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Summary

Human cognition requires the coordination of neural activity across widespread brain networks. 

Here we describe a new mechanism for large-scale coordination in the human brain: traveling 

waves of theta and alpha oscillations. Examining direct brain recordings from neurosurgical 

patients performing a memory task, we found contiguous clusters of cortex in individual patients 

with oscillations at specific frequencies within 2 to 15 Hz. These oscillatory clusters displayed 

spatial phase gradients, indicating that they formed traveling waves that propagated at ~0.25–0.75 

m/s. Traveling waves were relevant behaviorally because their propagation correlated with task 

events and was more consistent when subjects performed the task well. Human traveling theta and 

alpha waves can be modeled by a network of coupled oscillators because the direction of wave 

propagation correlated with the spatial orientation of local frequency gradients. Our findings 

suggest that oscillations support brain connectivity by organizing neural processes across space 

and time.
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Zhang et al. use direct human brain recordings to show that neural oscillations are spatially 

propagating waves that move across the cortex. The results show that oscillations coordinate 

activity between brain regions rather than being a local phenomenon.

Introduction

Oscillations have a distinctive role in brain function because they coordinate neuronal 

activity on multiple scales. Brain oscillations are important at the microscale, because they 

modulate the timing of neuronal spiking (Bragin et al., 1995; Jacobs et al., 2007), and at the 

macroscale, where they synchronize distributed cortical networks that are communicating 

(Fries, 2005). Owing to oscillations’ ability to coordinate neural processes across multiple 

scales, characterizing their spatiotemporal properties may reveal how neurons across 

multiple regions are dynamically coordinated to support behavior (Kopell et al., 2014).

The human cortex displays oscillations at various frequencies during cognition (Buzsáki and 

Draguhn 2004). To understand how these patterns relate to behavior, researchers have 

generally examined the properties of oscillations at individual frequencies in local networks 

(Raghavachari et al., 2006; Jacobs et al., 2007) or in point-to-point links between distinct 

regions (Watrous et al., 2013). These approaches ignore a key feature of cortical oscillations 

that emerged from animal studies—that oscillations at multiple frequencies form spatially 

continuous neural patterns (Freeman and Schneider, 1982; Freeman et al., 2000; Agarwal et 

al., 2014).

One such pattern is a traveling wave, which consists of a spatially coherent oscillation that 

propagates progressively across the cortex, reiminscent of a wave moving across water. 

Traveling waves have been studied most extensively in animal models, where they were 

observed most often in fine-scale recordings and were shown to be functionally important to 

various behaviors, including visual perception (Zanos et al., 2015), spatial navigation 

(Lubenov and Siapas, 2009; Patel et al., 2012), and movement (Rubino et al., 2006). In 

conjunction with predictions of computational models, these findings suggest that traveling 

waves are a key mechanism for guiding the spatial propagation of neural activity and 

computational processes across the brain (Ermentrout and Kleinfeld, 2001; Muller et al., 

2018).

There were some reports of traveling-wave-like patterns in humans, but these patterns were 

generally observed during sleep or rest (Massimini et al., 2004; Muller et al., 2016; 

Bahramisharif et al., 2013). Given the potential importance of spatially coordinated brain 

oscillations for distributed cortical processes, several studies tested for large-scale 

synchronized oscillations in the human cortex during cognition. However, this oscillatory 

synchrony was rare or present only on a small scale in humans (Bullock et al., 1995; Menon 

et al., 1996; Raghavachari et al., 2006). These results shed doubt on the possibility that 

large-scale spatially coordinated oscillations such as traveling waves figured prominently in 

human cortical processing.

We re-examined the potential role of cortical traveling waves in human cognition by 

analyzing electrocorticographic brain (ECoG) recordings from seventy-seven neurosurgical 
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patients. We analyzed the data with a new technique that identifies traveling waves at the 

single-trial level across various frequencies and electrode configurations. As we describe 

below, we found traveling waves in 84% (65 of 77) of subjects (for subject details, see Table 

S1). Traveling waves were present across a wide frequency range (2 to 15 Hz) that included 

the theta and alpha bands, and were relevant behaviorally, as their propagation correlated 

with subject performance and events in a memory task. Our results indicate that human 

behavior is supported by traveling waves of theta- and alpha-band oscillations that propagate 

across the cortex.

Results

To identify traveling waves in the human cortex, we examined direct electrocorticographic 

(ECoG) brain recordings from neurosurgical patients performing a working-memory task 

(Sternberg, 1966). This task was shown previously to elicit large-amplitude oscillations 

related to memory at various frequencies (Raghavachari et al., 2001; Jacobs and Kahana, 

2009). Here, we analyzed these data using a new analytical framework that can identify 

traveling waves by characterizing the spatiotemporal structure of the oscillations in each 

patient individually.

Human brain oscillations are spatially clustered.

One form of a traveling wave that could appear in ECoG signals from one patient is a phase 

wave, which is a neuronal oscillation that is visible simultaneously on multiple electrodes at 

the same frequency with a systematic timing (or phase) gradient across space. Owing to the 

spatial phase gradient, the oscillation appears to propagate across the cortex (Ermentrout and 

Kleinfeld, 2001). A requirement for this type of traveling wave is that the signals across 

multiple neighboring electrodes exhibit oscillations at the same frequency. Thus, our first 

step in identifying human cortical traveling waves was to find clusters of cortex where 

contiguous electrodes showed oscillations at the same frequency. To identify these patterns, 

we examined the recording from each electrode individually, identified sites that showed 

narrowband oscillations, and then measured their frequency. We distinguished these 

oscillations by using a peak-picking algorithm, which found narrowband oscillatory peaks 

that were elevated over the background 1/f ECoG power spectrum (Manning et al., 2009).

Using this technique, we identified electrodes with narrowband oscillations at various 

frequencies. Most patients had spatially contiguous clusters of electrodes that showed 

narrowband oscillations at the same or a similar frequency. We identified these electrode 

groups using a clustering algorithm (see Methods; Fig. S1A–F). We refer to a contiguous 

group of four or more electrodes with oscillations at similar frequencies as an oscillation 
cluster. Across 77 patients, we found a total of 208 oscillation clusters. Oscillation clusters 

were present at frequencies from 2 to 15 Hz, involved 59% of all electrodes (2401 of 4077), 

and were present in 74 (96%) of all patients.

The frequencies of oscillation clusters often differed across individuals even for electrodes in 

the same anatomical region (Fig. S2). This suggested to us that oscillation clusters could 

reflect distinctive cortical networks that were individualized for a given patient. To assess 

whether there were true intersubject differences in the frequencies of oscillation clusters, we 
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tested for a spatial correlation in the frequencies of narrowband oscillations across electrodes 

in each subject using Moran’s I statistic (Moran, 1950). Here we computed I for each subject 

and compared the mean I with the values computed from a shuffling procedure that 

randomly interchanged electrodes between subjects. This analysis thus tested the hypothesis 

that the frequencies of oscillations were more correlated between nearby electrodes within a 

patient, compared to electrodes at similar anatomical locations in other patients. The mean 

within-subject frequency correlation that we observed(I=0.03) was entirely outside the range 

of values computed from the shuffled data (p <10−3; Fig. S1G). This result indicated that 

clusters of ECoG electrodes with narrowband oscillations at the same frequency reflected 

robust within-subject spatial frequency clustering.

