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Abstract

Neuronal oscillations are ubiquitous in the human brain and are implicated in virtually all

brain functions. Although they can be described by a prominent peak in the power spectrum,

their waveform is not necessarily sinusoidal and shows rather complex morphology. Both

frequency and temporal descriptions of such non-sinusoidal neuronal oscillations can be

utilized. However, in non-invasive EEG/MEG recordings the waveform of oscillations often

takes a sinusoidal shape which in turn leads to a rather oversimplified view on oscillatory

processes. In this study, we show in simulations how spatial synchronization can mask

non-sinusoidal features of the underlying rhythmic neuronal processes. Consequently, the

degree of non-sinusoidality can serve as a measure of spatial synchronization. To confirm

this empirically, we show that a mixture of EEG components is indeed associated with more

sinusoidal oscillations compared to the waveform of oscillations in each constituent compo-

nent. Using simulations, we also show that the spatial mixing of the non-sinusoidal neuronal

signals strongly affects the amplitude ratio of the spectral harmonics constituting the wave-

form. Finally, our simulations show how spatial mixing can affect the strength and even the

direction of the amplitude coupling between constituent neuronal harmonics at different

frequencies. Validating these simulations, we also demonstrate these effects in real EEG

recordings. Our findings have far reaching implications for the neurophysiological interpreta-

tion of spectral profiles, cross-frequency interactions, as well as for the unequivocal determi-

nation of oscillatory phase.

Author summary

The electrical activity in the human brain demonstrates oscillations of intricate complex-

ity. Interestingly, such complex waveforms are primarily visible in invasive recordings

but not so much when neuronal activity is recorded with non-invasive methods such as
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electroencephalography. Yet a specific waveform is informative about the postsynaptic

processes which are at the core of our understanding of cortical excitability and informa-

tion transfer in neuronal networks. In our study, we show with simulations and real EEG

data, how temporal delays between different cortical sources can contribute to a more

sinusoidal or non-sinusoidal shape of neuronal oscillations. We illustrate how, depending

on the temporal delays, low- and high-frequency components of oscillations can be

enhanced or attenuated to a different degree thus affecting the shape of oscillations and

corresponding spectra which are often associated with specific functional consequences.

We further show how this phenomenon can challenge our understanding of the link

between neuronal oscillations and motor function, cognition and perception.

Introduction

Neuronal oscillations are ubiquitous in the human brain, being present in both cortical and

subcortical structures. Moreover, they have been shown to be relevant for sensory [1, 2],

motor [3, 4] and cognitive [5, 6] functions. Traditionally, neuronal oscillations as recorded by

EEG/MEG are considered to be sinusoidal. This observation is particularly driven by the anal-

ysis tools frequently used in neuroscience. These often include Fourier, Morlet wavelet and

Gabor transforms, all of which use sinusoids as a basis function [7]. There is no a-priori reason

why exactly these basis functions would be most relevant for describing neuronal oscillations

(“Fourier fallacy” [8]). Many nonlinear periodic processes in nature are in fact quasi-sinusoidal

[9]. For instance, the non-sinusoidal nature of ocean waves has for long time been recognized

[10], where it was emphasized that conventional spectral analysis is not sensitive to the non-

sinusoidal nature of periodic processes. Due to the complexity of such waves, analysis in time

domain is often suggested and elaborate measures of horizontal and vertical asymmetries have

been presented [11]. A similar claim has been recently voiced for large scale neuronal oscilla-

tions [12], which represent a particularly good example where many nonlinearities are present

including thresholds, exponential decays and non-linear coupling between neuronal elements.

It is therefore not surprising that often neuronal recordings only approximately resemble sinu-

soidal processes especially when they are obtained with invasive techniques [13, 14]. This in

turn indicates that other concepts and analysis tools are needed for a more adequate descrip-

tion of periodic neuronal processes recorded with EEG/MEG.

Waveform was largely neglected in large scale EEG/MEG analysis up until recently [15, 16].

However, the reasons why non-invasive neuronal recordings rather show sinusoidal oscilla-

tions in contrast to invasive recordings have not yet been clearly identified. Some evidence for

non-sinusoidality is also visible in the spectral domain, as non-sinusoidal processes are mani-

fested through the presence of additional peaks being usually integer multiples of the base fre-

quency. Spectral harmonic peaks are often observed in LFP and EEG/MEG recordings. For

instance, a spectral peak in β-frequency range has been found to be exactly twice the individual

α-frequency peak [17–19].

The waveform of oscillations is also important for the understanding of non-linear neuro-

nal interactions. which can be carried out not only within the same frequency band (e.g., α, β,

γ) but also across different bands. In this case they are referred to as cross-frequency interac-

tions and describe a mechanism through which spatially and spectrally distributed information

can be integrated in the brain [20]. The extent to which the presence of such cross-frequency

interactions can be due to spurious effects, particularly due to non-sinusoidal waveform of

oscillations is being debated [21–23].
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Furthermore, a description of oscillations which takes into account their non-sinusoidal

waveform has implications for the understanding of oscillatory phase. Oscillatory phase is

important in theories of neuronal processing [24–26], reflecting a change in membrane poten-

tial for many synchronous neurons. This in turn results in changes in cortical excitability,

which has been associated with periodic inhibition. A non-sinusoidal waveform is associated

with a deviation from a 50% duty cycle and with a non-uniform phase velocity [27]. This in

turn would lead to non-uniform changes in cortical excitability and subthreshold stimulus

detection rates along the oscillation cycle.

