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Abstract

Introduction: The almost exclusive use of only praziquantel for the treatment of schistosomiasis 

has raised concerns about the possible emergence of drug-resistant schistosomes. Consequently, 

there is an urgent need for new anti-schistosomal drugs. The identification of leads and the 

generation of high quality data are crucial steps in the early stages of schistosome drug discovery 

projects.

Areas covered: Herein, the authors focus on the current developments in anti-schistosomal lead 

discovery, specifically referring to the use of automated in vitro target-based and whole-organism 

screens and virtual screening of chemical databases. They highlight the strengths and pitfalls of 

each of the above-mentioned approaches, and suggest possible roadmaps towards the integration 

of several strategies, which may contribute for optimizing research outputs and led to more 

successful and cost-effective drug discovery endeavors.

Expert opinion: Increasing partnerships and access to funding for drug discovery have 

strengthened the battle against schistosomiasis in recent years. However, the authors believe this 

battle also includes innovative strategies to overcome scientific challenges. In this context, 

significant advances in in vitro screening as well as computer-aided drug discovery have 

contributed to increase the success rate and reduce the costs of drug discovery campaigns. 

Although some of these approaches were already used in current anti-schistosomal lead discovery 

pipelines, the integration of these strategies in a solid workflow should allow the production of 

new treatments for schistosomiasis in the near future.
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1. Introduction

Schistosomiasis is a neglected tropical disease (NTD) caused by S. mansoni, S. 
haematobium, and S. japonicum, three species of Schistosoma genus parasitic flatworms, 

accounting for the majority of human infections. Schistosomal infections cause chronic and 

often debilitating disease that ends up impairing development and productivity of affected 

individuals, and is strongly linked to extreme poverty [1]. Recent estimates of the World 

Health Organization suggest that around 258 million people are infected resulting up to 

200,000 deaths annually. Furthermore, the disease is endemic in 78 countries worldwide, 

mainly in sub-Saharan Africa, Middle East, Caribbean, and South America, where the 

number of cases is positively correlated to poor knowledge about the disease, poor 

sanitation, and a lack of effective health policies [2].

Currently, the control of schistosomiasis relies on presumptive treatment or case 

management with a single drug, praziquantel (PZQ), which has been used in mass drug 

administration programs for almost four decades [3]. However, the disseminated and 

repeated use of this drug in endemic areas as well as high rates of reinfection raise concerns 

about the emergence and evolution of drug-resistant parasites [4,5]. This problem may be 

further aggravated by the lack of efficacy of PZQ against schistosomula and juvenile worms 

[6], often a potential cause of treatment failure in endemic areas. Hence, there is an urgent 

need for discovering new anti-schistosomal drugs. This paper focuses on current 

developments in anti-schistosomal lead discovery, with particular emphasis on virtual and 

automated in vitro target-based and whole-organism screenings. In addition, we highlight 

recent progress in each area and suggesting possible solutions to existing pitfalls.

2. Challenges to discovering new anti-schistosomal drugs

The long-voiced concerns associated with PZQ argue for increased efforts to identify new 

anti-schistosomal candidates in drug research and development (R&D) programs. However, 

the decades-long availability of PZQ as a well-tolerated, affordable (or donated), oral and 

single dose drug, associated with low financial viability of new anti-schistosomal drugs in 

poor resource countries does not offer an incentive to enable the high and risk-associated 

investments in R&D required for the discovery of new treatments for schistosomiasis. 

Nonetheless, assuming that ‘it is impossible develop resistance to PZQ’ is both reckless and 

risky, as it may minimize the interest in R&D of alternative anti-schistosomal drugs [7]. 

