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Background.  Few studies have evaluated the relative cross-protection conferred by infection with different groups of viruses 
through studies of sequential infections in humans. We investigated the presence of short-lived relative cross-protection conferred 
by specific prior viral infections against subsequent febrile respiratory illness (FRI).

Methods.  Men enlisted in basic military training between December 2009 and December 2014 were recruited, with the first FRI 
as the study entry point. ResPlex II assays and real-time polymerase chain reaction assays were used to detect viral pathogens in nasal 
wash samples, and survival analyses were performed to determine whether infection with particular viruses conferred short-lived 
relative cross-protection against FRI.

Results.  Prior infection with adenovirus (hazard ratio [HR], 0.24; 95% confidence interval [CI], .14–.44) or influenza virus (HR, 
0.52; 95% CI, .38–.73) conferred relative protection against subsequent FRI episode. Results were statistically significant even after 
adjustment for the interval between enlistment and FRI (P < .001). Adenovirus-positive participants with FRI episodes tended to be 
protected against subsequent infection with adenovirus, coronavirus, enterovirus/rhinovirus, and influenza virus (P = .062–.093), 
while men with influenza virus–positive FRI episodes tended be protected against subsequent infection with adenovirus (P = .044) 
and influenza virus (P = .081).

Conclusion.  Prior adenovirus or influenza virus infection conferred cross-protection against subsequent FRI episodes relative 
to prior infection due to other circulating viruses.

Keywords.  Antibodies; cell-mediated immunity; vaccine; cohort studies; surveillance; cross-protection; serology.

Viral interference describes the phenomenon whereby a prior 
viral infection potentially exerts some effect on subsequent in-
fection with other viruses [1]. Edward Jenner first reported this 
when herpetic infections were observed to cross-protect against 
the subsequent development of vaccinia lesions [2]. Then, in the 
1950s, Isaacs and Lindenmann discovered the role of interferons 
in viral interference [3]. Since then, cross-protection has been 
observed for animal viruses [2], with possible mechanisms 
elaborated on in multiple animal models [4–6]. In human 

populations, time-series analyses have demonstrated how 
epidemics involving a particular virus influence the temporality of  
epidemics involving other families of respiratory viruses [7–10]. 
Several case-control and cross-sectional studies also show that 
co-detection of respiratory viruses is less frequently observed 
than if the infections caused by different respiratory viruses 
occur independently of each other [11–13]. However, evidence 
from studies of sequential infections in humans would provide 
more-robust evidence that viral infections can reduce the risk 
of subsequent infection with a different group of viruses and 
clarify whether such cross-protective effects differ between dif-
ferent types of viruses.

As previously reported, the rollout of routine trivalent sea-
sonal influenza vaccination in the Singapore Armed Forces 
was accompanied by a dramatic decline in the incidence of 
laboratory-confirmed influenza virus infections but a much 
less noticeable decrease in the overall incidence of febrile res-
piratory illness (FRI) episodes [14]. A  subsequent increase in 
the incidence of adenovirus infections appeared, at least from 
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time-series data, to account for some degree of replacement 
for the influenza virus infections averted through vaccination 
[15]. In this article, we set out to clarify the relationship between 
specific prior viral infections and subsequent FRI episodes in 
young Singaporean men undergoing basic military training 
(BMT). We reanalyzed the Singapore Armed Forces FRI sur-
veillance program data by using survival analyses to assess 
whether there was any evidence, at the individual level, that 
infection with particular viruses was conferring short-lived 
relative cross-protection against subsequent FRI episodes, in-
cluding those caused by other virus groups.

METHODS

Study Setting and Data Collection

Since May 2009, the Singapore Armed Forces has operated a sen-
tinel FRI surveillance program at a major recruit-training center. 
Recruits who develop FRI would report to the primary healthcare 
clinic for assessment, where they would receive treatment and 
would typically be given home leave for 1–2 days. During regular 
consultation hours, recruits meeting our inclusion criteria (ie, a 
temperature ≥37.5°C plus either cough or sore throat) were asked 
to participate in the study. Following receipt of written informed 
consent from the patient, we administered a questionnaire and 
collected nasal wash samples from both sides of the nose. We 
excluded repeat consultations if the patient was determined not 
to have recovered from the earlier illness episode.