Here, we investigate measures for quantifying non-sinusoidality in the time domain, with

simulation and analysis primarily focused on α- and β-oscillations in EEG recordings. The aim

of the present study is to show that the degree of non-sinusoidality in oscillations may depend

on the spatial mixing of the neuronal sources reflected in EEG/MEG/LFP recordings. Depend-

ing on synchronization strength and the temporal delay between neuronal populations, the

resulting waveform of oscillations can vary from strongly non-sinusoidal to sinusoidal. Spatial

mixing will influence measures such as amplitude envelope correlations and α/β-ratio, as dif-

ferent temporal delays will cancel or enhance different frequency components of the non-

sinusoidal waveform. Moreover, this might lead to spurious inferences about cross-frequency

interactions, which may rather relate to changes in the waveform reflecting in turn changes in

spatial synchronization.

Materials and methods

Participants

The study protocol conformed to the Declaration of Helsinki and by the ethics committee at

the medical faculty of the University of Leipzig (reference number 154/13-ff). The EEG data

were previously collected as part of the “Leipzig Cohort for Mind-Body-Emotion Interactions”

data set (LEMON) [28]. Written informed consent was obtained prior to the experiment from

all participants. Data from 13 participants were excluded due to missing event information,

different sampling rate, mismatching header files or insufficient data quality. Additionally,

data from 17 participants was excluded for insufficient signal-to-noise ratio (see section Data

analysis and Statistics). This resulted in data sets from 186 participants (117 male, 69 female,

age range: 20–70 years) with no history of neurological disease and usage of CNS drugs.

EEG setup

Scalp EEG was recorded from a 62-channel active electrode cap (ActiCAP, Brain Products

GmbH, Germany), with 61 channels in the international 10-20 system arrangement and one

additional electrode below the right eye recording vertical eye movements. The reference elec-

trode was located at electrode position FCz, the ground was located at the sternum. Electrode

impedance was kept below 5 kO. Data were acquired with a BrainAmp MR plus amplifier

(Brain Products GmbH, Germany) at an amplitude resolution of 0.1 μV with a bandpass filter

between 0.015 Hz and 1 kHz and with a sample rate of 2500 Hz. The recordings were per-

formed in a sound attenuated EEG booth.

The experimental session was divided into 16 blocks, each lasting 60 s, with two conditions

interleaved, eyes closed (EC) and eyes open (EO), starting in the EC condition. Participants

were instructed to fixate on a digital fixation cross during EO blocks. Changes between blocks

were announced with the software Presentation (v16.5, Neurobehavioral Systems Inc., USA).

Only data from the EC condition were used for analysis.

Spatial neuronal synchronization and the waveform of oscillations
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Data analysis and computational modelling

Measures for assessing non-sinusoidality. To exploit the vast richness of the momentary

EEG-signal, we utilize measures of waveform shape in the raw signal with only limited band-

pass filtering. The waveform features of an asymmetric signal are illustrated in Fig 1. The crest

period Tc is defined as the time from up-crossing to the next down-crossing. Conversely, the

trough period Tt is the time from down-crossing to next-up-crossing. Each period is associated

with two amplitude values, the crest amplitude Ac and the trough amplitude At. We propose to

assess the non-sinusoidality of a signal by considering the ratio of the crest period versus the

trough period
Tc � Tt
TcþTt

, termed CT-difference. The more this value deviates from 0, the more non-

sinusoidal the signal is. For more stable estimation, this can be done over several segments of

data, with DCT ¼ meanðTc � TtÞ
meanðTcþTtÞ

. To compute Tc and Tt-values for empirical as well as synthetic

data, we used the WAFO toolbox [11], originally developed for the analysis of ocean waves.

For computation of ΔCT, EEG data were bandpass filtered in the frequency band 3–45 Hz

(Butterworth, filter order = 4). As α- and β-oscillations are used as primary examples in this

article, the band-width of the filter was chosen accordingly to minimize zero-crossing distor-

tions by low-frequency drifts. We used all periods with associated pooled crest and trough

amplitudes larger than the 50th amplitude percentile in order to avoid a contamination with 1/

f-noise in EEG signals. Similar measures for the description of oscillatory waveform have also

been proposed by [15].

Time series simulations. To study properties of the proposed measures, we employed the

following simulation procedure: First, basis functions with an arc-shape waveform were con-

structed, resembling the non-sinusoidal activity of a source. The waveform is composed of two

sinusoids, the α-component with the base frequency of 10 Hz, and the β-component with a fre-

quency of 20 Hz [29]. The sinusoids have a fixed phase shift relative to each other, the power

of the β-component is four times smaller than the α-component: μ(t) = A1 � sin(f � 2π � t) + A2 �

sin(2f � 2π � t + ψ), with A1 = 1, A2 = 0.25, f = 10 Hz, ψ = 1. The waveform is asymmetric by con-

struction, see Fig 1 for the waveform and corresponding features. In a second step, signals

from N sources which have a temporal shift ϕi relative to each other, with �i � N ð0; sÞ were

added to result in a compound signal XðtÞ ¼
PN

i¼1
mðt � �iÞ. The sources represent spatially

close neuronal populations participating in the generation of the compound signal. In some

cases, the basis signals were amplitude-modulated (resulting in the same amount of amplitude

modulation for α and β-components) to produce amplitude envelopes with a 1/f-distribution

as found in real EEG recordings.