The widespread presence of oscillation clusters indicates that neuronal oscillations at a 

single frequency were present across large regions of the human cortex. If the timing of 

these oscillations were synchronized, it could provide evidence for large-scale oscillatory 

networks (Kopell et al., 2014). Thus, we next characterized the timing of activity across each 

oscillation cluster to identify patterns of phase synchrony such as traveling waves (Prechtl et 

al., 1997; Rubino et al., 2006; Patel et al., 2012; Patten et al., 2012; Bahramisharif et al., 

2013; Zhang and Jacobs, 2015).

Oscillation clusters contain traveling waves.

Visual inspection of the signals across many oscillation clusters indicated that the timing of 

individual oscillation cycles varied systematically with the electrode location, which is 

indicative of a traveling wave. As an example, Figure 1A–D shows the activity on one trial 

across an 8.3-Hz oscillation cluster in an electrode grid from Patient 1. While 8.3-Hz 

oscillations were visible on all channels in this grid, the relative timing of this signal varied 

systematically, such that the onset time of each oscillation cycle correlated with the 

electrode’s anterior–posterior position.

We quantified this phenomenon by calculating the relative phase of the oscillation on each 

electrode and trial. On this trial, the electrodes in this cluster showed a continuous spatial 

phase shift across a range of ~240°(Fig. 1B). In this scheme, positive phase shifts 

correspond to oscillators that have been advancing for a longer period of time. Thus, because 

the phase was largest at posterior electrodes, it indicates that the electrode cluster showed an 

anterior-to-posterior traveling wave on this trial (see Supplemental Movie 1).

We used circular statistics (Fisher, 1993) to first identify human cortical traveling waves at 

the single-trial level and then to compare their properties at the group level. For each 

oscillation cluster, at each timepoint within a trial we used a circular–linear model to 

characterize the relation between electrode position and oscillation phase (Fig. 1C). This 

procedure models each cluster’s instantaneous phase distribution as a plane wave, finding 

the best fitting spatial phase gradient. The fitted phase gradient provides a quantitative 

estimate of the speed and direction of traveling wave propagation (Fig. S3). We compute the 

instantaneous robustness of the traveling wave on each electrode cluster by computing, for 

each trial, the proportion of phase variation that is explained by the circular–linear model, 

which we call the phase-gradient directionality (PGD).
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We assessed whether each oscillation cluster exhibited a reliable traveling wave using a 

permutation procedure. Here we compared each electrode cluster’s median PGD value to the 

distribution of PGD values expected by chance (Fig. 1F). This analysis demonstrated that 

traveling waves on the cluster in

Figure 1A–D were statistically reliable on a single-trial basis (mean PGD = 0.35, p < 0.001). 

Furthermore, by assessing the distribution of propagation directions across trials for this 

cluster, we determined that these traveling waves consistently moved in an anterior-to-

posterior direction(r = 0.94, Rayleigh p < 0.001; Fig. 1G). The traveling wave on this cluster 

is also visible by using a simpler approach based on temporal averaging (Fig. 1E). Figure 

1H–J shows example electrode clusters in other patients that also showed robust traveling 

waves.

We applied this methodology across our dataset and found that 140 (of 208; 67%) oscillation 

clusters had consistent traveling waves, as defined as showing both reliable plane waves at 

the single-trial level and having a consistent propagation direction (see Methods). 30 (14%) 

oscillation clusters showed reliable plane waves at the single-trial level but did not have a 

consistent propagation direction across trials; the remaining 38 (18%) clusters did not show 

reliable single-trial plane waves. Traveling waves involved 47% of all electrodes and were 

present in all lobes of the neocortex across both left and right hemispheres (Table S2). Thus, 

traveling waves are a broad phenomenon across the human brain.

Population analyses of traveling waves.

Having established that human cortical traveling waves were widespread, we next studied 

their properties in more detail at the population level. First, we compared the properties of 

traveling waves from oscillation clusters identified in different brain areas (Fig. 2A–B; 

Supplemental Movie 2). Traveling waves in the frontal and temporal lobes generally 

propagated in a posterior-to-anterior direction (p’s < 0.01, Rayleigh tests). In addition, 

frontal traveling waves had a tendency to propagate towards the midline. In the occipital and 

parietal lobes, the propagation direction of traveling waves varied and were not reliably 

clustered (p >0.05).

We also compared the temporal frequencies of the oscillation clusters that showed 

significant traveling waves (Fig. 2C). Traveling waves were present at frequencies from 2 to 

15 Hz. Traveling waves in the frontal lobe had a slower mean temporal frequency in the 

“theta” range (6 Hz). In contrast, traveling waves in occipital and temporal regions had faster 

“alpha”-band frequencies (mean 9 Hz; ANOVA, F(2,137) = 9.7, p < 0.01). It is notable that 

the frequencies of the traveling waves in these areas were similar to the frequencies of the 

oscillations that had been reported in these regions earlier (Klimesch, 1999; Canolty et al., 

2006; Voytek et al., 2010; Groppe et al., 2013) because it suggests that many previously 

reported neural oscillations could in fact be traveling waves.

We computed additional properties of traveling waves at the group level. Although most 

subjects had only one or two electrode clusters with traveling waves, a small number of 

subjects showed up to five such clusters (Fig. 3A). In most cases (99% of electrodes), the 

multiple clusters in a subject did not overlap. Traveling waves with frequencies near ~8 Hz 
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had the highest power (Fig. 3B). The electrode clusters with traveling waves ranged in size 

substantially (Fig. 3C), having a median radius of 2.5 cm (~20 cm2) up to a maximum of ~6 

cm (~113 cm2). Traveling waves had a median propagation speed of 0.55 m/s and a median 

wavelength of 11.7 cm, but these values varied substantially across the population (Fig. 3D 

& E). Finally, we measured the prevalence of traveling waves at the single-trial level. Across 

the significant oscillation clusters, traveling waves were present on 61% of single trials 

(median), although some clusters showed traveling waves on 80–100% of trials (Fig. 3F).

Traveling waves are behaviorally relevant.

We hypothesized that the spatial propagation of traveling waves reflected the movement of 

neural activity across the cortex in a manner that was important for behavior. Although some 

previous studies had measured human cortical traveling waves during tasks, they did not 

show clear correlations to behavior (Massimini et al., 2004; Takahashi et al., 2011; 

Bahramisharif et al., 2013). We tested for a potential functional role for traveling waves by 

comparing their properties through the course of memory processing. In each trial of the 

memory task (Sternberg, 1966), patients learned a list of stimuli and then viewed a retrieval 

cue. By comparing traveling-wave properties during the task, we sought to identify 

functional properties of traveling waves and to test if they differ across brain regions.