Our study covered recruits undergoing BMT between 
15 December 2009 and 31 December 2014, during which 
inactivated influenza vaccine was routinely administered to 
recruits who did not have any contraindications. This was 
initially a monovalent influenza vaccine (MIV) containing 
only 2009 pandemic influenza A(H1N1) virus (A[H1N1]
pdm09), for recruits who enlisted between 11 December 2009 
and 4 October 2010. The MIV was superseded by a triva-
lent influenza vaccine (TIV) that included A(H1N1)pdm09, 
for recruits who enlisted between 8 November 2010 and 10 
December 2014).

The study was reviewed and approved by the Singapore 
military’s Joint Medical Committee for Research by and the 
National University of Singapore’s ethics review committee 
(National University of Singapore Institutional Review Board 
reference 09-255).

Laboratory Methods

Samples were sent in viral transport medium (Copan 
Diagnostics, Murrieta, CA) for etiological testing within 
24 hours of collection. During the 5-year study period, the 
ResPlex II multiplex polymerase chain reaction assay was 
used from December 2009 through 29 June 2012 to detect 
viral pathogens, after which it was replaced by in-house viral 
multiplex polymerase chain reaction assays (Supplementary 
Materials) [16].

Study Design, Outcomes and Exposures of Interest, Potential Confounders, 

and Multilevel Framework

BMT is tailored to the physical, medical, and vocational needs 
of a recruit. The majority enlist into the main intake types, with 
standard durations of around 9, 17, and 19 weeks, with a small 
proportion having a mix of shorter courses (termed “others”). 
Dropout rates are low, and our study clinic served most of the 
healthcare needs for recruits at the training center. We were 
hence able to reanalyze the individual FRI episodes as a cohort 
study by linking consultation episodes through coded subject 
identifiers. The first FRI episode (FRI-1) for a given partici-
pant served as the point of entry into the study (t0). Individual 
participants then accumulated follow-up time (Figure 1A), with 
subsequent FRI episodes being the event of interest. Those with 
no further episodes accumulated follow-up time until their exit 
date from BMT, while participants with ≥2 episodes contributed 
additional follow-up intervals after each subsequent episode.

Other than subsequent consultation for any FRI episodes, ad-
ditional definitions for events of interest were episodes positive 
for any of the respiratory viruses tested and specific groups of eti-
ological agents. We grouped the agents by using broad categories 
that accommodated changes in testing protocol during the 
study period while reflecting virus taxonomy: adenoviruses 
(AdVs)—species B, E, and others for which the type was un-
determined; coronaviruses (CoVs)—CoV-229E, CoV-NL63, 
CoV-HKU1, CoV-OC43, and other CoVs; enteroviruses and 
rhinoviruses (ERVs); human metapneumovirus (hMPV); in-
fluenza virus (FluV)—influenza A(H3N2) virus, 2009 pan-
demic influenza A(H1N1) virus (A[H1N1]pdm09), influenza 
A(H1N1) virus, influenza A virus–positive samples for which 
the subtype was undetermined, and influenza B virus; human 
parainfluenza virus (hPIV)—types 1–4; and respiratory syncy-
tial virus (RSV)—RSV-A and RSV-B. 

The virus categories described above were also our exposures 
of interest, to investigate whether an FRI episode caused by 
one virus group conferred relatively greater protection against 
a subsequent FRI episodes  than FRI episodes testing negative 
for that virus group. In individuals with ≥1 subsequent FRI ep-
isode, exposure to prior infections was regarded as cumulative. 
For instance, for scenario 3 in Figure 1A, with 2 subsequent 
FRI episodes, hMPV exposure occurred only during interval 
C, CoV exposure occurred during intervals B and C, and AdV 
occurred during all 3 intervals.