Simulation of α/β-ratios and amplitude envelopes

α/β-ratios and amplitude envelope correlations were evaluated using the compound signal X
(t). The compound signal was composed of 20 sources, mixed with temporal delays drawn

from a normal distribution with mean 0 and varying values for the standard deviation σ. α/β-

ratios were calculated as the ratios of α- and β-SNR values of the compound signal, evaluated

over time series segments of varying length. Here, α-SNR was taken as oscillatory power at the

α-peak frequency and β-SNR as the oscillatory power at twice that frequency. Power was com-

puted by FFT, Hann window, 1 s window length, 50% overlap. To investigate time courses

between α- and β-components of the compound signal, we calculate correlations between

their amplitude envelopes. Amplitude envelopes were calculated by individually bandpass-fil-

tering the compound signal in the base frequency range and first harmonic frequency range

±2 Hz, respectively (Butterworth, filter order = 9). Amplitudes envelopes were determined

for each frequency band by the means of the Hilbert transform. Then, the Spearman rank

Spatial neuronal synchronization and the waveform of oscillations
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correlation coefficient was calculated between α- and β- amplitude envelopes. The calculation

was repeated 1000 times, every time using a new instantiation of the compound signal, sam-

pling new temporal shifts and 1/f-noise for amplitude modulation.

EEG data analysis and statistics. The BBCI toolbox [30] was used for EEG data analysis.

The data were downsampled from 2500 Hz to 250 Hz, bandpass filtered in the frequency range

1–45 Hz (Butterworth filter, filter order 4). Visual inspection was utilized to exclude outlier

channels with frequency shifts in voltage and poor signal quality and data intervals with

extreme peak-to-peak deflections or large bursts of high frequency activity. Principal compo-

nent analysis (PCA) was used for dimensionality reduction by keeping PCs that explain 95% of

the total data variance. Next, independent component analysis (ICA) based on the Extended

Infomax [31] algorithm was performed (step size: 0.00065/log(number of channels), annealing

policy: when weight change> 0.000001, learning rate is multiplied by 0.98, stopping criterion

maximum number of iterations 512 or weight change < 0.000001). Components reflecting

eye movement, eye blink or heartbeat related artifacts were removed. Remaining independent

Fig 1. Illustration: Features of a non-sinusoidal waveform. The trough period Tt and the associated trough amplitude At and the

crest period Tc and associated crest amplitude Ac.

https://doi.org/10.1371/journal.pcbi.1007055.g001
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components (mean number: 21.4, range: 14–28) were projected back to sensor space for fur-

ther analysis.

As we are interested in oscillatory activity, only participants with sufficient signal-to-noise

ratio in the α-band were included. To determine this, EEG time series were spatially filtered

with a Laplacian filter, and the frequency spectrum (FFT, Hann window, 1 s window length,

50% overlap) was computed. The SNR-values of spectral peaks in the α-band (8–13 Hz) were

considered with the 1/f-component removed by fitting a polynomial function to the computed

spectrum and subtracting the estimated 1/f-fit [29]. Participants were included if at least one

channel displayed a SNR> 5 dB in the α-band, as evaluated over the whole recording length.

Examples of 1/f-corrected spectra can be seen in supplementary material, S1 Fig.

The LEMON data set was available with sampling frequency of 250 Hz. To improve estima-

tion of zero-crossing timing, the data was interpolated to a sampling frequency of 1000 Hz

(spline interpolation), for 1 millisecond precision of Tc and Tt-values. For the extraction of

oscillatory components, spatial-spectral decomposition (SSD) [32] was used. SSD is a method

for extraction of cortical sources using Eigenvalue decomposition of channel covariance matri-

ces. It maximizes the oscillatory power of the component at a target frequency band, while

minimizing at neighbouring frequency bands. This effectively leads to the extraction of oscil-

latory components with the strongest SNR. SSD can be computed fast and reliably extracts

oscillatory components even for low SNR. The frequency band of interest was identified as the

subject-individual spectral peak in α-frequency range ± 2 Hz. Although SSD is trained on a

narrowband process, we then applied obtained SSD spatial filters on broadband data. The

main idea here is that if the fundamental frequency and its harmonics belong to the same

spatial source, then the projected component should have a frequency spectrum displaying

corresponding α- and β-peaks. If β-oscillations indeed originate from the same source as α-

oscillations (this would be the case for non-sinusoidal signals) the application of SSD spatial

filtering would result in the extraction of not only α- but also β-oscillations. Using the same

spatial filter for all frequencies ensures that the extraction of different spectral components is

not individually optimized thus reducing the extraction of spatially different neuronal sources.

For comparison, the analysis was also performed with fastICA (non-linearity: u3, epsilon:

0.0001, number of maximum iterations: 1000).

For demonstrations, we generated synthetic compound signals from data by adding

extracted SSD components with a varying time shift. Empirical α/β-ratios were calculated as

the ratio of α- and β-SNR values, evaluated over segments of varying time length. The subtrac-

tion of 1/f-fit was not performed here, as its estimation becomes unstable for segments of short

length. Amplitude envelopes were calculated with the same parameters as for the synthetic

compound signals.

Results

Waveforms become more sinusoidal with increased temporal delays

between sources

Spatial mixing of non-sinusoidal sources results in more sinusoidal compound signals. Con-

sidering the example in Fig 2A, seven basis signals are added with temporal delays drawn from

a normal distribution. The compound mean signal has lost its asymmetrical shape and shows

no difference between crest and trough periods (shown for one oscillation cycle in Fig 2B),

compared to the basis functions. Note that the disappearance of the non-sinusoidal waveform

is not due to the changes in SNR but due to the time delay between individual sources. As a

temporal delay of e.g. 10 ms is equivalent to 1

5
p for the α-component, but twice as large, 2

5
p for

the β-component, this leads to faster attenuation of the β-component.