We computed each cluster’s directional consistency (DC), which measures the degree to 

which traveling waves on each cluster showed a consistent propagation direction at a 

particular timepoint within the task. DC, which is computed across trials, varies between 0 

and 1, with 1 indicating that traveling waves always propagated in a single direction and 0 

indicating that propagation directions were uniformly distributed. Figure 4A illustrates the 

timecourse of mean directional consistency (DC) during the cue response interval for the 

traveling waves in the frontal lobe of Patient 26. This plot indicates that the traveling waves 

on this cluster were not directionally organized at the moment of cue onset, but 500 ms later 

they reliably propagated anteriorly (DC=0.34). A different pattern was present for the 

traveling waves on an posterior electrode cluster in Patient 13 (Fig. 4C,D), whereby the 

directional organization was consistent at cue onset and subsequently decreased.

We confirmed that these patterns were reliable by measuring the timecourse of mean 

traveling wave DC at the group level. Following cue onset, traveling waves in the temporal 

and frontal lobes showed increases in DC above baseline levels (Fig. 4E). Inversely, 

traveling waves from occipitoparietal clusters showed decreased DC during this same 

period, which was significantly different from the DC increase in the frontal and temporal 

lobes (Fig. 4F; ANOVA, F(2,137) = 5.4, p < 0.01). Because frontal and temporal regions 

specifically show increased DC following cue onset, it indicates that traveling waves in these 

areas move more consistently during memory retrieval.

After a person views a stimulus, the brain exhibits stimulus-locked neural patterns, including 

phase resets of ongoing brain oscillations and evoked activity (Rizzuto et al., 2003). Because 

these can have oscillatory components (Jacobs et al., 2006), we considered the possibility 

that stimulus-locked signals affected observations of traveling waves. We identified time- 

(evoked) and phase-locked signals on each electrode clusters and then compared the timing 

of these signals to the timecourse of the traveling waves on the same channels (Fig. S4). 

Zhang et al. Page 6

Neuron. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Evoked signals and phase resets were prominent ~200–400 ms post stimulus whereas 

traveling wave DC peaked later (~800 ms). There were no correlations between the 

timepoints of peak DC and of the strongest evoked or phase-reset activity (p’s > 0.1). These 

results suggest that the traveling waves we measured were not artifacts of previously known 

stimulus-locked signals.

Given that it can be challenging to measure an oscillation’s phase when amplitude is low 

(Canolty et al., 2006), it is theoretically possible that our ability to measure traveling waves 

was diminished due to decreases in oscillatory power. We examined this possibility by 

comparing the timecourses of power and DC between traveling waves from different areas 

(Fig. S5). In the frontal and temporal lobes, these timecourses diverged dramatically, 

indicating that the increases in DC that we observed in these areas were not artifacts of task-

induced power changes.

We next examined whether traveling waves correlated with the efficiency of memory 

processing. We compared the DC of the traveling waves on each electrode cluster between 

trials where patients had fast versus slow reaction times (median split). Overall, DC 

positively correlated with performance, such that traveling waves moved more reliably in the 

preferred direction for each cluster on trials with fast reaction times (Fig. 5). This effect was 

significantly stronger for traveling waves in the frontal lobe (F(2,137) = 4.5, p = 0.013; Fig. 

5A). This result is consistent with the notion that frontal theta oscillations are implicated in 

working memory (Jensen and Tesche, 2002; Onton et al., 2005), although we have not ruled 

out the possibility that frontal traveling waves support a broader function, such as attention.

In addition to DC, we also examined how other properties of traveling waves correlated with 

performance (Table S3). On trials when patients had fast reaction times, traveling waves 

showed increased PGD (p = 0.003) and power (p < 0.001). Traveling waves did not show a 

reliable performance-related correlations with temporal frequency, spatial frequency, or 

propagation speed (p’s >0.5). Because the primary behavioral correlates of traveling waves 

are increased DC and PGD, it indicates that efficient cognitive processing is predicted by 

traveling waves maintaining their optimal propagation direction, as opposed to moving at a 

faster speed or oscillating at a different temporal frequency.

Mechanisms of traveling wave propagation.

We next considered the neural mechanisms underlying traveling wave propagation. In 

animal model systems, identifying the mechanisms of traveling-wave propagation is an area 

of active research (Ermentrout and Kleinfeld, 2001; Sato et al., 2012). At first blush, 

examining this issue in humans might be even more challenging than in animals, because 

human brain oscillations are rather variable across time and frequency (Watrous et al., 2013) 

and because oscillations at neighboring frequencies in humans like alpha and theta are often 

considered to have different physiological roles (Roux and Uhlhaas, 2014). Nonetheless, we 

considered the possibility that a single physiological mechanism could support traveling 

waves at multiple frequencies (Lisman and Jensen, 2013). We would be confident in 

identifying such a mechanism if it could predict the properties of wave propagation across 

the range of traveling waves we observed, including signals that varied in frequency and 

speed across trials (e.g., Fig. 6A & B).
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Two notable theoretical neural models for traveling waves are the single-oscillator (SO) and 

excitable-network (EN) models (Ermentrout and Kleinfeld, 2001). Critically, both SO and 

EN models predict that traveling waves have a constant propagation speed, because the 

propagation is caused by neural conduction delays, which are constant. In contrast to the 

prediction of these models, we found a positive correlation between propagation speed and 

oscillation frequency—waves with faster temporal frequencies propagated more rapidly—

which seemingly rejects these models. This positive correlation between frequency and 

speed could be seen both at the trial level, by comparing propagation speed and frequency 

across trials from the same electrodes (r = 0.34, p < 0.01; Fig. 6C), and at the group level, by 

comparing the mean properties of traveling waves between electrode clusters (r = 0.47, p < 

10−7; Fig. 6E).

A third theoretical model is a network of weakly coupled oscillators (WCO) (Ermentrout 

and Kleinfeld, 2001), which have been used to model traveling waves in both neural and 

non-neural systems (Diamant and Bortoff, 1969; Ermentrout and Kopell, 1984). Traveling 

waves appear in a network of weakly coupled Kuramoto (1981) oscillators when their 

arrangement shows two properties: First, the oscillators must be arranged in a linear array 

with the strength of interoscillator phase coupling decreasing with distance. Second, there 

must be a spatial gradient in intrinsic frequency across the array. When these two criteria are 

satisfied, traveling waves appear and propagate towards oscillators with slower intrinsic 

frequencies (Ermentrout and Kopell, 1984). Critically, the WCO model predicts that 

oscillations with faster temporal frequencies propagate more rapidly (Fig. 6A–C), because 

the traveling wave is derived from coupling based on oscillatory phase rather than fixed time 

shifts (Ermentrout and Kopell, 1984; Ermentrout and Kleinfeld, 2001). Because we found a 

positive correlation between propagation speed and oscillation frequency (Fig. 6D–E), it 

supports the idea that human cortical traveling waves are driven by WCOs.

Furthermore, we found that the WCO model predictions matched the direction of wave 

propagation in our data. In the WCO model, traveling waves propagate towards oscillators 

with the slowest intrinsic frequencies (Ermentrout and Kopell, 1984). Similarly, in our data 

we observed a systematic decrease in mean oscillation frequency along the posterior-to-

anterior axis (r = 0.34, p < 0.001, Fig. 6F), which also followed the mean direction of 

traveling wave propagation (Fig. 2A). These patterns indicate that human cortical traveling 

waves generally propagate in a posterior-to-anterior direction because they are coordinated 

by an overall decrease in intrinsic frequency from posterior to anterior regions (Voytek et al., 

2010).

