impact Statement

In this Perspective, we discuss the impact of the past 25 years of tissue engineering on the development of clinical
therapies. Based on their success and other significant research accomplishments, platforms of innovation were identified.
Their discoveries will enable tissue engineering inspired therapies to meet the requirements necessary for large-scale
manufacturing and Food and Drug Administration (FDA) approval for a diverse range of indications.

Foundation

Aprolific quarter of a century has been dedicated
to the development and clinical translation of tissue

engineering-inspired therapies, leading to an increase in
methods and technology with capacity for patient impact. In
1994, 18,000 organ transplants were performed with almost
double the number of patients on the waiting list for a life-
saving procedure.1 Easily identified as unsustainable statistics,
this initiated the synergy of engineering and life sciences
fields to develop biologic substitutes that facilitate tissue
functional recovery.2 The foundation of tissue engineering

involves the use of engineered materials in the presence or
absence of cells and biochemical factors to restore, maintain,
or improve biological tissues2 (Fig. 1A). Today, over 115,000
patients remain on the organ waiting list, and with each year
the feasibility of patient-specific organ fabrication has im-
proved.1 The increased understanding and technological
toolbox have expanded the tissue engineering paradigm to
new fields such as organ models, drug discovery, and cancer
models.3 This has resulted in an exponential yearly increase in
related discoveries and publications; 50% of the total number
of tissue engineering related articles were published in the last
5 years (Fig. 1B). In parallel to the growth of technology,
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improvement to medical practices, and spread of information
and funding, tissue engineering has made significant strides in
developing tangible treatments and inspiring the next gener-
ation of medicine.4–6

The successes and failures of tissue engineering appro-
aches have been learning opportunities for future research and
product development. Great achievements have been made in
terms of engineering materials with biochemical factors to
stimulate regenerative processes and facilitate proper healing
in patients. However, as of 2018, a limited number of cellular
strategies have been approved by the Food and Drug Ad-
ministration (FDA), with only a handful that include a com-
bination of cells with materials.4,7,8 This Perspective will
focus on the strategies that promote the translation of tissue
engineered therapies with direct patient impact. Discussion
points will include why the few have succeeded and what
is needed to reach more indications and support full organ
therapies at commercial scales.

Past Successes

While a majority of therapies are based on the fabrication
of tissues outside the body, various attempts have aimed to
manipulate the body’s own regenerative capacity. This in-
volves the use of natural or synthetic materials, with or
without additional biological cues, to stimulate specific re-
sponses and promote healing in vivo.9 FDA approval has
been achieved for innovations in both the material choice and
the inclusion of biochemical factors to support tissue-specific
regeneration. The Integra Dermal Regeneration Template, an
acellular device made of collagen, glycosaminoglycans, and
polysiloxane, was approved in 2002 for burn treatment and
has since expanded to other wound healing indications.10–12

Also, the INFUSE bone graft, which uses bone morphogenic
protein-2 on a collagen sponge to support bone formation,
was approved in 2002 for use in lumbar fusion.13 These
strategies are mostly focused on the tissues with high intrinsic
regenerative capacity, such as bone, while tissues with lim-

ited regenerative capacity like cartilage may still require
cellular components.9,14 The use of naturally derived extra-
cellular matrix (ECM) or growth factor/material combina-
tions can jump-start the body’s reparatory processes to
facilitate healing of critical size defects, where healing would
normally not occur independently.15,16 These material-based
therapeutics have demonstrated the benefit of appropriate
ECM and other biological cues for regenerating different
tissue types.17–19

Biologic materials have also demonstrated an incredible
therapeutic potential for both allogenic and xenogeneic tis-
sues. For example, strategies to generate decellularized tis-
sues have led to the development of FDA-approved ECM
materials for various applications, such as wound healing and
nerve repair.20,21 In addition, placental tissue allograft pro-
ducts, which retain native tissue ECM, growth factors, and
contain low immunogenicity, have demonstrated positive
outcomes in treating chronic wounds.22,23 These examples
demonstrate the potential of engineered methods to preserve
allogeneic tissues that can provide regenerative signals upon
implantation to stimulate healing.