Spatial neuronal synchronization and the waveform of oscillations
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To quantify the attenuation of the faster component, we computed the power spectrum of

the compound signal X(t) by the Fourier transform as a function of standard deviation of the

temporal delays σ. The analytical solution is proportional to exp(−2(π � σ � f)2), as obtained by

Fourier analysis of the compound signal as a function of σ. The quadratic dependency on the

frequency term results in a faster attenuation of higher frequencies, as seen in Fig 2C. This

results in a more sinusoidal signal for larger values of σ. Not only spectral power, but also the

proposed measure for non-sinusoidality in the temporal domain is able to detect non-sinu-

soidality in the compound signal as a deviation from 0 (see Fig 2D). In our unconstrained

simulations, the spectral peak of the β-component can be higher than the spectral peak of

the α-component (see also later sections in the Results). In this case, extreme ΔCT values are

observed, leading to an increased standard deviation for large temporal delays. The implication

is that the degree of non-sinusoidality present in the waveform can serve as an indicator of spa-

tial synchronization. It can also constrain the mixing coefficients, which are known in simula-

tions, but are not known for real EEG recordings.

Fig 2. Simulation: Dependence of waveform measures on spatial mixing. (A) Illustration how non-sinusoidal waveforms add up

to a more sinusoidal compound signal if they are shifted with respect to each other with a certain standard deviation σ (example for σ
= 30 ms). (B) Examples of one cycle of source and compound waveforms and their respective zero-crossings with associated ΔCT

values. (C) The relative power of the two frequency components of the compound signal as evaluated from the Fourier spectrum.

The β-component attenuates faster than the α-component. Number of iterations = 1000. Number of sources = 40. Error bars

indicate ± 1 SD. In simulations, the obtained power for large temporal delays is constrained by the finite number of generators used

and results in a deviation from the analytical solution. (D) ΔCT for the compound signal drops as a function of the standard

deviation σ. In unconstrained simulations, SNRβ can get larger than SNRα, resulting in high values of ΔCT. Number of

iterations = 1000. Error bars indicate ± 1 SD.

https://doi.org/10.1371/journal.pcbi.1007055.g002
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As an example for the ΔCT-measure, we illustrate the Tc and Tt-distributions for different

types of EEG oscillations in the 8–13 Hz frequency band for an exemplary participant. After

SSD decomposition, one motor and one visual component was identified from the associated

activation patterns. We compute Tc and Tt for motor and posterior oscillations, shown in Fig

3. In this participant, a more non-sinusoidal oscillation can be found for the motor-compo-

nent. The motor component is typically described as arc- or comb-shaped [33, 34] and the

posterior α-component as symmetric [35]. Using a measure such as ΔCT can quantify wave-

form shape and shows that also posterior α-oscillations can also be of non-sinusoidal shape in

line with [29]. We provide more evidence to demonstrate the non-sinusoidal nature of α-oscil-

lations, see supplementary material, S2 Fig.

Demixed recordings show higher degree of non-sinusoidality

We quantified the extent to which ΔCT is affected by a demixing procedure, which brings sen-

sor signals closer to their sources. For this, ΔCT was computed in sensor space recordings for

all included participants, as well as for SSD-extracted components. SSD components have a

higher ΔCT indicating a higher degree of non-sinusoidality across participants (p = 5.7 � 10−15,

two-sided Wilcoxon signed rank test), as illustrated in Fig 4. We additionally ran our analyses

using fastICA instead of SSD. The results are comparable to SSD, with fastICA achieving a

higher ΔCT compared to sensor space (p = 8.86 � 10−4, two-sided Wilcoxon signed rank test).

The dependence of the ΔCT of SSD-components to SNR was assessed by computing the

SNR in the α-frequency band via 1/f-corrected spectrum and absolute value of ΔCT for all

SSD-components with α-SNR > 5 dB. We found a correlation of.242 (Spearman’s rho,

p< 6.99 � 10−31) of absolute ΔCT with α-SNR, with more non-sinusoidal signals as measured

by ΔCT for higher SNR. Resorting the absolute ΔCT-values according to their associated

Fig 3. Illustration: ΔCT differs for two EEG oscillatory components. Components extracted for one participant. Left: SSD

component pattern. Middle: for every oscillatory cycle, there are two corresponding ΔCT and Tc- and Tt-values. Red dot indicates

mean Tc- and Tt-values. Right: example time course excerpt of the signal. In this case, the motor component shows a characteristic

arc-like shape with larger non-sinusoidality than the posterior component.

https://doi.org/10.1371/journal.pcbi.1007055.g003
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β-SNR values shows that a β-SNR-level of the same magnitude as α-SNR of e.g�8 dB is

associated with higher ΔCT values. In other terms, a pronounced β-peak in the 1/f-corrected

spectrum corresponds to a higher degree of non-sinusoidality than an α-peak of the same mag-

nitude. This observation is in agreement with our simulations presented above indicating that

the presence of β-oscillations defines non-sinusoidality of the waveform.

The topographic distribution of ΔCT-values can be seen in Fig 4D, which shows consider-

able variation across participants. Although the group average in Fig 4A shows increased val-

ues for both central-motor and occipital channels, on a single subject level either a central-

motor or an occipital maximum is rather visible. In sum, the non-sinusoidality of EEG

recordings is affected by spatial mixing of oscillatory sources and also by SNR in relation to

1/f-noise.

Constructive and destructive interference with respect to temporal delays

A spatial summation of basis signals with the same spectral content but different temporal

delays can have differential consequences for the respective constituent frequencies, enhancing

or diminishing respective oscillatory power. We provide three examples for this phenomenon.