Potential confounders included the year of the surveil-
lance program, participant’s age and ethnicity, type of BMT 
intake, history of smoking and asthma (including childhood 
asthma), and receipt of influenza vaccine before the FRI epi-
sode. Assessment of whether the participant received MIV or 
TIV was based on self-reported vaccination history up to 1 year 
prior to the first FRI episode (since antibody titers and vaccine 
effectiveness could wane thereafter [17–19]), supplemented 
with Singapore Armed Forces records for vaccines received after 
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enlistment. Since FRI episodes are concentrated differentially 
during a BMT course, we adjusted for this effect using the FRI 
incidence rate during successive 2-weekly phases after the time 
of enlistment for that intake type (Figure 1B and Supplementary 
Materials). Observation time was split into subintervals if the 
observation period straddled different BMT phases and was 
analyzed in a multilevel modeling framework (Figure 1C). 
The framework included random effects terms for the BMT 

companies that participants belonged to, within which were 
nested the intervals (delineated by consecutive FRI episodes), 
within which, in turn, were nested the subintervals straddling 
BMT phases (levels 4 to 1 for model 2). Models 1 and 3 only had 
3 levels. Model 1 omitted the subintervals used to adjust for FRI 
incidence. Model 3, which stratified subintervals by whether 
they ended <4 weeks or ≥4 weeks after the initial FRI episode, 
used only the first FRI episode for each participant (episode 
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Figure 1.   A, Scenarios for febrile respiratory illness (FRI; defined as consultations at the primary healthcare clinic in which a temperature ≥37.5°C was detected, plus either 
cough or sore throat) episodes and intervals in time-to-event analyses. In scenario 1 (no subsequent FRI episode), a participant accumulates follow-up time from the first FRI 
episode (FRI-1) to the date of exit from basic military training (BMT). In scenario 2, follow-up time accrues between the first (FRI-1) and second (FRI-2) episodes (interval A, 
t1–t0), plus a second interval between FRI-2 and the date of exit from BMT (interval B, t2–t1). For ≥3 FRI episodes, additional intervals are used (eg, in scenario 3, interval C is 
t3–t2). B, FRI incidence rates by time from enlistment, with splitting of intervals into subintervals by BMT phase. Shown is an example based on a participant from the 17-week 
BMT intake. Interval A has a subinterval in weeks 11–12 of the BMT course and another in weeks 13–14 (with FRI incidences of 0.74 and 0.63 cases/1000 person-days, re-
spectively). Likewise, interval B has 3 subintervals (weeks 13–14, 15–16, and 17–18). C, Levels within multilevel analysis. AdV, adenovirus; CoV, coronavirus; FluV, influenza 
virus; hMPV, human metapneumovirus; NA, not applicable; RSV, respiratory syncytial virus.
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level was therefore redundant). Models 2 and 3 adjusted for FRI 
incidence rates by time from enlistment and, hence, excluded 
the BMT intake type termed “other” (for which data used to 
estimate incidence rates were unavailable).

Statistical Analysis

We present simple tabulations and visualizations of the data 
at the participant and episode levels, using χ2 and Fisher 
exact tests where appropriate. We then investigated how FRI 
caused by specific virus families affected the subsequent risk 
of FRI episodes relative to those who were unexposed, through 
Kaplan-Meier plots and log-rank tests, as well as with multilevel 
survival analyses (with survival time modeled using a Weibull 
distribution), which adjusted for potential confounders. We 
also investigated whether exposure to FluV and AdV affected 
the subsequent risk of all FRI episodes and the risk of FRI by 
specific pathogens, using Kaplan-Meier plots and log-rank 

tests. However, multivariable analysis was not performed be-
cause of sample size limitations when restricting the event of 
interest to specific pathogens. All analyses used Stata 15 (Stata; 
College Station, TX), with 2-tailed P values of < .05 considered 
statistically significant.