While more challenging to create, regulate, and dis-
tribute, fabricated cell-material therapies have also made
significant strides in the past 25 years. Initial successes
were seen in developing skin substitutes used to facilitate
wound healing. One of the first processes to use allogeneic
cells for treating burns was TransCyte, which was prepared
by culturing foreskin fibroblasts on nylon mesh. Their
technique, which was FDA approved in 1997, solely relied
on the benefits of cell-derived ECM and did not preserve
cell viability following frozen storage.24,25 However, the
incorporation of cellular components in implants is im-
portant for improving the extent of regeneration, increasing
integration, and reducing the need for immunosuppressive
drugs.26 To this aim, Apligraf, which combined foreskin-
derived fibroblasts and keratinocytes on a collagen matrix,
was FDA approved in 1998 for use on venous ulcers.27,28

This was followed by the FDA approval of Dermagraft,

FIG. 1. (A) The tissue engineering paradigm based on discoveries in cell source, cell differentiation, material choice, and
fabrication. (B) The number of published tissue engineering associated articles from 1994 to 2018, demonstrating an
exponential increase [Data from pubmed.gov, PubMed database keyword search: tissue engineering].
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made of cryopreserved foreskin derived fibroblasts on a
polyglycolic acid mesh, in 2001 for use on diabetic foot
ulcers.4,29 These products were the first FDA-approved
products with scaled-up manufacturing processes in which
cells were cultured on a matrix in vitro before application
and maintained viability upon implantation.27 To meet
FDA guidelines of safety, these allogeneic cell banks are
extensively tested for diseases, pathogens, and immuno-
logic reactivity.28 Their manufacturing procedures to ex-
pand cell banks to necessary cell numbers and mature
tissues show great promise for the future of cell-based
applications. In addition, the products remain viable upon
shipment at both 37�C and -80�C.27,30 The efficacy of
these early applications was promoted by the use of allo-
geneic immune-privileged cells that produce cytokines and
growth factors to stimulate healing in chronic wounds.27

One application of patient-derived cells/scaffold therapies
is the matrix-associated autologous chondrocyte implanta-
tion (MACI), which was FDA approved for full-thickness
knee cartilage defects.4 Marketed by Vericel, MACI was
approved under Section 351 of the Public Service Health
Act and required extensive Phase III clinical trials for pre-
market approval and commercial availability. MACI is
prepared by seeding in vitro expanded biopsy-derived
chondrocytes on a porcine type I/type III collagen matrix.
Upon implantation, MACI has demonstrated efficacy and
safety for up to 15 years.4,31,32 By adding the material
component, this product avoids the problems of the cellular
therapy (ACI), such as cell leakage, chondrocyte dediffer-
entation, and postoperative hypertrophy.31,33,34 This is an-
other facet of the tissue-engineering approach where cell
phenotype and functional recovery can be improved through
the use of three-dimensional (3D) materials compared to
two-dimensional culture alone.35,36 In this approach, the
FDA approved processes include autologous cells and an
in vitro cultured device—opening the door for future adap-
tions of these methods.

Current State of Clinical Advances

New technologies for the clinical translation of larger
vascularized tissues have been developed due to the success
of tissue engineering. Current clinical trials are investigating
acellular and cellular solutions for a variety of treatments—
growing the tissue engineering market.6 Unique engineering
of material components targeting intrinsic regeneration have
expanded the reach of tissue engineered materials for clin-
ical applications in cardiac, musculotendinous, and nerve
repair.37–39 Devices made of biodegradable polymers, such
as the Neuro-Spinal Scaffold prepared by the solvent casting
and porogen leaching of poly-lactic-co-glycolic acid and
poly-L-lysine, are currently under clinical investigation for
spinal cord injury repair.40,41 By tailoring the degradation
rate and including positively charged functional groups, this
device recently demonstrated improved spinal cord recovery
in large animal models by supporting neuronal cell attach-
ment, cell migration, and nutrient diffusion for functional
tissue remodeling.41