Although most traveling waves showed posterior-to-anterior propagation, some exceptional 

clusters reliably propagated in other directions (e.g., Fig. 1). We compared the directions of 

frequency gradients and propagation across clusters to test whether these factors were 

correlated, as predicted by the WCO model. If such a correlation existed, it would suggest 

that the exceptional propagation directions of some traveling waves were caused by 

corresponding distinctive frequency gradients. Such a pattern was evident in Patient 1, as 

seen in Figure 7B & C, which shows that the mean directions of the wave propagation and 

the frequency gradients both had anterior-to-posterior orientations. We assessed this 

correspondence statistically at the group level by testing for a correlation in the mean 
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directions of frequency gradients and wave propagation. Across clusters, the distribution of 

pairwise directional differences was clustered near zero (Rayleigh test p < 0.01; Fig. 7D), 

which indicates that the direction of traveling-wave propagation is positively correlated with 

the orientation of the local oscillatory frequency gradient.

In summary, these results indicate that WCO model provides a good model for human 

cortical traveling waves because it illustrates how the direction and speed of traveling waves 

can be predicted by the local oscillatory frequency gradients. The WCO model suggests that 

the existence and direction of traveling waves are modulated by two factors: the strength of 

local phase coupling and spatial gradients of intrinsic oscillation frequencies (Ermentrout 

and Kopell, 1984; Ermentrout and Kleinfeld, 2001). When phase coupling is absent, there 

are no traveling waves because oscillation frequencies differ between electrodes (Fig. 7E). 

When phase coupling is present, traveling waves emerge, propagating in the direction of 

decreasing oscillation frequency (Fig. 7F–G).

Discussion

Our findings demonstrate a new potential functional role for theta- and alpha-band 

oscillations by showing that they are often traveling waves. This expands our understanding 

of the types of functions that neural oscillations can support beyond phase coding (O’Keefe 

and Recce, 1993), modulating synaptic plasticity (Huerta and Lisman, 1995), and an array of 

other phenomena (Klimesch, 1999; Buzsáki and Draguhn, 2004). Researchers had 

previously known that oscillations modulated cortical interactions in a point-to-point fashion 

between specific cortical areas (Hyman et al., 2011; Liebe et al., 2012). Our results add to 

this work by demonstrating that theta and alpha oscillations can spatially and temporally 

organize neural processing throughout large contiguous extents of human cortex.

Our work shows that human cortical traveling waves can be modeled as a network of weakly 

coupled oscillators (WCOs). In addition to suggesting a mechanism underlying traveling 

waves, the WCO model has implications for understanding traveling-wave dynamics in 

behavior. A key part of the WCO model is the link between local oscillation frequency and 

the direction of wave propagation. Traditionally, the frequency of a brain oscillation has 

been considered to be important because it indicates the functional role of a given 

oscillation. For example, oscillations in the neighboring theta and alpha bands have been 

associated with memory and idling, respectively (Klimesch, 1999; Roux and Uhlhaas, 

2014). Instead, our results suggest that—at least for the frequencies and regions we 

examined—the precise frequency of an oscillation could most closely relate to broad 

physiological factors such as the direction of wave propagation (Lisman and Jensen, 2013).

Going forward, it will be important to test the functional relevance of traveling waves in 

more detail. One key issue is characterizing the potential importance of the direction of wave 

propagation. Although most traveling waves propagated in a posterior-to-anterior direction, 

some subjects reliably showed traveling waves with the opposite direction of propagation. 

Given this variability, an important issue is whether traveling waves with different directions 

support distinct functional or physiological processes. In visual perception there is evidence 

that oscillations with anterior and posterior directional patterns support feedforward and 

Zhang et al. Page 9

Neuron. Author manuscript; available in PMC 2019 June 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



feedback processing, respectively (Bastos et al., 2015). Likewise, it will be interesting to test 

whether human traveling theta and alpha waves move in different directions to support 

distinct physiological processes. An alternate possibility is that human traveling theta and 

alpha waves consistently support a single functional process and that the varying in 

propagation directions we observed reflect intersubject differences in the anatomy or 

frequency gradients.

Previous research suggested several potential computational roles for traveling waves 

(Ermentrout and Kleinfeld, 2001; Muller et al., 2018). One possibility is that traveling theta 

and alpha oscillations form carrier waves that represent detailed information about the 

current behavioral state via phase and amplitude modulation—this pattern has been observed 

for both beta and theta oscillations in the cortex and hippocampus, respectively (Freeman 

and Schneider, 1982; Agarwal et al., 2014). A different potential function for traveling 

waves is to spatially and temporally segment the neural representations of discrete 

behavioral states, such that individual oscillation cycles correspond to distinct neural 

patterns. Such a phenomenon was previously observed for alpha oscillations in cortex 

(VanRullen and Koch, 2003; Samaha and Postle, 2015) and for theta oscillations in the 

hippocampus (Jezek et al., 2011; Gupta et al., 2012). It is also likely that human cortical 

traveling waves correlate with the spatial propagation of high-frequency neural patterns, 

including both oscillations and neuronal spiking, owing to the phenomenon of cross-

frequency phase coupling (CFC) (Canolty et al., 2006; Jacobs et al., 2007; Voytek et al., 

2015). The coexistence of traveling waves and CFC suggests that spatial bands of high-

frequency neural activity move across the human cortex during behavior (Bahramisharif et 

al., 2013). It will be useful going forward to test the potential functional role of these spatial 

bands (VanRullen and Lozano-Soldevilla, 2017), such as testing the idea that traveling 

waves guide the propagation of discrete “packets” of activity across the cortex (Freeman, 

2003).

Finally, a different potential role for traveling waves is that they could relate to detailed 

features of neural coding. It is notable that several known neural coding schemes also exhibit 

posterior-to-anterior spatial gradients, such as the representation of spatial and temporal 

information in the hippocampus (Kjelstrup et al., 2008; Lubenov and Siapas, 2009), of task 

rules in the frontal lobe (Badre and D’Esposito, 2009), and of object abstractness in the 

visual system (Harry et al., 2016). Traveling waves that follow the structure of these 

networks could be important for these computational processes.

Although we believe it is likely that traveling waves are relevant for human cognition, there 

are several limitations of our results. Our data come from epilepsy patients, so it is possible 

that features of our results do not generalize beyond this clinical population. However, there 

are several reasons why we believe our results are likely to be widely relevant. Previous 

work showed that healthy subjects have the same types of task-related theta and alpha 

changes that we observed here (Jacobs et al., 2006), including spatial patterns consistent 

with the presence of traveling waves (Patten et al., 2012; VanRullen and Lozano-Soldevilla, 

2017). Further, the spatial and temporal propagation patterns of interictal and seizure-related 

activity differ dramatically compared to the theta and alpha traveling waves we described 

(Liou et al., 2017). Although the ECoG recordings that we conducted measure human brain 
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activity directly, it should be noted that these findings are correlational because our 

experiments did not manipulate traveling waves. Thus more work is necessary to establish a 

potential causal role for traveling waves. Further, our findings concern human cortical 

oscillations at 2–15 Hz during wakefulness, whereas neural traveling waves in other settings 

may have different properties (Massimini et al., 2004; Rubino et al., 2006; Sato et al., 2012).