RESULTS

Demographic Characteristics of Participants

The study included 6138 FRI episodes among 5677 participants 
(enrolled over approximately 5 years; Table 1), with a median 
of 33  days (interquartile range [IQR], 16–56  days) from en-
listment to the first FRI episode and a median of 2 days (IQR, 
1–3 days) from illness onset to the consultation. As inclusion in 
the study was based on having an FRI, the longer 17-week (2677 
participants [47.2%]) and 19-week (1357 [23.9%]) BMT intake 
types contributed more participants, followed by the 9-week 

Table 1.  Characteristics of All Participants and Participants With ≥2 Febrile Respiratory Illness (FRI) Episodes

Characteristic All Participants, No. Participants With ≥2 FRI Episodes, No. (%) OR for Having ≥2 FRI Episodes (95% CI) Pa

Study year(s)

  2009/2010 1510 127 (8.4) Reference <.001

  2011 1315 140 (10.6) 1.30 (1.01–1.67)  

  2012 1160 65 (5.6) .65 (.47–.88)  

  2013 841 54 (6.4) .75 (.54–1.04)  

  2014 851 37 (4.3) .49 (.34–.72)  

Type of BMT intake

  19-week 1357 164 (12.1) Reference <.001

  17-week 2677 228 (8.5) .68 (.55–.84)  

  9-week 1276 24 (1.9) .14 (.09–.22)  

  Otherb 367 7 (1.9) .14 (.07–.30)  

Sex

  Male 5672 423 (7.5) Reference 1.000

  Female 5 0 (0.0) …  

Ethnicity

  Chinese 4362 304 (7.0) Reference .036

  Malay 780 73 (9.4) 1.38 (1.05–1.80)  

  Indian 322 32 (9.9) 1.47 (1.00–2.16)  

  Other 213 14 (6.6) .94 (.54–1.63)  

Smoking history

  Never 4277 285 (6.7) Reference <.001

  Former 147 18 (12.2) 1.95 (1.18–3.25)  

  Current 1253 120 (9.6) 1.48 (1.19–1.85)  

History of asthma

  No 4340 326 (7.5) Reference .812

  Yes 1337 97 (7.3) .08 (.07–.09)  

Influenza vaccinationc

  No recent influenza vaccination 930 97 (10.4) Reference .003

  MIV for A(H1N1)pdm09 only 981 73 (7.4) .69 (.50–.95)  

  TIV only 3719 250 (6.7) .62 (.48–.79)  

  Both MIV and TIV 47 3 (6.4) .59 (.18–1.92)  

Abbreviations: A(H1N1)pdm09, 2009 pandemic influenza A(H1N1) virus; BMT, basic military training; CI, confidence interval; MIV, monovalent influenza vaccine; OR, odds ratio; TIV, trivalent 
influenza vaccine.
aBy the Fisher exact test, comparing participants with 1 FRI episode to those with >1 FRI episode.
bA mix of shorter BMT intake types.
cUp to 1 year before first FRI episode (those reporting vaccination >1 year ago are considered unvaccinated). Participants can receive either or both vaccine formulations.
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(1276 [22.5%]) and other (n = 367, 6.5%) intake types. The me-
dian age was 20.1 years (IQR, 19.0–20.9 years), and 99.9% were 
male. A  total of 83.6% received influenza vaccine in the past 
1 year (with only 113 receiving this before enlistment); 17.3% 
(981) received MIV only, 65.5% (3719) received TIV only, and 
0.8% (47) received both MIV and TIV.

Four hundred twenty-three participants (7.6%) had ≥2 FRI 
episodes. The median time between consecutive episodes was 
34 days (IQR, 21–55 days). While 12.1% in the 19-week BMT 
intake type had ≥2 FRI episodes, this was unsurprisingly less 
common for the shorter 17-week (8.5%; odds ratio [OR], 0.68 
[95% confidence interval {CI}, .55–.84]), 9-week (1.9%; OR, 
0.14 [95% CI, .09–.22]), and other (1.9%; OR, 0.14 [95% CI, .07–
.30]) intake types. Other factors associated with having ≥2 FRI 
episodes were Malay and Indian ethnicity (versus Chinese) and 
being ex- or current smokers (versus nonsmokers). Compared 
with participants who not recently vaccinated, among whom 
10.4% had ≥2 FRI episodes, 7.4% (OR, 0.69; 95% CI, .50–.95), 
6.7% (OR, 0.62; 95% CI, .48–.79), and 6.4% (OR, 0.59; 95% CI, 
.18–1.92) among those who recently received MIV only, TIV 
only, or both MIV and TIV, respectively.

