Table 5. First scenario classification accuracies under different feature subsets and classifiers.
Classifier | Accuracy using All features (51) | Accuracy with feature selection | No. of selected features | Accuracy using features with significance statistical P-value | No. of selected features |
---|---|---|---|---|---|
Linear SVM | 93.0 ± 0.16 % | 97.0 ± 0.13 % | 9 | 97.0 ± 0.13 % | 11 |
Random forest | 90.0 ± 0.27 % | 97.0 ± 0.13 % | 11 | 97.0 ± 0.13 % | 15 |
Adaboost | 85.0 ± 0.40 % | 93.0 ± 0.16 % | 11 | 90.0 ± 0.24 % | 21 |
MLP | 93.0 ± 0.16 % | 97.0 ± 0.13 % | 20 | 97.0 ± 0.13 % | 22 |
Linear via SGD | 90.0 ± 0.16 % | 97.0 ± 0.13 % | 14 | 97.0 ± 0.13 % | 21 |
Mean | 90.2 % | 96.2 % | 13 | 95.6 % | 18 |