Elements of the traveling theta and alpha waves we observed were noted in previous studies 

that used different types of methods to examine spatial characteristics of human brain 

signals (e.g., Patten et al. 2012; Bahramisharif et al. 2013; Alexander et al. 2013, among 

many others). A differentiating feature of our approach was that we identified traveling 

waves across multiple regions, directions, and frequencies directly in individual subjects at 

the single-trial level. Because different subjects exhibited widely varying types of traveling 

waves even in the same anatomical region, it suggests that there are substantial intersubject 

differences in the spatial and temporal structure of brain oscillations and traveling waves. 

These patterns may not be adequately appreciated because they are difficult to capture with 

typical group-average analyses.

In addition to traveling waves, the brain also exhibits other large-scale spatial patterns of 

oscillations, such as spirals (Muller et al., 2016) and “phase cones” (Freeman and Barrie, 

2000), as well as smaller patterns at finer spatial scales (Freeman, 2003; Rubino et al., 

2006). Together, this work suggests that there is potential for researchers and engineers to 

identify important new spatial patterns of brain dynamics across the cortical surface using 

improved high-resolution electrocorticographic electrodes (Viventi et al., 2011; Khodagholy 

et al., 2015) rather than necessarily requiring penetrating electrodes or single-cell 

recordings.

More broadly, because our results show that neuronal oscillations can be synchronized 

across large regions of cortex, researchers and clinicians examining noninvasive brain 

recordings should consider that aspects of their findings may result from large neural masses 

(Freeman, 1975, 2003) rather than precisely localizable point sources (Michel et al., 2004). 

Furthermore, whereas many electrical signals from the brain are commonly interpreted as 

event-related potentials or as task-induced power changes from local oscillators, instead it is 

possible that these signals could result from traveling waves that become transiently 

organized at a particular timepoint and phase across a cortical region (Alexander et al., 

2013). Thus, single-trial analysis of traveling waves could be an intriguing new direction for 

scalp electroencephalography and magnetoencephalography.

In addition to demonstrating a new fundamental feature of human brain activity, our findings 

could have significant practical implications. The potential for non-invasively measuring 

traveling waves on a single-trial basis may be useful for the development of brain–computer 

interfaces (BCI). However, for traveling waves to be useful for BCIs, given the intersubject 

differences we observed, it seems important to characterize these patterns individually for 

each subject rather than averaging across individuals. Our results suggest a way to predict 

the mean direction of traveling wave propagation at the individual subject level, by 

measuring the spatial gradient of a subject’s intrinsic oscillatory frequencies. Measuring 

traveling waves’ instantaneous properties may provide a new tool for neural interfacing, by 
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tracking a subject’s attention or cognitive state for timing stimulus presentation or 

neuromodulation (Ezzyat et al., 2017).

In summary, our findings show that traveling waves of theta and alpha oscillations comprise 

large spatiotemporal patterns across the human cortex (Livanov, 1977; Freeman, 2003). The 

existence of traveling waves that comply with WCO models indicates that an important 

component of large-scale brain connectivity are neuronal oscillations with precise spatial 

frequency characteristics. Traveling waves expand our understanding of cortical functional 

connectivity by showing that signal propagation across large brain networks can be rhythmic 

and dynamic (Kopell et al., 2014). We hypothesize that traveling-waves relate to the slower 

functional connectivity signals that have been identified with fMRI (Honey et al., 2007), 

based on the known link between fMRI activity and the power of neuronal oscillations 

(Debener et al., 2005), as well as convergent findings with calcium imaging (Matsui et al., 

2016). More broadly, our findings emphasize that human cognition is supported by complex, 

large-scale neural patterns that are exquisitely organized across both time and space. 

Traveling waves may reveal one role of large-scale brain connectivity and oscillations in 

cognition, by showing when behavioral information is represented and where signals are 

propagating.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests should be directed to and will be fulfilled by Dr. Joshua 

Jacobs (joshua.jacobs@columbia.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subjects and Task.—We examined direct brain recordings from 77 epilepsy patients who 

had electrodes surgically implanted to guide seizure mapping. Individual patients were 

implanted with a configuration of electrodes customized according to their clinical needs, 

which included both electrocorticographic (ECoG) surface grid and strips as well as depth 

electrodes. The spacing between neighboring electrodes was 10 mm (center-to-center). Our 

data collection was a continuation of previous reported study (Jacobs and Kahana, 2009) and 

recordings were made at four hospitals (Thomas Jefferson University Hospital, Philadelphia; 

University of Pennsylvania Hospital Philadelphia; Children’s Hospital of Philadelphia, and 

University Hospital Freiburg). All patients consented to having their brain recordings used 

for research purposes and the research was approved by relevant Institutional Review 

Boards. For the work described here, we examined only ECoG grid and strip electrodes on 

the cortical surface. See Zhang and Jacobs (2015) for an analysis of traveling waves in 

recordings from depth electrodes.

During free time between clinical procedures, these patients performed the Sternberg 

working memory task (Sternberg, 1966) on a laptop computer at their bedside. Each trial of 

the task consisted of two phases. In the first phase they memorize a short list of items. The 

second phase involves memory retrieval. Here they view a probe item and press a key to 

indicate if the probe was present in the remembered list. Task performance was excellent, 
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with patients having a mean accuracy of 90% and median reaction time of 1.16 s. Our data 

analyses examined brain recordings during memory retrieval because it let us compare 

properties of patients’ brain signals to their simultaneous behavioral performance (Jacobs et 

al., 2006).

Data acquisition.—The electrical activity from each electrode was recorded by a clinical 

recording system whose timing was synchronized with the task computer. We pre-processed 

the data by downsampling the recordings to 250 Hz and performing an anatomically 

weighted average re-referencing (Jacobs and Kahana, 2009). We identified the location of 

each recording electrode by co-registering a pre-surgical structural magnetic resonance 

image (MRI) image with a post-operative computed tomography (CT) image. From these 

images, we identified the location of each recording contact on the CT images and computed 

the electrode location in standardized Talairach coordinates (Talairach and Tournoux, 1988).

QUANTIFICATION AND STATISTICAL ANALYSIS

Identifying spatial clusters of electrodes with similar oscillations.—Given our 

interest in characterizing propagating traveling waves, we designed an algorithm to identify 

spatial clusters of electrodes with narrowband oscillations at very similar frequencies. This 

algorithm accounted for several complexities of human brain oscillations measured with 

ECoG signals, including differences in electrode positions across subjects and variations in 

oscillation frequencies across individuals (Fig. S2).