Distribution of Viruses in Initial and Subsequent FRI Episodes

A total of 3487 FRI episodes (56.8%) were positive for ≥1 virus 
included in the panel (Table 2). ERV was the most common, in 
1449 (23.6%) FRI episodes, followed by FluV (in 870 [14.2%], 
including 138, 137, and 568 positive for A(H1N1)pdm09, influ-
enza A(H3N2) virus, and influenza B virus, respectively), AdV 
(in 677 [11.0%], including 121 and 505 positive for AdV-B and 
AdV-E, respectively), and CoV (in  458 [7.5%], with the ma-
jority [282] positive for CoV-OC43). hMPV, hPIV, and RSV 
were less frequently observed (in 181, 254, and 30 FRI episodes, 
respectively). Three hundred ninety-four episodes (6.4%) were 
simultaneously positive for agents from ≥2 virus groups.

FRI episodes with an identified virus were less likely than 
those without an identified virus to be followed by a subsequent 
FRI episode (6.2% vs 9.2%, respectively; P < .001), and subse-
quent FRI episodes with viruses from the same group were rare 
(<2% across all virus groups).

Temporal Distribution of FRI Cases, by Calendar Month and BMT Phase

From December 2009 through December 2014, there was an 
average of 100 FRI cases per month, but the number of cases 
fluctuated widely. While AdV infections were concentrated be-
tween June 2011 and February 2013 (Figure 2A), FluV infections 
mostly occurred before November 2010, with a sharp decline 
following routine administration of TIV. However, consider-
able influenza A(H3N2) virus and influenza B virus activity 
was observed from April 2013 through October 2014 (Figure 
2B). When analyzed by time from enlistment, ERV infections 
were concentrated in earlier BMT phases, while CoV and AdV 
infections circulated mostly during weeks 3–8 and weeks 5–12 
after enlistment, respectively (Figure 2C). FluV circulation had 2 Ta
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peaks, at weeks 1–2 and then again at weeks 5–8 after enlistment 
(Figure 2D); the former pattern was observed after and the latter 
before routine TIV administration (data not shown).

Prior Infection With AdV or FluV Tends to Protect Against Subsequent FRI 

episode

Among FRI episodes with an identified virus, the propor-
tion that were not followed by a FRI episode decreased more 
gradually than that among FRI episodes without an identified 
virus (Figure 3A). Relative protection against a subsequent 
FRI episode was also observed for AdV- positive versus AdV-
negative episodes (Figure 3B) and likewise for FluV infections 
(Figure 3C); all 3 results were statistically significant at P < .001. 
However, no significant relationships were observed for CoV, 
ERV, hMPV, hPIV, and RSV (Supplementary Figure 1).

Model 1, which accounted for the hierarchical data structure and 
other covariates, gave similar results (Table 3). Relative to episodes 
without an identified virus, only AdV (hazard ratio [HR], 0.24; 
95% CI, .14–.44) and FluV (HR, 0.52; 95% CI, .38–.73) infections 
conferred significant protection against subsequent FRI episodes. 
AdV and FluV infections remained significantly protective, after 
adjustment for FRI incidence by time from enlistment (model 
2) and after addition of a variable that stratified subintervals on 
whether they ended <4 weeks before or ≥4 weeks after the initial 

FRI episode (model 3). Interestingly, the hazard of a subsequent 
FRI episode was significantly lower in subintervals ending <4 
weeks after the initial episode (vs those ending ≥4 weeks after the 
initial episode; HR, 0.43; 95% CI, .30–.61). Moreover, there was ev-
idence for interaction with FluV (Pinteraction = .085); stratified HRs 
for FluV infection in subintervals ending <4 weeks and ≥4 weeks 
after the initial FRI episode were 0.23 (95% CI, .08–.63; P = .005) 
and 0.58 (95% CI, .38–.87, P = .009), respectively.

