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Abstract

Training accurate classifiers requires many labels, but each label provides only limited information 

(one bit for binary classification). In this work, we propose BabbleLabble, a framework for 

training classifiers in which an annotator provides a natural language explanation for each labeling 

decision. A semantic parser converts these explanations into programmatic labeling functions that 

generate noisy labels for an arbitrary amount of unlabeled data, which is used to train a classifier. 

On three relation extraction tasks, we find that users are able to train classifiers with comparable 

F1 scores from 5–100× faster by providing explanations instead of just labels. Furthermore, given 

the inherent imperfection of labeling functions, we find that a simple rule-based semantic parser 

suffices.

1 Introduction

The standard protocol for obtaining a labeled dataset is to have a human annotator view each 

example, assess its relevance, and provide a label (e.g., positive or negative for binary 

classification). However, this only provides one bit of information per example. This invites 

the question: how can we get more information per example, given that the annotator has 

already spent the effort reading and understanding an example?

Reproducibility
The code, data, and experiments for this paper are available on the CodaLab platform at https://worksheets.codalab.org/worksheets/
0x900e7e41deaa4ec5b2fe41dc50594548/.

Refactored code with simplified dependencies, performance and speed improvements, and interactive tutorials can be found on 
Github: https://github.com/HazyResearch/babble.

HHS Public Access
Author manuscript
Proc Conf Assoc Comput Linguist Meet. Author manuscript; available in PMC 2019 May 
24.

Published in final edited form as:
Proc Conf Assoc Comput Linguist Meet. 2018 July ; 2018: 1884–1895.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://worksheets.codalab.org/worksheets/0x900e7e41deaa4ec5b2fe41dc50594548/
https://worksheets.codalab.org/worksheets/0x900e7e41deaa4ec5b2fe41dc50594548/
https://github.com/HazyResearch/babble


Previous works have relied on identifying relevant parts of the input such as labeling 

features (Druck et al., 2009; Raghavan et al., 2005; Liang et al., 2009), highlighting rationale 

phrases in text (Zaidan and Eisner, 2008; Arora and Nyberg, 2009), or marking relevant 

regions in images (Ahn et al., 2006). But there are certain types of information which cannot 

be easily reduced to annotating a portion of the input, such as the absence of a certain word, 

or the presence of at least two words. In this work, we tap into the power of natural language 

and allow annotators to provide supervision to a classifier via natural language explanations.

Specifically, we propose a framework in which annotators provide a natural language 

explanation for each label they assign to an example (see Figure 1). These explanations are 

parsed into logical forms representing labeling functions (LFs), functions that heuristically 

map examples to labels (Ratner et al., 2016). The labeling functions are then executed on 

many unlabeled examples, resulting in a large, weakly-supervised training set that is then 

used to train a classifier.

Semantic parsing of natural language into logical forms is recognized as a challenging 

problem and has been studied extensively (Zelle and Mooney, 1996; Zettlemoyer and 

Collins, 2005; Liang et al., 2011; Liang, 2016). One of our major findings is that in our 

setting, even a simple rule-based semantic parser suffices for three reasons: First, we find 

that the majority of incorrect LFs can be automatically filtered out either semantically (e.g., 

is it consistent with the associated example?) or pragmatically (e.g., does it avoid assigning 

the same label to the entire training set?). Second, LFs near the gold LF in the space of 

logical forms are often just as accurate (and sometimes even more accurate). Third, 

techniques for combining weak supervision sources are built to tolerate some noise 

(Alfonseca et al., 2012; Takamatsu et al., 2012; Ratner et al., 2018). The significance of this 

is that we can deploy the same semantic parser across tasks without task-specific training. 

We show how we can tackle a real-world biomedical application with the same semantic 

parser used to extract instances of spouses.