In addition, FDA-approved processes, such as in vitro
expansion and tissue maturation, have been applied to new
applications. This includes products from cellular-derived
ECM, such as the Humacyte acellular vascular graft, where

allogeneic smooth muscle cells are seeded on polyglycolic
acid scaffolds, cultured in bioreactors to deposit ECM, and
decellularized to remove cellular components.42 This device
has demonstrated safety and efficacy greater than that of
synthetic grafts in a recent phase II trial, and, due to the
decellularization procedure, maintains the off the shelf
availability.42,43 Other tissues, such as bladder and vascular
graft replacements, that combine both cells and materials
have already received significant recognition for success-
fully treating patients.44,45

Despite these successes, following FDA approval con-
cerns have surfaced regarding the use of exogenous growth
factors. For example, off-label use of INFUSE has been
responsible for side effects, such as ectopic bone formation
and increased reoperation rate.46 Questions of effective
dose, extended release, side effects, and cytotoxicity have
limited the translation of other growth factor therapies.19

The identification of optimal materials that can localize
growth factors to limit side effects and support tissue
specific regeneration is still under investigation.19

The development of therapies for solid organs, such as
the heart and liver, requires more complex organization of
materials and growth factors to support multiple cell types,
tissue structure, and vascular networks.47 Earlier cell-
material liver implants, which relied on in vivo angio-
genesis to provide vascular structures for newly formed
tissue, had success in animal models but did not effec-
tively translate to larger structures for human applica-
tions.48 The last decade of tissue engineering has seen
incredible discoveries in engineering cells, materials, and
tissue architecture to promote vasculature and organ-
specific cellular phenotypes in implantable constructs.49

For patient availability, these need to meet FDA guide-
lines for host compatibility, sterility, and functionality.
Even with such an urgent need, tissue-engineering thera-
pies will require extended approval timelines, requiring
identification of complex mechanisms and overcoming
funding challenges.4 The challenge of the next decennium
will focus on the scalability of these discoveries to com-
mercially available therapies. Ideally, these therapies will
encompass the use of cells and materials to form im-
plantable matured tissues that can incorporate into native
tissue for better healing and long-term outcomes.

Future Directions

Specific platforms stand out for solving issues required
for translating more complex organ therapies. Tissue engi-
neering thrusts are aimed at combining these different
technologies for specific tissue restoration. The following
have been identified as critical components that will ideally
allow for clinical availability of many tissue engineered
products.

Cell source

Currently, Section 351-approved devices use either au-
tologous cells that require invasive biopsies and extended
culture times or allogeneic differentiated cells with safety
concerns. The identification of an optimal source of cells that
do not lead to immune rejection is critical for scalable
translation. Many of these cell origins are currently under
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clinical investigation as cell therapies. Autologous bone
marrow or adipose derived mesenchymal stem cells (MSCs)
with multilineage potential have demonstrated safety and
efficacy for the treatment of many diseases and organs.50

Most importantly, the potential of induced pluripotency in-
troduced by Yamanaka in 2007 opened the doors for a new
generation of patient-specific cells51,52 (Fig. 2A). The ability
to generate functional differentiated cells of any tissue type
from patient-derived fibroblasts holds incredible potential for
tissue engineering applications.53 Although these cells require
complicated methods that lead to side effects, his work in-
spired modifications for clinical accessibility and safety,

such as use of nonviral vectors and direct reprogram-
ming.54 Recently, large efforts have been focused on in situ
direct reprogramming with interesting applications for cell/
material therapies55,56 (Fig. 2B). In addition, there have
been numerous studies to identify an allogeneic stem cell
source. For example, placental derived stem cells have
been shown to behave similarly to MSCs without inducing
an immune response.50 Other strategies include the use of
viral vectors to remove the human leukocyte antigen ex-
pression of stem cells, creating an ‘‘off the shelf’’ donor
cell that can be applied to any patient without an immune
response.57