Fig 4. Data analysis: Empirical ΔCT-distributions. (A) absolute ΔCT across participants computed from sensor space data, plotted

topographically. (B) Maximal SSD absolute ΔCT is larger than sensor space absolute ΔCT across participants, N = 186, p = 5.7 �

10−15, two-sided Wilcoxon signed rank test. (C) Binned α-SNR and β-SNR as estimated from 1/f-adjusted spectrum versus mean

absolute ΔCT in that bin. Error bars are 25th − 75th percentile value ranges for absolute ΔCT for the respective bin. Wilcoxon signed

rank test between absolute ΔCT-values corresponding to the 10th bin of β-SNR and 5th bin of α-SNR: p-values: 5.40 � 10−18. (D) 18

single subject absolute ΔCT-topoplot examples show substantial variability of spatial ΔCT-distribution. Participants were selected

according to the number of channels satisfying the SNR-criterion of 5 dB, so a topography is visible.

https://doi.org/10.1371/journal.pcbi.1007055.g004
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Attenuation of the α-component and enhancement of the β-component. Non-sinusoi-

dal signals can mix in such a way that the more prominent α-component is attenuated, while

higher harmonics are preserved. This will lead to the emergence of β-events in the compound

signal without the strong presence of α-events, even though the original source signals still

have a high amount of α-frequency spectral content. Fig 5 shows two basis segments of real

EEG recordings which have the same spectral content (the bottom one is the time-reversed

version of the top one), which are added with varying temporal delays. Depending on this

delay, this results in periods in the compound signal where the α-component is diminished,

and a higher amount of β-spectral content emerges. This phenomenon is most pronounced if

the temporal delay is approaching π of the base oscillation (i.e. destructive interference), which

corresponds to 2π for the first harmonic (i.e. constructive interference). The origin of the β-

rhythm is debated [36], with recent investigations showing that β-oscillations occur in bursts

[37], not in continuous form. Until now, β-oscillations is only treated as a harmonic of α-oscil-

lations, when α-oscillations are present. We show that there could be instances over short time

periods, where strong β-oscillations can arise through spatial summation, without a visible α-

component in the compound signal. As a general rule of thumb, we recommend that β-oscilla-

tions should be analyzed in conjunction with α-oscillations, especially when the peak β-fre-

quency is exactly twice the peak α-frequency, indicating a harmonic relationship, whereas a

non-integer relationship of α- and β-frequency is indicative of independent sources.

Influence of temporal delays on α/β-ratios. Next, we show the impact of spatial synchro-

nization on α/β-ratios in a simulation with a higher number of source basis signals, each hav-

ing identical spectral content. As the temporal delay between source signals increases, a spread

in α- and β-SNR becomes visible, as shown in Fig 6. This is the same phenomenon as visible in

Fig 5. Illustration: The emergence of β-events from α-dominated sources. (A) Two basis functions (black) mix with a temporal

delay (σ = 15 ms) such that the α-power is enhanced in the compound signal (blue) during the segment marked in gray. (B) The

corresponding power spectrum of the segment marked in gray for subplot (A) for basis functions (black) and compound signal,

where both α- and β-spectral peaks are enhanced (blue). (C) Two basis functions (black) mix with a temporal delay (σ = 43 ms) such

that the α-power is diminished in the compound signal (red) during the segment marked in gray. (D) The corresponding power

spectrum of the segment marked in gray for subplot (C) for basis functions (black) and compound signal, where the α-peak is largely

diminished and β-peak is enhanced (red).

https://doi.org/10.1371/journal.pcbi.1007055.g005
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Fig 2C, where one sees a diminishing difference in oscillatory power for α- and β-components

with increased temporal mixing delay. The subplots in Fig 6 can be considered as detailed rep-

resentations of the amplitude-ratio distribution corresponding to points taken from x-axis in

Fig 2. From these subplots one can see that with the increase of the temporal delays between

non-sinusoidal sources the power of β in proportion to α grows which in turn can lead to

instances where primarily β-oscillations will be visible.

A mixture of a larger number of source signals can yield a change in spectral content of the

compound signal, even without any changes in the spectral content of the source basis signals.

This has implications for measures relating oscillatory power of two frequencies, for instance

α/β-ratio. Changes in these measures may not necessarily reflect changes in spectral content,

but a change in temporal coupling of non-sinusoidal signals.

α/β-ratios were also computed for real EEG recordings. A spread in these ratios is visible,

see Fig 7A. Considering segments of short length, periods were β-power is larger than α-power

results in α/β-ratios < 1. To summarize, in agreement with the simulations, we show that

obtaining larger β-power than α-power is also possible in real EEG data and this phenomenon

can be observed more often when considering shorter segments (Fig 7B).

Influence of temporal delays on amplitude envelope cross-frequency correlations.

Another result of differential attenuation of separate frequency bands is that correlations

between amplitude envelopes across frequencies are influenced by spatial synchronization. An

argument for the separation of α- and β-rhythms into individual components (not stemming

from non-sinusoidal waveform) is that only weak amplitude envelope correlations [38] can be

found. The argument states that if they originate from the same cortical source, amplitude

envelope correlations must be strong. We show that amplitude envelope correlations can van-

ish due to the non-trivial phase cancellation effects in non-sinusoidal signals. The signal is

attenuated to a different degree for the constituting frequency components of the non-sinusoi-

dal base signals. As a result, such attenuation can lead to no correlation between the corre-

sponding envelopes or even to a negative correlation. In line with previous studies about the

spurious effects of non-sinusoidal oscillations [21–23] these effects of spatial summation pro-

vide further cautionary. In simulations, we analyzed amplitude envelope correlations between

α- and β-components, extracted with the corresponding band-pass filtering. Even though the

basis functions were generated as a non-sinusoidal waveform with fixed phase delay between

Fig 6. Simulation: α/β-ratios change with increased mixing time lags. (A) α- vs. β-power for compound signals

composed of non-sinusoidal basis signals for varying standard deviations of the time shift. Spread in power is larger for

larger time shifts. Each point signifies α- and β-power as computed from one compound signal. (B) This results also in

a spread of α/β-ratios as constructed from α- and β-power. Number of generators: 20, number of iterations: 1000,

segment length = 5 s.

https://doi.org/10.1371/journal.pcbi.1007055.g006
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the two rhythms, a range of very different correlation values can be observed for individual

segments of the compound signal (i.e. a simulation of synthetic EEG data). Fig 8A shows

exemplary time courses for large positive and surprisingly even negative α- vs. β-correlations.