Our work is most similar to that of Srivastava et al. (2017), who also use natural language 

explanations to train a classifier, but with two important differences. First, they jointly train a 

task-specific semantic parser and classifier, whereas we use a simple rule-based parser. In 

Section 4, we find that in our weak supervision framework, the rule-based semantic parser 

and the perfect parser yield nearly identical downstream performance. Second, while they 

use the logical forms of explanations to produce features that are fed directly to a classifier, 

we use them as functions for labeling a much larger training set. In Section 4, we show that 

using functions yields a 9.5 F1 improvement (26% relative improvement) over features, and 

that the F1 score scales with the amount of available unlabeled data.

We validate our approach on two existing datasets from the literature (extracting spouses 

from news articles and disease-causing chemicals from biomedical abstracts) and one real-

world use case with our biomedical collaborators at OccamzRazor to extract protein-kinase 

interactions related to Parkinson’s disease from text. We find empirically that users are able 

to train classifiers with comparable F1 scores up to 100× faster when they provide natural 

language explanations instead of individual labels. Our code is available at https://

github.com/HazyResearch/babble.
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2 The BabbleLabble Framework

The BabbleLabble framework converts natural language explanations and unlabeled data 

into a noisily-labeled training set (see Figure 2). There are three key components: a semantic 

parser, a filter bank, and a label aggregator. The semantic parser converts natural language 

explanations into a set of logical forms representing labeling functions (LFs). The filter bank 

removes as many incorrect LFs as possible without requiring ground truth labels. The 

remaining LFs are applied to unlabeled examples to produce a matrix of labels. This label 

matrix is passed into the label aggregator, which combines these potentially conflicting and 

overlapping labels into one label for each example. The resulting labeled examples are then 

used to train an arbitrary discriminative model.

2.1 Explanations

To create the input explanations, the user views a subset S of an unlabeled dataset D (where |

S| ≪ |D|) and provides for each input xi ∈ S a label yi and a natural language explanation ei a 

sentence explaining why the example should receive that label. The explanation ei generally 

refers to specific aspects of the example (e.g., in Figure 2, the location of a specific string 

“his wife”).

2.2 Semantic Parser

The semantic parser takes a natural language explanation ei and returns a set of LFs (logical 

forms or labeling functions) {f1, … , fk} of the form fi : χ → {−1, 0, 1} in a binary 

classification setting, with 0 representing abstention. We emphasize that the goal of this 

semantic parser is not to generate the single correct parse, but rather to have coverage over 

many potentially useful LFs.1

We choose a simple rule-based semantic parser that can be used without any training. 

Formally, the parser uses a set of rules of the form α → β, where α can be replaced by the 

token(s) in β (see Figure 3 for example rules). To identify candidate LFs, we recursively 

construct a set of valid parses for each span of the explanation, based on the substitutions 

defined by the grammar rules. At the end, the parser returns all valid parses (LFs in our case) 

corresponding to the entire explanation.

We also allow an arbitrary number of tokens in a given span to be ignored when looking for 

a matching rule. This improves the ability of the parser to handle unexpected input, such as 

unknown words or typos, since the portions of the input that are parseable can still result in a 

valid parse. For example, in Figure 3, the word “person” is ignored.

All predicates included in our grammar (summarized in Table 1) are provided to annotators, 

with minimal examples of each in use (Appendix A). Importantly, all rules are domain 

independent (e.g., all three relation extraction tasks that we tested used the same grammar), 

making the semantic parser easily transferrable to new domains. Additionally, while this 

paper focuses on the task of relation extraction, in principle the BabbleLabble framework 

1indeed, we find empirically that an incorrect LF nearby the correct one in the space of logical forms actually has higher end-task 
accuracy 57% of the time (see Section 4.2).
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can be applied to other tasks or settings by extending the grammar with the necessary 

primitives (e.g., adding primitives for rows and columns to enable explanations about the 

alignments of words in tables). To guide the construction of the grammar, we collected 500 

explanations for the Spouse domain from workers on Amazon Mechanical Turk and added 

support for the most commonly used predicates. These were added before the experiments 

described in Section 4. The grammar contains a total of 200 rule templates.

2.3 Filter Bank

The input to the filter bank is a set of candidate LFs produced by the semantic parser. The 

purpose of the filter bank is to discard as many incorrect LFs as possible without requiring 

additional labels. It consists of two classes of filters: semantic and pragmatic.