In this procedure, first we used Morlet wavelets (wave number 6) to compute the power of 

the neuronal oscillations throughout the task at 129 frequencies logarithmically spaced from 

2 to 32 Hz. To identify narrowband oscillations at each site, we fit a line to each patient’s 

mean power spectrum in log–log coordinates using a robust linear regression (Fig. S1; 

Manning et al. 2009; Lega et al. 2012; Zhang and Jacobs 2015). We then subtracted the 

actual power spectrum from the regression line. This normalized power spectrum provides a 

“whitened” version of the signal that removes the 1/ f background signal and emphasizes 

narrowband oscillations as positive deflections. We identified narrowband peaks in the 

normalized power spectrum as any local maximum greater than one standard deviation 

above the mean (Zhang and Jacobs, 2015). We also used this normalized power spectrum to 

estimate the narrowband power of each traveling wave, minimizing the influence of the 1/ f 
background signal (Fig. 3B).

Next, we implemented a spatial clustering algorithm to identify oscillation clusters, which 

we defined as contiguous groups of electrodes in each subject that exhibited narrowband 

oscillations at a closely neighboring frequency. First, considering a series of 2-Hz intervals 

centered at 2 to 32 Hz in 1-Hz steps, we identified all the electrodes that exhibited a narrow-

band oscillatory peak within that range. We counted the number of electrodes with 

oscillatory peaks at each frequency window, and computed local maxima as potential 

oscillation clusters. We then tested whether the electrodes that contributed to each local 

maximum comprised a spatially contiguous group. We found all the electrodes with a peak 

in the 2-Hz interval around each local maximum and created a pairwise-adjacency matrix to 

judge their spatial proximity. This matrix indicated whether each electrode pair was 
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separated by less than 15 Talairach units (15 mm). Finally, we used this adjacency matrix to 

identify mutually connected spatial clusters of electrodes by computing the connected 

components of this graph (Tarjan, 1972). We included in our subsequent analyses only 

clusters with at least four electrodes.

A key feature of our spatial clustering algorithm is that it adapts to the specific anatomical 

orientation of each patient’s ECoG electrode organization by utilizing Talairach coordinates 

rather than labeled positions from clinical recordings. Thus, our methods are capable of 

identifying oscillation clusters that span multiple ECoG grids or strips (e.g., Fig. 1I), rather 

than being limited to identifying signals within regularly structured electrode arrays (Rubino 

et al., 2006; Lubenov and Siapas, 2009; Zhang and Jacobs, 2015).

Identifying traveling waves.—Having identified groups of electrodes with oscillations at 

the same frequency, we next sought to identify traveling waves. Intuitively, a traveling wave 

can be described as an oscillation that moves progressively across a region of cortex. 

Although many types of traveling waves are possible (Ermentrout and Kleinfeld, 2001; 

Muller et al., 2016), we focused our analyses here on one form of this phenomenon, the 

linear phase wave. Quantitatively, a traveling phase wave can be described as a set of 

simultaneously recorded neural oscillations at the same frequency whose instantaneous 

phases vary systematically with the location of the recording electrode so that the wave front 

can be modeled as a moving plane. This phenomenon would appear in our dataset as an 

oscillation cluster whose instantaneous relative phases exhibit a linear relationship with 

electrode location.

We followed the following procedure to identify plane waves in the phases from each 

oscillation cluster. First, we measured the instantaneous phases of the signals across each 

oscillation cluster by applying a Butterworth filter to the signals from each electrode at the 

cluster’s narrowband mean peak frequency (3-Hz bandwidth). Then we perform the Hilbert 

transform on each electrode’s filtered signal to extract the instantaneous phase at each 

timepoint (Freeman, 2007). To facilitate visualization, we normalize the phase distributions 

by rotating so that the smallest value is set to 0.

We used circular statistics to identify plane waves of phase progression across each 

oscillation cluster at each timepoint (Fisher, 1993). For each spatial phase distribution, we 

used a two-dimensional circular–linear regression to assess whether the observed phase 

pattern varied linearly with the electrode’s coordinates in 2-D. In this regression, for 

electrode i, xi yi and represent the 2-D coordinates and θi is the instantaneous phase. x and y 
are determined by projecting the 3-D Talairach coordinates for each cluster into the best-

fitting 2-D plane. We projected the electrode coordinates into a 2-D space because it 

simplified visualizing and interpreting the data, following the model that traveling-wave 

propagation roughly follows the surface of the cortex.

A 2-D circular–linear model has three parameters to be fit: the phase slopes a and b, which 

each correspond to the rate of phase change (or spatial frequencies) in each dimension, and 

the phase offset ϑ. We converted this model to polar coordinates to simplify fitting. This 

polar model has two parameters: The angle of wave propagation α, defined as α = 
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atan2(b,a), and the spatial frequency ξ, defined as ξ = a2 + b2. Circular–linear models do 

not have an analytical solution and must be fitted iteratively (Fisher, 1993). We fit α and ξ to 

the distribution of oscillation phases at each timepoint by conducting a grid search over α ∈ 
[0°,360°] and ξ ∈ [0,18] in increments of 5°and 0.5°/mm, respectively. (Note that ξ = 18 

corresponds to the spatial Nyquist frequency of 18°/mm.)The model parameters for each 

timepoint are fitted to most closely match the phase observed at each electrode in the 

electrode cluster. For each value of α and ξ, the model’s predicts the phase θ i at each 

electrode i as

θi = axi + byi + ϑ mod360°,

where a = ξcos(α) and b = and ξsin(α). Then we compute the goodness of fit as the mean 

vector length r of the residuals between the predicted θ i  and actual (θi) phases (Fisher, 

1993),

r = 1
n ∑

i = 1

n
cos θi − θi

2
+ 1

n ∑
i = 1

n
sin θi − θi

2
.

The selected values of α and ξ are chosen to maximize r.

Figure S3 illustrates the results of performing this procedure for several trials from Patient 1. 

The fitted model coefficients indicate physical characteristics of any identified plane 

traveling wave, by showing the slope and direction of the spatial phase gradient: α is the 

wave’s instantaneous propagation direction and ξ is it’s spatial frequency (i.e., rate of phase 

change over space) in °/mm.

To measure the statistical reliability of each fitted traveling wave we examined the phase 

variance that was explained by the best fitting model. As in earlier work (Kempter et al., 

2012), we adapted the r2 goodness-of-fit measure from linear correlation for use with 

circular data. To do this, we computed the circular correlation ρcc between the predicted (θ )
and actual (θ) phases at each electrode (Kempter et al., 2012):

ρcc =
∑i = 1

n sin θi − θ sin θi − θ

∑i = 1
n sin2

θi − θ ∑i = 1
n sin2

θi − θ
,

where bar denotes averaging across electrodes. We squared the result to compute ρcc
2 . 

Finally, we applied an adjustment to account for the number of fitted model parameters:

ρad j
2 = 1 −

1 − ρcc
2 (n − 1)

n − k − 1 .
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where n is the number of electrodes, and k is number of independent regressors (k=3). We 

refer to ρad j
2  as phase gradient directionality (PGD) in the main text, similar to (Rubino et 

al., 2006).