Supplementary Table 1 corroborates these findings through 
an alternative approach using crude FRI incidence rates based 
on the underlying BMT population at risk. Following AdV and 
FluV infection, incidence rates for subsequent FRI episodes 
were consistently lower than the average for all recruits in the 
19-, 17-, and 9-week BMT intake types. Moreover, compared 
with the full course duration, analyses censored 8 and 6 weeks 
after enlistment showed stronger protective effects from prior 
FluV infection. Likewise, incidence rate ratios stratified by 
BMT intake type revealed increased protection by prior FluV 
infection with shorter course durations (Table S2).

Prior Infection With AdV or FluV Tends to Protect Against Subsequent 

Infection With Specific Viruses

AdV-positive episodes tended to protect against subsequent 
infection with AdV (P  =  .090) and also 3 other virus groups 
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commonly encountered in BMT, namely CoV, ERV, and FluV 
(P  =  .062, .093, and .064 respectively; Supplementary Figure 
2). FluV–positive FRI episodes significantly reduced the risk 
of subsequent AdV infection (P = .044; Supplementary Figure 
3A). Cross-protection between FluV episodes was not apparent 
in the full data set (Supplementary Figure 3B). However, be-
fore routine administration of TIV (ie, on or before 4 October 
2010), FluV–positive episodes tended to protect against subse-
quent FluV infection in enlistees who had not recently received 
TIV (P  =  .081; Supplementary Figure 3C). None of the other 
virus groups conferred significant group-specific protection 
(Supplementary Table 3).

DISCUSSION

Our study provides evidence on how having a FRI episode due 
to respiratory viruses from certain categories reduced the risk of 
a subsequent FRI episode during basic military training relative 
to having a FRI episode that was not due to those respiratory 
viruses. Among the viruses, protective effects were strongest 
following AdV and FluV episodes. AdV infections conferred 
protection against subsequent infection with AdV and cross-
protection to other groups of commonly circulating viruses in 
BMT (CoV, ERV and FluV), while FluV infection conferred sig-
nificant protection against subsequent AdV infection. The ob-
servation of influenza’s protection against subsequent episodes 
of influenza (mostly due to other types/subtypes in our data, 
in the period prior to routine TIV administration) is also con-
sistent with reports by other human and animal model studies 
[6, 20, 21].

Previous time-series analyses have demonstrated viral inter-
ference after accounting for seasonal factors, suggesting that 
epidemics of influenza virus and rhinovirus infection tend to 
shift the timing of epidemics for other viruses [8]. Others have 
used case-control–type analyses of codetection data to demon-
strate that rhinovirus infection, as an exposure, was inversely 
associated with the probability of observing adenovirus [12] 
and influenza virus infections, with the latter 2 viral infections 
framed as the outcomes of interest [12, 13]. However, in a study 
of military recruits in which adenovirus was the dominant FRI 
agent, Wang et al used a case-control analysis to demonstrate 
the reverse phenomenon—that adenovirus infection as an ex-
posure reduced the odds of rhinovirus infection as the outcome 
of interest [11]. However, they noted how another interpreta-
tion of their results is that rhinovirus infection reduced the risk 
of subsequent adenovirus infection. The opposing framing of 
outcomes and exposures in these codetection studies highlights 
issues in interpreting results from such cross-sectional and case-
control designs, in which the sequence of infections cannot be 
ascertained. What distinguishes this work is our use of a cohort 
study design by which we can identify the temporality and se-
quence of initial and subsequent FRI episodes, which the pre-
vious studies could not do. Observations positive for a specific 