Recall that each explanation ei is collected in the context of a specific labeled example (xi, 

yi). The semantic filter checks for LFs that are inconsistent with their corresponding 

example; formally, any LF f for which f(xi) ≠ yi is discarded. For example, in the first 

explanation in Figure 2, the word “right” can be interpreted as either “immediately” (as in 

“right before”) or simply “to the right.” The latter interpretation results in a function that is 

inconsistent with the associated example (since “his wife” is actually to the left of person 2), 

so it can be safely removed.

The pragmatic filters removes LFs that are constant, redundant, or correlated. For example, 

in Figure 2, LF_2a is constant, as it labels every example positively (since all examples 

contain two people from the same sentence). LF_3b is redundant, since even though it has a 

different syntax tree from LF_3a, it labels the training set identically and therefore provides 

no new signal.

Finally, out of all LFs from the same explanation that pass all the other filters, we keep only 

the most specific (lowest coverage) LF. This prevents multiple correlated LFs from a single 

example from dominating.

As we show in Section 4, over three tasks, the filter bank removes over 95% of incorrect 

parses, and the incorrect ones that remain have average end-task accuracy within 2.5 points 

of the corresponding correct parses.

2.4 Label Aggregator

The label aggregator combines multiple (potentially conflicting) suggested labels from the 

LFs and combines them into a single probabilistic label per example. Concretely, if m LFs 

pass the filter bank and are applied to n examples, the label aggregator implements a 

function f : {−1, 0, 1}m×n → [0, 1]n.

A naive solution would be to use a simple majority vote, but this fails to account for the fact 

that LFs can vary widely in accuracy and coverage. Instead, we use data programming 

(Ratner et al., 2016), which models the relationship between the true labels and the output of 

the labeing functions as a factor graph. More specifically, given the true labels Y ∈ {−1, 1}n 

(latent) and label matrix Λ ∈ {−1, 0, 1}m×n (observed) where Λi,j = LFi(xj), we define two 

types of factors representing labeling propensity and accuracy:
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ϕi, j
Lab( Λ , Y) = 𝟙 Λi, j ≠ 0 (1)

ϕi, j
Acc( Λ , Y) = 𝟙 Λi, j = y j . (2)

Denoting the vector of factors pertaining to a given data point xj as ϕj (Λ, Y) ∈ ℝm, define 

the model:

p
w

( Λ , Y) = Zw
−1exp ∑

j = i

n
w ⋅ ϕ j( Λ , Y) , (3)

where w ∈ ℝ2m is the weight vector and Zw is the normalization constant. To learn this 

model without knowing the true labels Y, we minimize the negative log marginal likelihood 

given the observed labels Λ:

w = argwmin − log∑
Y

pw( Λ , Y) (4)

using SGD and Gibbs sampling for inference, and then use the marginals pw(Y | Λ) as 

probabilistic training labels.

Intuitively, we infer accuracies of the LFs based on the way they overlap and conflict with 

one another. Since noisier LFs are more likely to have high conflict rates with others, their 

corresponding accuracy weights in w will be smaller, reducing their influence on the 

aggregated labels.

2.5 Discriminative Model

The noisy training set that the label aggregator outputs is used to train an arbitrary 

discriminative model. One advantage of training a discriminative model on the task instead 

of using the label aggregator as a classifier directly is that the label aggregator only takes 

into account those signals included in the LFs. A discriminative model, on the other hand, 

can incorporate features that were not identified by the user but are nevertheless informative.
2 Consequently, even examples for which all LFs abstained can still be classified correctly. 

Additionally, passing supervision information from the user to the model in the form of a 

dataset—rather than hard rules—promotes generalization in the new model (rather than 

memorization), similar to distant supervision (Mintz et al., 2009). On the three tasks we 

evaluate, using the discriminative model averages 4.3 F1 points higher than using the label 

aggregator directly.