Classification of traveling waves.—The procedure described above identifies the 

spatial gradients in a single instantaneous phase distribution. Next, we describe the 

procedure we used to measure the reliability of each phase gradient across trials, based on 

variations in PGD and directional consistency. First, we computed the median PGD for each 

trial and cluster. We computed the median PGD for each cluster (across trials) and compared 

this value with the distribution of PGDs estimated from a shuffling procedure (1,000 

iterations). In each iteration of this shuffling procedure, we compute a single surrogate PGD 

value by repeating our main PGD calculation after randomly permuting the locations of 

individual electrodes within each cluster, while preserving other features of the data. We 

identify reliable traveling waves as electrode clusters in which the actual PGD value exceeds 

95% of the distribution of the 1,000 surrogate PGD values from shuffling. Due to the spatial 

electrode permuting in this shuffling, this method ensures that the traveling waves we 

identify reliably exhibit spatially organized plane waves, rather than other types of phase 

patterns with less structure (Maris et al., 2016). For clusters with only four electrodes we 

used the unadjusted ρcc
2  to assess significance in this shuffling procedure, rather than the 

PGD ρad j
2 .

Finally, here we considered only the electrode clusters with traveling waves that propagated 

in a consistent direction over time. To do this, after identifying the clusters with reliable 

PGD values, we computed for each cluster the distribution of propagation directions across 

trials. The clusters we designate as exhibiting significant traveling waves have a non-

uniform distribution of propagation directions across trials, as determined by the Rayleigh 

test (Fisher, 1993) at p < 0.05. We calculated the directional consistency (DC) of each cluster 

as the circular mean vector length of this distribution of propagation directions. Thus, a 

cluster with DC=1 would have traveling waves that always propagate in the same direction.

Statistical assessment of traveling-wave properties.—We performed a series of 

analyses to compare the properties of traveling waves between clusters from different brain 

regions. To compare directional propagation between different traveling waves, we first 

converted each cluster’s mean propagation direction into Talairach coordinates. Note that 

this sometimes caused directional plots to appear distorted, when the 2-D plane for each 

cluster was skewed relative to the Talairach axes (e.g., Fig. 1F). Then, to assess regional 

differences in propagation directions (Fig. 2B), we grouped each cluster according to 

whether it was in the frontal, temporal or occipitoparietal region. When a cluster spanned 

multiple areas, we labeled it to the lobe that contained the plurality of its electrodes.

We computed an estimate of the radius of individual clusters by using Welzl’s algorithm 

(Welzl, 1991), which computes the size of the smallest circle that contains all the electrodes 

in an oscillation cluster. We prefer this method, rather than reporting electrode counts per 

cluster, because it partially compensates for the irregular electrode sampling across patients. 
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However, it is likely that this approach underestimates the size of individual oscillation 

clusters to some degree.

To measure the temporal frequency f of a traveling wave, we followed f = dθ /dt, where θ is 

the average phase at each timepoint, taken as the circular mean across electrodes, and t is 

time. We used this approach to assess each wave’s propagation speed v as v = f / ξ, where f 
is instantaneous temporal frequency and ξ is the spatial frequency. To summarize the 

propagation speed for each wave (Fig. 6E), we computed the median propagation speed 

across all timepoints, excluding periods where the model fit was poor (i.e., mean PGD < 0.5; 

Rubino et al., 2006). Twenty one clusters had no timepoints with mean PGD ≥ 0.5 and thus 

were excluded from this analysis. We refined this approach to measure wave propagation 

speed on a single-trial basis, by only examining trials that clearly showed a robust traveling 

wave, as defined by a PGD value above 0.5 for at least the duration of one continuous 

oscillation cycle (Fig. 6C). To identify task-related changes in wave DC, we computed the 

trend of DC over time for each traveling wave cluster as the Pearson correlation between 

mean DC and time (Fig. 4F).

We considered the possibility that traveling waves could relate to stimulus-locked signals by 

calculating, for each cluster that showed a traveling wave, the mean phase resetting R and 

event-related potential (ERP) (Rizzuto et al., 2003). To identify the contribution of phase 

resetting to each cluster’s post-stimulus activity, we calculated the phase distribution at each 

point in time for the cluster’s mean frequency as in Rizzuto et al. (2003). We calculated the 

ERP for each cluster by first filtering the raw signal at 0.5–40 Hz, performing baseline 

correction (–200–0 ms), and finally identifying the individual electrode with the largest 

absolute ERP component.

To assess the role of traveling waves in behavior, for each cluster we compared the 

properties of traveling waves between trials where the patient had fast or slow responses to 

the probe in the memory task (median split). Then, for each cluster we computed the mean 

values of several properties of traveling waves separately for fast and slow trials: power, 

temporal frequency, PGD, spatial frequency, and directional consistency (Tab. S3). Unless 

otherwise specified, we used Student’s t-tests and ANOVAs to compare differences between 

regions, with rejection of the null hypothesis reported after FDR correction (Genovese et al., 

2002) at q = 0.05

Model of traveling waves based on weakly coupled oscillators.—A linear array 

of weakly coupled Kuramoto oscillators (Kuramoto, 1981) produces traveling waves when it 

exhibits two properties: (1) weak phase coupling only between neighboring oscillators and 

(2) a spatial frequency gradient. In this spatial frequency gradient, the intrinsic frequency of 

each oscillator systematically varies with position along the array (Ermentrout and Kopell, 

1984; Ermentrout and Kleinfeld, 2001). This configuration explains the appearance of 

traveling waves in the digestive system (Diamant and Bortoff, 1969) and is hypothesized to 

generate traveling waves in the cortex (Ermentrout and Kleinfeld, 2001).

We simulated this model to demonstrate that the frequency gradient we observed in our data 

(Fig. 7A) is feasible for producing traveling waves that propagate in the directions we 
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observed (Fig. 1). As in earlier work (Ermentrout and Kleinfeld, 2001), we implemented the 

Kuramoto model as

dθi
dt = ωi + ϵ sin θi − 1 − θi + sin θi + 1 − θi .

where i indexes separate oscillators, ωi is an oscillator’s intrinsic frequency, θi is the 

instantaneous phase, and ϵ is the strength of phase coupling between neighboring oscillators. 

We used this model to simulate ten oscillators, which vary in frequency from 2 Hz to 16 Hz 

(ωi =1.56i + 0.44 for i ∈ [1,10]), corresponding to a decreasing posterior-to-anterior 

frequency gradient from oscillator 10 to 1. Our simulations showed that when there is no 

phase coupling (ϵ = 0), each oscillator exhibits independent oscillations (Fig. 7E)—this 

resembles the spatial frequency gradients we observed in individual subjects (Fig. S6) and at 

the population level (Fig. 6D). When coupling is positive(ϵ ≫ 0), the same distribution of 

intrinsic frequencies produces a traveling wave propagating in a posterior-to-anterior 

direction (Fig. 7F–G). In this model the velocity of traveling wave propagation is fairly 

consistent except for a slowing near the edges due to boundary conditions (Cohen et al., 

1982). Understanding and modeling edge effects in neural traveling waves is an active area 

of future work.

DATA AND SOFTWARE AVAILABILITY

Raw data for this paper are available at http://memory.psych.upenn.edu/. Analysis software 

are available from the authors upon request.
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Highlights

• Theta and alpha oscillations are spatially clustered in the human neocortex.