FIG. 2. Platforms of tissue engineering innovation that will facilitate clinical translation. Examples include cell sources of
induced pluripotent stem cells (A) [Photo courtesy of Millipore Sigma. Used with permission] and direct/in situ repro-
gramming strategies (B) [Adapted from Dewitt, N.D., and Trounson A., with permission56] materials of decellularized organs
(C) [Adapted from Ott et al., with permission63] or natural hydrogels (D) [Adapted from Yue et al., with permission67], and 3D
printing fabrication techniques using decellularized extracellular matrix inks (E) [Adapted from Pati et al.70] or hydrogels (F)
[Adapted from Bertassoni et al., with permission from the Royal Society of Chemistry79]. 3D, three-dimensional.
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Materials

A critical requirement is adaptation of these cell therapies
onto effective scaffolds to promote tissue repair through
controlling cell behavior and in vivo responses. The ideal
scaffold should include biological and mechanical factors to
support specific tissue formation.58 Various 3D platforms
are standouts in their ability to support cell viability, support
tissue-specific differentiation, and integrate upon implanta-
tion. Decellularized tissues, both intact or processed from
allogeneic or xenogeneic origin, allow for the application of
native ECM that positively influences cellular behavior.59,60

By removing cellular components, the matrix can be trans-
planted into any patient without rejection, which enhances
its ability to be broadly used.61,62 Various efforts have been
made for both ideal decellularization protocols and storage
parameters. Decellularized matrices of many tissue types
have been clinically tested and are commercially available
for many indications.61,62 In addition, decellularized whole
organs keep vascular networks intact and have the potential
to be reseeded with autologous cells for tissue maturation
before implantation63–65 (Fig. 2C).

Hydrogels can also be used for complex tissue formation.
Both natural and synthetic materials, or their combination,
have been used to synthesize hydrogels with tailored prop-
erties. For example, gelatin methacryloyl has tunable me-
chanical properties, functionalization, cell encapsulation,
drug elution, degradation, and smart responsive behavior,
which allow for adaptions to many different organ sys-
tems66,67 (Fig. 2D). Tuning the compositions of material
properties and growth factors in acellular and cellular ap-
proaches to recapitulate the native environment have been
effective in facilitating healing.68 Recent efforts investigat-
ing the generation of personalized hydrogels from patient
biopsies seeded with autologous cells have potential appli-
cations for many organ types with reduced risk of immune
rejection.69

Fabrication and maturation

Another important aspect is the fabrication of these pre-
viously mentioned materials into complex structures. Vas-
cular network development is essential for fabrication of
complex organ replacements. 3D printing provides exciting
potential to construct either decellularized ECM (Fig. 2E) or
hydrogels into tissue-specific structures for in vitro modeling
or facilitating proper in vivo tissue formation.70,71 Through
the development of bioinks, precise control over deposition
location, different printing techniques, materials with spe-
cific functionalization and mechanical properties, and dis-
tinct cell populations, 3D printing can create structures
resembling complex organs.72–75 For example, recent efforts
have used 3D printing techniques to model the central ner-
vous system and spinal cord or create implantable devices
that improve functional recovery following spinal cord in-
jury.76,77 In addition, recent advances in vascularization
strategies, including use of sacrificial inks or endothelial cell
layers, will allow for fabrication and cell survival in larger
constructs78,79 (Fig. 2F). Current innovations of thick vas-
cularized tissues with extended viability of multiple cell
types demonstrate the potential development of complex,
functional ex vivo organs that mimic native architecture.80

Combined with personalized cell sources and applicable

materials, engineered tissues could be developed that are
tailored to the patient.

The use of large-scale culturing techniques in bioreactors
to generate sufficient quantities of relevant cell populations
(e.g., induced pluripotent stem cells) have been previously
investigated.81–84 In addition, bioreactor culture conditions
and stimuli are being optimized for cell differentiation and
ex vivo tissue maturation.83

Manufacturing and scalability

Many tissue strategies have been successful on the bench-
top, but producing these tissues at commercially relevant
scales continues to be a challenge. The generation of cells85

and 3D printing of larger tissues with viable processes75 re-
main as ongoing efforts. The latter is the current focus of
many companies such as Organovo, CELLINK, and Allevi.86

In addition, recent initiatives such as Advanced Regenerative
Manufacturing Institute are supporting the necessary studies to
identify critical components needed to scale-up effective
technologies to reach patients.87 The transition of discovered
technologies and therapies to a commercial production scale is
crucial for the widespread application of tissue engineering.