2We give an example of two such features in Section 4.3.
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For the results reported in this paper, our discriminative model is a simple logistic regression 

classifier with generic features defined over dependency paths.3 These features include 

unigrams, bigrams, and trigrams of lemmas, dependency labels, and part of speech tags 

found in the siblings, parents, and nodes between the entities in the dependency parse of the 

sentence. We found this to perform better on average than a biLSTM, particularly for the 

traditional supervision baselines with small training set sizes; it also provided easily 

interpretable features for analysis.

3 Experimental Setup

We evaluate the accuracy of BabbleLabble on three relation extraction tasks, which we refer 

to as Spouse, Disease, and Protein. The goal of each task is to train a classifier for predicting 

whether the two entities in an example are participating in the relationship of interest, as 

described below.

3.1 Datasets

Statistics for each dataset are reported in Table 2, with one example and one explanation for 

each given in Figure 4 and additional explanations shown in Appendix B.

In the Spouse task, annotators were shown a sentence with two highlighted names and asked 

to label whether the sentence suggests that the two people are spouses. Sentences were 

pulled from the Signal Media dataset of news articles (Corney et al., 2016). Ground truth 

data was collected from Amazon Mechanical Turk workers, accepting the majority label 

over three annotations. The 30 explanations we report on were sampled randomly from a 

pool of 200 that were generated by 10 graduate students unfamiliar with BabbleLabble.

In the Disease task, annotators were shown a sentence with highlighted names of a chemical 

and a disease and asked to label whether the sentence suggests that the chemical causes the 

disease. Sentences and ground truth labels came from a portion of the 2015 BioCreative 

chemical-disease relation dataset (Wei et al., 2015), which contains abstracts from PubMed. 

Because this task requires specialized domain expertise, we obtained explanations by having 

someone unfamiliar with BabbleLabble translate from Python to natural language labeling 

functions from an existing publication that explored applying weak supervision to this task 

(Ratner et al., 2018).

The Protein task was completed in conjunction with OccamzRazor, a neuroscience company 

targeting biological pathways of Parkinson’s disease. For this task, annotators were shown a 

sentence from the relevant biomedical literature with highlighted names of a protein and a 

kinase and asked to label whether or not the kinase influences the protein in terms of a 

physical interaction or phosphorylation. The annotators had domain expertise but minimal 

programming experience, making BabbleLabble a natural fit for their use case.

3https://github.com/HazyResearch/treedlib
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3.2 Experimental Settings

Text documents are tokenized with spaCy.4 The semantic parser is built on top of the 

Python-based implementation SippyCup.5 On a single core, parsing 360 explanations takes 

approximately two seconds. We use existing implementations of the label aggregator, feature 

library, and discriminative classifier described in Sections 2.4—2.5 provided by the open-

source project Snorkel (Ratner et al., 2018).

Hyperparameters for all methods we report were selected via random search over thirty 

configurations on the same held-out development set. We searched over learning rate, batch 

size, L2 regularization, and the subsampling rate (for improving balance between classes).6 

All reported F1 scores are the average value of 40 runs with random seeds and otherwise 

identical settings.

4 Experimental Results

We evaluate the performance of BabbleLabble with respect to its rate of improvement by 

number of user inputs, its dependence on correctly parsed logical forms, and the mechanism 

by which it utilizes logical forms.

4.1 High Bandwidth Supervision

In Table 3 we report the average F1 score of a classifier trained with BabbleLabble using 30 

explanations or traditional supervision with the indicated number of labels. On average, it 

took the same amount of time to collect 30 explanations as 60 labels.7 We observe that in all 

three tasks, BabbleLabble achieves a given F1 score with far fewer user inputs than 

traditional supervision, by as much as 100 times in the case of the Spouse task. Because 

explanations are applied to many unlabeled examples, each individual input from the user 

can implicitly contribute many (noisy) labels to the learning algorithm.

We also observe, however, that once the number of labeled examples is sufficiently large, 

traditional supervision once again dominates, since ground truth labels are preferable to 

noisy ones generated by labeling functions. However, in domains where there is much more 

unlabeled data available than labeled data (which in our experience is most domains), we 

can gain in supervision efficiency from using BabbleLabble.