These negative correlations can not be predicted from the amplitude dynamics of individual

Fig 7. Data analysis: Empirical α/β-ratios. All SSD components from all participants pooled. (A) α/β-ratios for

different segment lengths, pooled over segments. (B) Percentage of α/β-ratio< 1 (i.e. β-SNR is higher than α-SNR) for

different segment lengths.

https://doi.org/10.1371/journal.pcbi.1007055.g007
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sources as they only have positive correlations by construction. The observed correlations are

dependent on the standard deviation of the mixing coefficient distribution, as illustrated in Fig

8B, with negative correlations emerging with the increase of the standard deviation of mixing

coefficients. The shown examples are for a fixed segment length, but Fig 8C shows that the

effect is present for different lengths of segments.

To validate predictions from simulations, we also quantified α vs. β amplitude envelope cor-

relations in empirical data. Fig 9 shows that amplitude envelope segments as extracted by SSD

display larger positive correlations compared to sensor space amplitude envelope correlations.

The figure also shows the presence of negative correlations in agreement with the predictions

from simulations. Note that with smaller segments one can observe more and stronger nega-

tive correlations due to their transient nature.

Discussion

In this study we investigated how spatial neuronal synchronization can influence the wave-

form of neuronal oscillations, affect α/β-ratios and α- vs. β-envelope relations. Compound sig-

nals become more sinusoidal than their sources for a certain range of temporal delays. We

show that the examined measures can be affected solely by these delays even when the basic

Fig 8. Simulation: Relationship between α- and β-envelopes. (A) Examples for compound signals with positive (top) and negative

(bottom) α- vs. β-envelope correlations. The β-envelope was scaled to aid comparisons to the α-envelope (σ = 10 ms, segment

length = 5 s) (B) Spearman rank correlation between synthetic α- vs. β-envelope time courses over 1000 independent segments.

Number of generators = 20. (C) The average correlation as a function of the segment length and standard deviation of the time shift

between basis functions.

https://doi.org/10.1371/journal.pcbi.1007055.g008
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Fig 9. Data analysis: SSD components show increased correlations between α- and β-envelope time courses

compared to sensor space. Subplots are for different segment lengths, (A) 2 s (B) 5 s (C) 10 s. Three sensor space

channels (C3, C4, Oz) and three SSD components for each participant, pooled over participants, p-values for Wilcoxon

rank sum test (NSSD = 464, Nsensors = 374).

https://doi.org/10.1371/journal.pcbi.1007055.g009
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waveform and spectrum remain the same for the original sources. Moreover, in short seg-

ments, β-SNR can be larger than the α-SNR, through the attenuation of the base frequency.

This in turn might relate to the detection of β-oscillations in EEG/MEG without the concur-

rent presence of detectable α-oscillations. This is relevant for the studies using band-ratios as

biomarkers, such as θ/β- or α/β-ratio, as indicators for instance relating to cognitive perfor-

mance anxiety [39] and attention-deficit/hyperactivity disorder [40]. Also, for event-related

desynchronization (ERD), where α- and β-ERD has been investigated separately, the differ-

ence in post-movement rebound time-courses between the two rhythms [41] may not neces-

sarily reflect independent rhythms, but may be a consequence of non-sinusoidal waveform

shape. Moreover, many previous studies on β-oscillations reviewed in [1, 36] indicate that

these oscillations are involved not only in sensorimotor but also in cognitive functions includ-

ing working memory and decision making. Given that β-oscillations often participate in these

functions by transiently changing their amplitude, the results of our study indicate (especially

for short time intervals) that the changes in β-oscillations should always be considered in rela-

tion to the dynamics of α-oscillations.

Regarding the variability in spectral profiles, different scenarios are possible when estimat-

ing α- and β-relationships arising from the non-sinusoidality of waveforms. Importantly, these

diverse spectral profiles can arise from the spatial mixture of non-sinusoidal basis signals with

the same waveform. As illustrated in Fig 10, for the simple scenario with only two sources, dif-

ferent components of a non-sinusoidal waveform can cancel depending on the temporal delay

between them. While we primarily focus in this study on the relationships between α- and β-

oscillations, the results can be generalized to the relationships between oscillations at other fre-

quency bands.

Fig 10. Illustration: Possible α/β-dynamics as function of the time delay for simple synthetic signals. Two non-sinusoidal μ-

wave signals were mixed with varying time delay ϕα between them (ϕα = 360˚ is equal to 100 ms, a full cycle of the base α-frequency

oscillation). A full α-cycle corresponds to two full β-cycles: ϕα = 2 � ϕβ. (A) A polar plot showing α- and β-power as a function of the

time delay ϕα. α- and β-power decay differentially as a function of the time delay ϕα. (B) Time course of the basis signals and the

compound signal with the corresponding power spectrum showing maximal α- and β-power for ϕα = 0˚. (C) Time course of the

basis signals and the compound signal with the corresponding power spectrum showing attenuation of β-power for ϕα = 90˚/270˚.