FDA regulatory changes

As technology has advanced in the past 25 years, it has
been difficult for the FDA to adjust regulations for combi-
nation products of materials and cells with demonstrated
efficacy in animal models. Requirement of extensive phase
III clinical trials for therapies involving autologous cells in
previously demonstrated safe-to-use materials has been a
topic of debate.4,18 Proposed regulation updates, if adopted
by the FDA, suggest a new classification that will allow
these materials to be available for patients earlier and reach
full approval after 7 years of demonstrated safety and effi-
cacy.88 This will aid in funding concerns, which have pre-
cluded many developed technologies from reaching the
market due to the high cost of Phase III clinical trials.4,88

This will increase the feasibility of synergizing in-
dependently approved cell and material therapies for more
effective treatments.

Expanding applications

The combined use of cells and material technology
expands beyond tissue fabrication and restoration. Tissue-
engineered approaches for the treatment of genetic con-
ditions and systemic diseases are the focus of many aca-
demic and commercial clinical efforts. Examples include
the application of polymer-encapsulated engineered
insulin-producing cells, which recently demonstrated
long-term glycemic control in a diabetic rat model.89

Commercial efforts are working toward applying the en-
capsulated engineered cell platform in clinical trials for
the treatment of diabetes, hemophilia, or lysosomal stor-
age disorders.90

Tissue engineering has affected the medical community
beyond regenerative medicine. Combinations of previously
listed technologies can be developed into clinically avail-
able patient-specific diagnostic tools, such as organ on a chip
or organoid systems. These models can mimic the structure
and function of specific organs on smaller scales and be used to
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determine drug responses on patient-derived cells.49,91,92 This
technology is currently being evaluated by the FDA and is
expected to have dramatic impacts on the medical field,
leading to more efficacious use of drugs, lowering costs of
approval studies, and predicting negative side effects.92,93

In addition, the reach expands beyond direct patient im-
pact. The applications of tissue engineering techniques to
the in vitro production of cultured meat for consumption and
leather have significant societal benefits by decreasing en-
vironmental impact, risk of disease, animal use, and ethical
concerns.94 Interestingly, the cultured meat industry is also
investigating optimal cell sources, material choices, and
fabrication processes to best recreate muscle tissue.94

Enabling future success

Other platforms of regenerative medicine offer exciting
potential for tissue engineering-inspired applications. SiR-
NA as a mechanism of influencing cellular behavior for
regeneration has been demonstrated using in vitro and
in vivo models.95 Recently, the first application of a siRNA-
based treatment was FDA approved as ONPATTRO for the
treatment of peripheral nerve disease.96 In addition, gene
therapy can be adapted to achieve desired cell behavior and
in vivo tissue repair.97 The strides in FDA approval and
positive clinical results of gene therapies indicate an excit-
ing future for adaptations to tissue engineering applica-
tions.7 Furthermore, CRISPR technology opens the door for
high accuracy gene editing for cell differentiation, angio-
genesis, immunoengineering, or even increasing the trans-
plantable organ supply.98,99

Conclusions

Although the many successes demonstrated in publica-
tions are not yet available to treat patients, the past 25 years
of both scientific and clinical discoveries pave the way for
more effective clinically translated therapies. Tissue engi-
neering continues to inspire the collaboration of many fields
to create biologically relevant applications. As discoveries
are made in individual fields, such as a better understanding
of developmental biology, the combined efforts of multiple
fields can recapitulate these findings into therapies or
medical treatments at a much greater rate. In the upcoming
decade, the previously mentioned pillars can be further de-
veloped and enable the clinical translation of therapies for
many organ systems. With this development, the goal of
easily distributed and patient-specific treatments can be
achieved—alleviating a wide range of problems, from in-
juries with limited healing capacity to treatment of ge-
netic disorders, and improving quality of life for millions of
patients.
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