Of those explanations that did not produce a correct LF, 4% were caused by the explanation 

referring to unsupported concepts (e.g., one explanation referred to “the subject of the 

sentence,” which our simple parser doesn’t support). Another 2% were caused by human 

errors (the correct LF for the explanation was inconsistent with the example). The remainder 

were due to unrecognized paraphrases (e.g., the explanation said “the order of appearance is 

X, Y” instead of a supported phrasing like “X comes before Y”).

4https://github.com/explosion/spaCy
5https://github.com/wcmac/sippycup
6Hyperparameter ranges: learning rate (1e-2 to 1e-4), batch size (32 to 128), L2 regularization (0 to 100), subsampling rate (0 to 0.5)
7Zaidan and Eisner (2008) also found that collecting annotator rationales in the form of highlighted substrings from the sentence only 
doubled annotation time.
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4.2 Utility of Incorrect Parses

In Table 4, we report LF summary statistics before and after filtering. LF correctness is 

based on exact match with a manually generated parse for each explanation. Surprisingly, 

the simple heuristic-based filter bank successfully removes over 95% of incorrect LFs in all 

three tasks, resulting in final LF sets that are 86% correct on average. Furthermore, among 

those LFs that pass through the filter bank, we found that the average difference in end-task 

accuracy between correct and incorrect parses is less than 2.5%. Intuitively, the filters are 

effective because it is quite difficult for an LF to be parsed from the explanation, label its 

own example correctly (passing the semantic filter), and not label all examples in the 

training set with the same label or identically to another LF (passing the pragmatic filter).

We went one step further: using the LFs that would be produced by a perfect semantic parser 

as starting points, we searched for “nearby” LFs (LFs differing by only one predicate) with 

higher end-task accuracy on the test set and succeeded 57% of the time (see Figure 5 for an 

example). In other words, when users provide explanations, the signals they describe provide 

good starting points, but they are actually unlikely to be optimal. This observation is further 

supported by Table 5, which shows that the filter bank is necessary to remove clearly 

irrelevant LFs, but with that in place, the simple rule-based semantic parser and a perfect 

parser have nearly identical average F1 scores.

4.3 Using LFs as Functions or Features

Once we have relevant logical forms from user-provided explanations, we have multiple 

options for how to use them. Srivastava et al. (2017) propose using these logical forms as 

features in a linear classifier, essentially using a traditional supervision approach with user-

specified features. We choose instead to use them as functions for weakly supervising the 

creation of a larger training set via data programming (Ratner et al., 2016). In Table 6, we 

compare the two approaches directly, finding that the the data programming approach 

outperforms a feature-based one by 9.5 F1 points on average with the rule-based parser, and 

by 4.5 points with a perfect parser.

We attribute this difference primarily to the ability of data programming to utilize a larger 

feature set and unlabeled data. In Figure 6, we show how the data programming approach 

improves with the number of unlabeled examples, even as the number of LFs remains 

constant. We also observe qualitatively that data programming exposes the classifier to 

additional patterns that are correlated with our explanations but not mentioned directly. For 

example, in the Disease task, two of the features weighted most highly by the discriminative 

model were the presence of the trigrams “could produce a” or “support diagnosis of” 

between the chemical and disease, despite none of these words occurring in the explanations 

for that task. In Table 6 we see a 4.3 F1 point improvement (10%) when we use the 

discriminative model that can take advantage of these features rather than applying the LFs 

directly to the test set and making predictions based on the label aggregator’s outputs.
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5 Related Work and Discussion

Our work has two themes: modeling natural language explanations/instructions and learning 

from weak supervision. The closest body of work is on “learning from natural language.” As 

mentioned earlier, Srivastava et al. (2017) convert natural language explanations into 

classifier features (whereas we convert them into labeling functions). Goldwasser and Roth 

(2011) convert natural language into concepts (e.g., the rules of a card game). Ling and 

Fidler (2017) use natural language explanations to assist in supervising an image captioning 

model. Weston (2016); Li et al. (2016) learn from natural language feedback in a dialogue. 

Wang et al. (2017) convert natural language definitions to rules in a semantic parser to build 

up progressively higher-level concepts.