(D) In the case of ϕα = 0˚, in the compound signal, only the β-component remains when the α-peaks of first basis signal align the the

troughs of the second basis signal, causing cancellation.

https://doi.org/10.1371/journal.pcbi.1007055.g010

Spatial neuronal synchronization and the waveform of oscillations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007055 May 14, 2019 15 / 22

https://doi.org/10.1371/journal.pcbi.1007055.g010
https://doi.org/10.1371/journal.pcbi.1007055


Limitations

In the present study, we realized the mixing of signals from individual neuronal populations

with unitary weights in the simulations. For empirical recordings, data B recorded with EEG/

MEG can in general be represented as B = L � J, where L is a lead-field matrix and J contains

dipole currents at different locations. In our simulations, the sources can be assumed to be

located close to each other (e.g. <5 mm) and in practical terms their location and orientation

could be considered to be approximately the same thus having the same gain in L matrix. In

this way the same gain (unitary or not) for all sources is justified and would lead to similar

results. Already on this spatial scale, sources display great dynamical variety [42], with diverse

temporal delays [43]. Of course, EEG activity reflects the superposition of a large number of

other remote sources, where the mixing of signals at the sensor level would occur with differ-

ent weights. This, however, would not change one of the main findings of the study qualita-

tively, namely that the mixing of many non-sinusoidal sources results in more sinusoidal

signals.

From our simulations, it follows that if the amplitude weight from one of the sources

would be very large (far larger than the weight from other sources), then the signal would

remain strongly non-sinusoidal. Only when weights of other multiple sources have sufficient

strength and these sources are not synchronized at exactly zero-lag delay [44], only then the

superposition of the signals results in more sinusoidal signals. At the level of the remote neu-

ronal populations recorded with EEG, this observation has been confirmed in our study. We

showed that ΔCT deviated stronger from 0 for SSD components compared to sensor space

data since in the latter case effects of the spatial mixing are more pronounced. Consequently,

introducing simulations with different spatial weights would only result in superimposed

signals having more non-sinusoidal waveform. Even despite relatively simple but neuro-

physiologically plausible simulations, we are still capable to show the effects of spatial mixing

on waveforms and on complex cross-frequency interactions. The model should be suffi-

ciently complex (but not too complex) to capture the phenomenon under study. Nikulin

and Brismar (2006) [29] showed that two sinusoids at different frequencies with a specific

phase shift and amplitude ratio capture accurately the prototypical shape of non-sinusoidal

oscillations recorded in actual EEG experiments. This shape is reproducible across a major-

ity of subjects (n = 176) in that study and for central and occipito-parietal regions. Similar

simple parametric models with superposition of trigonometric functions have been used to

learn the morphology of the μ-rhythm for monitoring mental states in brain-computer

interfaces [45, 46] or investigating the effects of non-sinusoidal shape on phase-amplitude

coupling [47]. A biophysical model could further improve the understanding of how exactly

transmembrane currents and kinetic of ion channels lead to the generation of a given wave

shape. Typically, neural mass models, where the output macroscale signal is produced

through an interplay of excitatory and inhibitory populations, are able to produce signals of

non-sinusoidal waveforms [48, 49]. Specifically, for the generation of the sensorimotor μ-

rhythm, a model on the level of a cortical column with spatially extended neuronal morphol-

ogies is able to generate non-sinusoidal source signals through integration of thalamic driv-

ing input via basal and apical dendrites of pyramidal neurons [50]. However, once we have

an accurate description of the waveform, we can then proceed with the question of what

would be the consequences for EEG/MEG/LFP signals when processes with such waveform

are mixed with variable time-delays. Although these time delays are not accurately known in

advance, we provide a wide range of simulations covering a relatively broad distribution of

delays. Therefore, investigating waveform of oscillations can aid in constraining empirical

mixing temporal delays.
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Implications

If we assume that the underlying source signals are non-sinusoidal, as evidence from LFP and

invasive recordings suggests, the degree of non-sinusoidality present in macroscale EEG and

MEG recordings relates to spatial synchronization with small time lags. Non-sinusoidality in

EEG/MEG recordings should be present to a higher degree in signals which demonstrate less

spatial mixing. This is the case for instance for many LFP recordings where spatial mixing is

restricted to local neuronal populations located in the proximity to the recording electrode

[13, 14]. Therefore, non-sinusoidality of the oscillations can be used as a proxy for demixing of

neuronal signals recorded with EEG/MEG. SSD is based on covariance matrices of narrow

band processes. Utilizing a broader spectrum of information content is possible with other

methods, for instance by learning a dictionary of canonical waveforms and associated spatial

patterns [16] or using bicoherence for localizing non-sinusoidal waveform shape generators

[51, 52]. Note that the synchronization index can be 1 for sources having phase lag of 0 or

phase lag of p
2
. In our study we are not measuring the synchronization strength per se, but

rather state that the wide distribution of time delays between sources translates to the degree

of non-sinusoidality in the measured neuronal signals. Improved methodology will aid in

determining functional properties of oscillations with increased sensitivity (not affected by

narrow band-pass filtering) when relating oscillatory component to behavioral and stimulation

outputs.