virus group are essentially being compared against those nega-
tive for all viruses we tested for. Therefore, this analyses does not 
assess whether, for example, infections by the ERV group confers 
any protection relative to individuals who did not recently have 
any viral infection. Supplementary Tables 1 and 2 suggest that, 
relative to enlisted recruits for the main BMT intake types, in-
cidence rates for subsequent FRI episodes were higher over the 
full course duration and for 19-week BMT intake types, respec-
tively. This applied to all virus groups except AdV and FluV 
groups and was possibly due to confounding by common risk 
factors for repeated FRIs at the individual level [15]. However, 
in the shortest, 9-week BMT type and when censoring the 
data at shorter periods after enlistment, incidence rates were 
reduced for most virus groups relative to the average rates for 
recruits following enlistment. For FRI episodes as a whole, in-
cidence rate ratios were 0.49 (95% CI, .29–.77; P < .001) in the 
data censored 4 weeks after enlistment (Supplementary Table 
1). These observations therefore suggest that viral causes of FRI 
other than AdV and FluV may also confer short, time-limited 
protection. They also corroborate findings from Table 3 on how 
a reduced hazard of a subsequent FRI episode  occurs in the 
first 4 weeks following the initial FRI episode, relative to latter 
periods, and how FluV is more strongly protective during the 
former period. The difference between the viruses may thus be 
one of degree, with most viruses conferring some weak, time-
limited protection, with the stronger effects from adenovirus 
and influenza virus becoming apparent when aggregating data 
over the full course duration. One mechanism consistent with 
such short-lived cross-protection is the triggering of interferon-
stimulated genes and cytokines, causing nearby cells in the res-
piratory tract to enter an antiviral state [22, 23]. Alternatively, 
transient cross-protection could result from infection-induced 
behavioral changes, such as improved hand hygiene following an 
FRI and a short duration of reduced exposure to new pathogens 
while being furloughed on home leave. However, this on its own 
is likely inadequate to explain the extent of cross-protection 
observed with adenovirus and influenza virus infections rela-
tive to other FRI episodes. Other proposed mechanisms, such 
as competition for the same receptor-binding sites and intra-
cellular host machinery for replication [24], and an unfavorable 
physiological state of the host, such as high body temperatures 
upon an initial infection [11], are more applicable to protection 
against coinfections but not, as demonstrated here, against se-
quential infection.

Our findings have several implications. They provide an ex-
planation for what has previously been suspected on the basis 
of time-series analyses, such as how influenza epidemics poten-
tially delay RSV epidemics [8, 25]. They also add to the body of 
evidence motivating the search for the causative mechanisms 
for cross-protection among viral infections while providing 
additional clues. Given the relative ranking of virus families 
in conferring cross-protection, we suggest focusing the search 
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for mechanisms on common factors induced by both adeno-
virus and influenza virus. Notably, our previous studies suggest 
that infections with these 2 infections may be more severe, be-
cause they are more likely to present with febrile illness [26] 
and higher temperatures (≥38°C) than infections due to other 
common circulating virus families [16]. This again supports a 
cytokine-mediated antiviral effect. Finding a means to induce 
such cross-protection without severe side effects could poten-
tially lead to interventions that may be particularly useful in the 
context of exposure to dangerous viruses for which there is no 
specific vaccine or antiviral agent [27].

However, our study has some limitations. Our study popula-
tion largely comprises healthy young adults, and key circulating 
viruses in this group differs somewhat from those observed in 
the general population in Singapore [28]. Also, we excluded 
respiratory illness episodes that did not meet our inclusion 
criteria of having a temperature ≥37.5°C. We also acknowledge 
that our capture of data on FRI episodes is likely incomplete, as 
consultations outside office hours and over the weekend (when 
trainees are on home leave) were missed by our surveillance 
program. However, we argue that restricting our study to febrile 
cases and the incomplete capture of data are biases toward the 
null and thus do not negate our main findings on the relative 
cross-protection against subsequent FRI episodes conferred by 
adenovirus and influenza virus infections.

In summary, our study demonstrated broad-based viral in-
terference in a population of military recruits. Infections from 
the adenovirus and influenza virus families conferred signifi-
cant cross-protective effects against subsequent FRI episodes 
relative to other circulating viruses. The duration of these cross-
protective effects extend beyond those previously demonstrated 
in studies of viral coinfections. Our study points the way for 
research into the underlying mechanisms for broad-based an-
tiviral activity in the human host, which deserves greater study.

Supplementary Data
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