We lean on the formalism of semantic parsing (Zelle and Mooney, 1996; Zettlemoyer and 

Collins, 2005; Liang, 2016). One notable trend is to learn semantic parsers from weak 

supervision (Clarke et al., 2010; Liang et al., 2011), whereas our goal is to obtain weak 

supervision signal from semantic parsers.

The broader topic of weak supervision has received much attention; we mention some works 

most related to relation extraction. In distant supervision (Craven et al., 1999; Mintz et al., 

2009) and multi-instance learning (Riedel et al., 2010; Hoffmann et al., 2011), an existing 

knowledge base is used to (probabilistically) impute a training set. Various extensions have 

focused on aggregating a variety of supervision sources by learning generative models from 

noisy labels (Alfonseca et al., 2012; Takamatsu et al., 2012; Roth and Klakow, 2013; Ratner 

et al., 2016; Varma et al., 2017).

Finally, while we have used natural language explanations as input to train models, they can 

also be output to interpret models (Krening et al., 2017; Lei et al., 2016). More generally, 

from a machine learning perspective, labels are the primary asset, but they are a low 

bandwidth signal between annotators and the learning algorithm. Natural language opens up 

a much higher-bandwidth communication channel. We have shown promising results in 

relation extraction (where one explanation can be “worth” 100 labels), and it would be 

interesting to extend our framework to other tasks and more interactive settings.
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A Predicate Examples

Below are the predicates in the rule-based semantic parser grammar, each of which may 

have many supported paraphrases, only one of which is listed here in a minimal example.

Logic

and: X is true and Y is true

or: X is true or Y is true

not: X is not true

any: Any of X or Y or Z is true

all: All of X and Y and Z are true

none: None of X or Y or Z is true

Comparison

=: X is equal to Y

≠: X is not Y

<: X is smaller than Y

≤: X is no more than Y

>: X is larger than Y

≥: X is at least Y

Syntax

lower: X is lowercase

upper: X is upper case

capital: X is capitalized

all_caps: X is in all caps

starts_with: X starts with “cardio”

ends_with: X ends with “itis”

substring: X contains “–induced”
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Named-entity Tags

person: A person is between X and Y

location: A place is within two words of X

date: A date is between X and Y

number: There are three numbers in the sentence

organization: An organization is right after X

Lists

list: (X, Y) is in Z

set: X, Y, and Z are true

count: There is one word between X and Y

contains: X is in Y

intersection: At least two of X are in Y

map: X is at the start of a word in Y

filter: There are three capitalized words to the left of X

alias: A spouse word is in the sentence (“spouse” is a predefined list from the user)

Position

word_distance: X is two words before Y

char_distance: X is twenty characters after Y

left: X is before Y

right: X is after Y

between: X is between Y and Z

within: X is within five words of Y

B Sample Explanations

The following are a sample of the explanations provided by users for each task.

Spouse

Users referred to the first person in the sentence as “X” and the second as “Y”.
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Label true because “and” occurs between X and Y and “marriage” occurs one word after 

person1.

Label true because person Y is preceded by ‘beau’.

Label false because the words “married”, “spouse”, “husband”, and “wife” do not occur in 

the sentence.

Label false because there are more than 2 people in the sentence and “actor” or “actress” is 

left of person1 or person2.

Disease

Label true because the disease is immediately after the chemical and ‘induc’ or ‘assoc’ is in 

the chemical name.

Label true because a word containing ‘develop’ appears somewhere before the chemical, and 

the word ‘following’ is between the disease and the chemical.

Label true because “induced by”, “caused by”, or “due to” appears between the chemical 

and the disease.”

Label false because “none”, “not”, or “no” is within 30 characters to the left of the disease.

Protein

Label true because “Ser” or “Tyr” are within 10 characters of the protein.

Label true because the words “by” or “with” are between the protein and kinase and the 

words “no”, “not” or “none” are not in between the protein and kinase and the total number 

of words between them is smaller than 10.

Label false because the sentence contains “mRNA”, “DNA”, or “RNA”.