Investigating waveform in the temporal domain may aid in an improved determination of

phase. A shortcoming of current methods for the computation of spatial filters which are

based on linear decompositions (SSD, CSP, ICA) is that their solutions are invariant with

respective to sign/polarity of the extracted signals. It has been shown that brain states associ-

ated with specific phases have differential functional consequences for cortical excitability and

plasticity [24, 53, 54]. For instance, magnetic stimulation at the trough of the sensorimotor

rhythm elicits a higher response compared to stimulation at the peak of the sensorimotor

rhythm [53]. In this study, the rhythm of interest was extracted with a local spatial filter using

a fixed electrode set, which is agnostic to physiological state. In subjects where the spatial filter

would extract an inverted source signal, for instance due to EEG cap positioning, this func-

tional relationship would be inverted, with higher response at peak states compared to trough

states. Therefore, it is important to be able to uniquely define positive and negative peaks of

an ongoing rhythm, which is possible when considering measures such as ΔCT. Additionally,

the concept of a protophase [27] may aid in describing non-uniform phase velocity and the

resulting relationships between cognitive functions and the evolution of oscillations. In fact, as

indicated in previous studies [55] duty cycle in neuronal oscillations relates to windows of

opportunity for spike transfer between distinct neuronal populations. While 50% duty cycle

relates to the same duration of excitatory and inhibitory phases, a deviation from this number

(e.g. 30%) can introduce significantly shorter duration of excitatory phase thus providing

more precise tuning for the neuronal communication, effectively blocking effects of spikes

arriving at the considerably longer inhibitory phase. Spatial mixing in EEG/MEG, leading to

more sinusoidal signals, might create an illusion of oscillations with 50% duty cycles while at

the source level the duty cycle can be considerably different. When using band-pass filtering

non-sinusoidality is removed since only one Fourier component is preserved effectively repre-

senting only one frequency and its immediate neighborhood. Behavioral and stimulation

effects of such band-pass filtered signal will still be present yet neurophysiological interpreta-

tion can be different.

It has been debated whether α/β-rhythms have a common or separate origin [29, 38, 56].

One of the arguments in favor of both rhythms originating from the same source is that if
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α- and β-oscillations are generated by the same neuronal source, producing rhythmic but non-

sinusoidal waveform, then one should observe a strong positive amplitude correlation between

the two oscillations [38]. This argumentation is based on the linearity of the Fourier transform,

as briefly illustrated in the following:

As shown above, our non-sinusoidal signal can be represented as S = α + b � β, with the cor-

responding Fourier transform of S being F(S). When the amplitude of S is changing in differ-

ent time segments (multiplied by Ai), the corresponding Fourier transform at segment i, can

be written as: F(Ai � (α + b � β)) = Ai(F(α)) + Ai � b(F(β)), which in turns shows that the ampli-

tude of α- and β-oscillations should covary linearly when the amplitude of S changes by Ai.

The amplitude of oscillations in different frequency bands can covary for different neuronal

sources, but the presence of strong correlations between oscillations at different frequencies

with similar spatial topographies is consistent with the idea of them originating from the same

neuronal source. Yet, our simulations show that even when a comodulation between α- and β-

oscillations is certainly known to originate from the non-sinusoidal waveform of oscillations,

due to the peculiarities of the spatial mixing, it is possible not to observe such positive comodu-

lation. Moreover, surprisingly it is even possible to detect anticorrelation between the ampli-

tudes of α- and β-oscillations. However, this is entirely due to the effects of spatial mixing of

individual signals each of which by itself has only positive correlations between α- and β-oscil-

lations. Yet, a spatial summation may lead to the occurrence of negative correlations at the sen-

sor level. Importantly, even when using sophisticated spatial filtering techniques such as ICA,

SSD, etc. it is unlikely to disentangle such spatial mixing effects originating from the local cor-

tical patches since the resolution of EEG/MEG and even LFP recordings is not sufficient. This

also applies to the argument supporting a separate origin of oscillatory components requiring

independence of the corresponding temporal dynamics. We have shown that seemingly sepa-

rate amplitude time courses may not be an indication for the independence of the rhythms,

but can also occur when the coupling between different sources changes in the span of only a

few hundreds of milliseconds. Whether β-events can arise through decoupling of oscillators

as in the presented simulations, is a topic for further research. This can reveal insights about

mesoscopic brain organization and the interplay of different local rhythms, as extracted by

EEG/MEG.

Regarding cross-frequency interactions, our study shows that the amplitude-to-amplitude

cross-frequency coupling can also be affected by the non-sinusoidal waveform of the oscilla-

tions. For all three types of cross-frequency interactions (phase-to-phase, phase-to-amplitude,

amplitude-to-amplitude), spatial synchronization can lead to either very strong or weak indi-

ces characterizing cross-frequency interactions, corresponding respectively to a small or rather

large jitter in the time delays between neuronal sources (see Fig 10). This again requires careful

interpretation of the obtained data and discussion about the possible effects of spatial synchro-

nization among neuronal populations generating EEG/MEG/LFP signals.

Supporting information

S1 Fig. Illustration: 1/f-corrected power spectra for different SNR-levels. All example

power spectra were computed on Laplacian-filtered C3-signals. The spectra show a clear pres-

ence of peaks in the frequency band of interest, thus justifying the selection of these subjects

for further analysis. The SNR-threshold for inclusion was 5 dB.

(TIFF)

S2 Fig. Illustration: Asymmetric occipital α-oscillations. Each row corresponds to one SSD

component extracted for different subjects. From left to right column: (1) Occipital topogra-

phy. (2) ΔCT distributions. For every oscillatory cycle, there are corresponding Tc- and Tt-
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values. Red dot indicates mean Tc- and Tt-values. (3) Power spectrum showing pronounced α-

and β-peaks. Pink lines indicate α-peak and first and second harmonic frequency. (4) Example

time course excerpt of the SSD component.

(TIFF)

S3 Fig. Illustration: ΔCT for different noise levels. The spread of Tc- and Tt-values increases

with increasing noise level. Illustration was created by adding an increasing amount of 1/f-

noise to a oscillatory component as extracted by SSD.

(TIFF)
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