• Clustered oscillations display traveling waves.

• Traveling waves generally propagate in a posterior-to-anterior direction.

• Traveling waves can be modeled as coupled oscillators.
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Figure 1: Example traveling waves in the human neocortex.
Panels A–G show data from an 8.3-Hz traveling wave in Patient 1. (A) Top panel, raw 

signals for 4 s of one trial from three selected electrodes. The selected electrodes are ordered 

from anterior (top) to posterior (bottom). Middle panel, a 500-ms zoomed version of the 

signals from the top panel. Bottom panel, signals filtered at 6–10 Hz. (B) Relative phase of 

this traveling wave on this trial across the 3×8 electrode grid. Color indicates the relative 

phase on each electrode. Arrow indicates direction of wave propagation. Inset shows the 

normalized power spectrum for each electrode, demonstrating that all the electrodes exhibit 

narrowband 8.3-Hz oscillations. (C) Illustration of the circular–linear model for quantifying 

single-trial spatial phase gradients and traveling waves. Black dots indicate the relative phase 
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for each electrode in this cluster on this trial; colored surface indicates the fitted phase plane 

from the circular–linear model; black lines indicate residuals. (D) The topography of this 

traveling wave’s phase at four timepoints during this trial. (E) Illustration of the average 

traveling wave on this cluster across trials. Each electrode’s time-averaged waveform is 

computed as the average signal relative to oscillation troughs triggered from electrode 5. (F) 

Analysis of phase-gradient directionality (PGD) for the traveling waves on this cluster. 

Black line indicates the median PGD for this cluster, computed across trials. Gray bars 

indicate the distribution of median PGD values expected by chance for this cluster, estimated 

from shuffled data. (G) Histogram indicating the distribution across trials of propagation 

directions for the traveling waves on this cluster. (H) Example 5.9-Hz traveling wave from 

Patient 3.(I) Example 7.9-Hz traveling wave from Patient 63. (J) Example 8.8-Hz traveling 

wave from Patient 77.
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Figure 2: Population analysis of traveling wave direction and frequency.
(A) Spatial topography of mean traveling-wave direction and frequency. Colored arrows 

indicate the mean direction and frequency of traveling waves observed at an electrode within 

1.5 cm. (B) Distribution of the mean direction of traveling waves from each lobe. The 

orientations of the polar histograms are projected to match the lateral brain view. (C) 

Distributions of temporal frequencies for traveling waves from different regions; shaded 

region indicates probability density. Black dots indicate the mean frequency from individual 

electrode clusters.
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Figure 3: Population summary statistics on traveling waves.
(A) Histogram showing the counts of electrode clusters per patient that showed significant 

traveling waves. (B) Distribution of the narrowband power (relative to 1/ f) of traveling 

waves. (C) Distributions of estimated spatial radius across traveling-wave clusters. Purple 

bars indicates data from grid electrodes; other bars come from strips. Black line indicates 

median. (D) Distributions of propagation speed across clusters. (E) Distribution of 

wavelength. (F) Distribution of the mean percentage of time when individual clusters 

showed reliable traveling waves at the single-trial level.
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Figure 4: Temporal dynamics of traveling waves.
(A) Timecourse of directional consistency (DC) for a traveling wave at 12.5 Hz from Patient 

26’s frontal lobe. Inset circular histograms indicate the distributions of propagation 

directions across trials at the labeled timepoints. (B) Brain plot showing the mean relative 

phase shift at each electrode at the timepoint of peak consistency for the same subject as 

Panel A. (C & D) Traveling 6.2-Hz parietoccipital wave from Patient 13, which showed a 

decrease in DC after cue onset. (E) Timecourse of traveling-wave DC. Bars indicate the 

mean DC for each region when patient is out of task. (F) Analysis of DC slope. Positive 

values indicate that DC increases following cue onset. Error bars denote 95% confidence 

intervals. Post-hoc test: ** denotes p < 0.01; *, p < 0.05; †, p < 0.1
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Figure 5: Traveling waves and behavior.
(A) Mean difference in DC between fast and slow trials for 1 s after cue onset, separately 

calculated for each region. (B) Timecourse of mean DC in the frontal lobe between fast and 

slow trials. Gray shading indicates significance (paired t tests). (C) Brain plot showing the 

mean relative phase distribution across an oscillation cluster in Patient 3. Inset plot shows 

distribution of propagation directions across trials 220 ms after probe onset. (D) Same as C, 

for trials where the patient responded slowly. (E) Time course of DC for data from Patient 3 

that demonstrated elevated DC during trials where the patient responded rapidly. Shading 

indicates p values from a non-parametric circular direction comparison test (Fisher, 1993) 

between fast and slow response trials. Post-hoc test: *** denotes p < 0.001; *, p < 0.05; †, p < 

0.1.
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Figure 6: Characteristics of traveling-wave propagation.
(A) A traveling wave on one trial for four electrodes in an oscillation cluster (see Fig. 1B). 

(B) A traveling wave for these electrodes from a different trial when there was a slower 

temporal frequency. Same format as Panel A. (C) Across-trial analysis of the relation 

between traveling-wave propagation speed and frequency, for the electrode cluster whose 

signals are shown in Panel A & B. Each point indicates one trial. Black line is a least-

squares fit. (D) Histogram of within-cluster correlations between propagation speed and 

frequency. Each correlation coefficent is computed separately for each cluster. (E) Across-

cluster analysis of the relation between traveling-wave propagation speed and frequency. 

Each point indicates the mean frequency and mean propagation speed of the traveling waves 

from a given oscillation cluster. (F) Population analysis of the relation between traveling-

wave frequency and cluster location along the anterior–posterior axis (Talairach coordinates 

[mm]).
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Figure 7: Mechanisms of traveling waves.
(A) The instantaneous frequency distribution across an oscillation cluster from Patient 1 on 

one trial (same as Fig. 1B), demonstrating an anterior-to-posterior decreasing spatial-

frequency gradient (r2 = 0.67). (B) Distribution of traveling-wave propagation directions on 

this electrode cluster across trials (reproduced from Fig. 1G). (C) Distribution of the 

directions of the spatial-frequency gradients across this cluster. In B & C, black lines 

indicate the mean directions, thus demonstrating a correspondence between the directions of 

phase and frequency gradients. (D) Distribution of angular differences, across oscillation 

clusters, between the mean direction of traveling-wave propagation and the mean direction 

of spatial frequency gradients. (E–G) Illustration of a model of weakly coupled oscillators 

(Ermentrout and Kopell, 1984) with parameters matched to our findings. Color warmth 

increases with intrinsic frequency. When there is no phase coupling (Panel E), individual 

oscillators demonstrate their intrinsic oscillation frequencies from 2 Hz (anterior) to 16 Hz 

(posterior). When phase coupling is present (Panels F–G), all oscillators have the same 

temporal frequency (F) and a traveling wave emerges (G).
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KEY RESOURCE TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

MATLAB R2015A The MathWorks RRID:SCR_001622

Python 2.7 python.org RRID:SCR_008394

Custom MATLAB & Python scripts This paper Request from lead contact
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