Label false because there are two “,” between the protein and the kinase with less than 30 

characters between them.
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Figure 1: 
In BabbleLabble, the user provides a natural language explanation for each labeling 

decision. These explanations are parsed into labeling functions that convert unlabeled data 

into a large labeled dataset for training a classifier.
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Figure 2: 
Natural language explanations are parsed into candidate labeling functions (LFs). Many 

incorrect LFs are filtered out automatically by the filter bank. The remaining functions 

provide heuristic labels over the unlabeled dataset, which are aggregated into one noisy label 

per example, yielding a large, noisily-labeled training set for a classifier.
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Figure 3: 
Valid parses are found by iterating over increasingly large subspans of the input looking for 

matches among the right hand sides of the rules in the grammar. Rules are either lexical 

(converting tokens into symbols), unary (converting one symbol into another symbol), or 

compositional (combining many symbols into a single higher-order symbol). A rule may 

optionally ignore unrecognized tokens in a span (denoted here with a dashed line).
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Figure 4: 
An example and explanation for each of the three datasets.
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Figure 5: 
Incorrect LFs often still provide useful signal. On top is an incorrect LF produced for the 

Disease task that had the same accuracy as the correct LF. On bottom is a correct LF from 

the Spouse task and a more accurate incorrect LF discovered by randomly perturbing one 

predicate at a time as described in Section 4.2. (Person 2 is always the second person in the 

sentence).
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Figure 6: 
When logical forms of natural language explanations are used as functions for data 

programming (as they are in BabbleLabble), performance can improve with the addition of 

unlabeled data, whereas using them as features does not benefit from unlabeled data.
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Table 1:

Predicates in the grammar supported by BabbleLabble’s rule-based semantic parser.

Predicate Description

bool, string, int, float, tuple, list, set Standard primitive data types

and, or, not, any, all, none Standard logic operators

=, ≠, <, ≤, >, ≥ Standard comparison operators

lower, upper, capital, all_caps Return True for strings of the corresponding case

starts_with, ends_with, substring Return True if the first string starts/ends with or contains the second

person, location, date, number, organization alias Return True if a string has the corresponding NER tag

A frequently used list of words may be predefined and referred to with an alias

count, contains, intersection Operators for checking size, membership, or common elements of a list/set

map, filter Apply a functional primitive to each member of list/set to transform or filter the elements

word_distance, character_distance Return the distance between two strings by words or characters

left, right, between, within Return as a string the text that is left/right/within some distance of a string or between two 
designated strings
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Table 2:

The total number of unlabeled training examples (a pair of annotated entities in a sentence), labeled 

development examples (for hyperparameter tuning), labeled test examples (for assessment), and the fraction of 

positive labels in the test split.

Task Train Dev Test % Pos.

Spouse 22195 2796 2697 8%

Disease 6667 773 4101 23%

Protein 5546 1011 1058 22%
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Table 4:

The number of LFs generated from 30 explanations (pre-filters), discarded by the filter bank, and remaining 

(post-filters), along with the percentage of LFs that were correctly parsed from their corresponding 

explanations.

Pre-filters Discarded Post-filters

LFs Correct Sem. Prag. LFs Correct

Spouse 156 10% 19 118 19 84%

Disease 102 23% 34 40 28 89%

Protein 122 14% 44 58 20 85%
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Table 5:

F1 scores obtained using BabbleLabble with no filter bank (BL-FB), as normal (BL), and with a perfect parser 

(BL+PP) simulated by hand.

BL-FB BL BL+PP

Spouse 15.7 50.1 49.8

Disease 39.8 42.3 43.2

Protein 38.2 47.3 47.4

Average 31.2 46.6 46.8
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Table 6:

F1 scores obtained using explanations as functions for data programming (BL) or features (Feat), optionally 

with no discriminative model (−DM) or using a perfect parser (+PP).

BL-DM BL BL+PP Feat Feat+PP

Spouse 46.5 50.1 49.8 33.9 39.2

Disease 39.7 42.3 43.2 40.8 43.8

Protein 40.6 47.3 47.4 36.7 44.0

Average 42.3 46.6 46.8 37.1 42.3
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