Furthermore, while public-private partnerships have been formed for some of the NTDs, 

e.g., the Drugs for Neglected Diseases Initiative (DNDi) focusing mainly on human African 

trypanosomiasis, Chagas disease, leishmaniasis, filariasis, pediatric HIV, and mycetoma, 

corresponding drug discovery and development programs do not yet exist for 

Schistosomiasis. Consequently, nowadays the number of anti-schistosomal drug candidates 

undergoing clinical trials is very small.
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3. Schistosome drug screening strategies

The majority of anthelminthic drugs approved for human use have been derived from 

veterinary medicine and discovered through in vivo screening of selected compounds in 

animal models [8]. Since these screens are labor-intensive and expensive, attention has 

shifted to developing primary in vitro screens. Typically, worms are cultured for a period of 

days and morphological changes (e.g., shrinkage, curling, tegumental disruption, worm 

disintegration) and motility (e.g., increased activity, sluggishness, or paralysis) can be 

determined using a predetermined scale [9]. However, manual visualization of drug efficacy 

in vitro is subjective, laborious, and unsuitable for high-throughput screening (HTS) [10]. 

This limitation can be overcome by the application of automated readouts incorporated into 

HTS platforms, allowing very large compound collections to be screened against relevant 

schistosome targets or in the whole-organism, invigorating the lead discovery pipeline. 

Below, we will discuss the studies highlighting the progression of screening technologies 

developed to accelerate discovery of new lead candidates for schistosomiasis.

3.1 Target-based screens

Target-based HTS campaigns have been emphasized in last decade as a way of harvesting 

the investment made in parasite genomics consortiums [11]. Such efforts eventually led to 

translational research-based groups and platforms taking up genome sequencing of S. 
mansoni [12,13], S. japonicum [14] and S. haematobium [15], resulting in new information 

on the parasites’ biological pathways, facilitating identification of relevant targets for 

therapeutic intervention, and opening new possibilities to HTS on recombinant schistosome 

proteins. Several changes have encouraged this evolution, including price decreases of the 

automation and instrumentation sector, availability of commercial compound library 

datasets, simplification of systems and software, and recruitment of industry-experienced 

personnel into research groups [16–18].

Literature examples of HTS campaigns on anti-schistosomal lead discovery field are scarce, 

but some HTS-adapted assays for some S. mansoni targets have been published [19,20]. For 

instance, Simeonov and colleagues [19] developed a HTS assay for identification of 

thioredoxin glutathione reductase (TGR) inhibitors, i.e., a key enzyme in redox cascade 

pathway and a validated target for schistosomiasis [21]. As a result, oxadiazole 2-oxides 

were identified as TGR inhibitors and nitric oxide donors, with inhibition activities in the 

low micromolar to low nanomolar range. Incubation of parasites with these compounds led 

to rapid parasite death. Further, the treatment of schistosome-infected mice with 4-

phenyl-1,2,5-oxadiazole-3-carbonitrile-2-oxide, also known as furoxan, killing all relevant 

stages of S. mansoni (schistosomula, juveniles, and adults), and egg-associated pathologies. 

The results of these studies verify the utility of oxadiazole-2-oxides as new leads in control 

of schistosomiasis [22].

3.2 Automated whole-organism screens

The whole-organism schistosome screen approach (phenotypic screening) is an 

indispensable method to discover new anti-schistosomal agents. Compared to target-based 

screens, whole-organism screens have, at best, a medium throughput, but validated lead 
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compounds identified from these methods must have been able to reach the designated target 

within the assayed organism by crossing several biological membranes and resisting to 

degradation by detoxification enzymes. Conversely, compounds obtained through target-

based screening are frequently found to lack activity against the whole-organism [8,23]. In 

view of these advantages, improvements in robotics and automated acquisition technologies 

over the last decade have meant that the state-of-the-art for whole-organism screening is now 

fast, quantifiable, and rigorous [23]. In the following subsections, we discuss advantages and 

limitations of state-of-the-art medium- and high-throughput methods.

3.2.1 Isothermal micro-calorimetric assay—The isothermal micro-calorimetric 

assay effectively measures heat flow of biological processes (endo- or exothermic reactions) 

generated by worms using a 48-channel isothermal microcalorimeter to determine 

schistosome viability over the time. Sharp peaks in the heat flow occur as the organism 

moves, allowing the measurement of worm motility. This method reliably distinguishes real-

time changes in metabolism and motility of S. mansoni schistosomula and adult worms after 

treatment with anti-schistosomal compounds. Although isothermal micro-calorimetry 

method seems to have many advantages, some drawbacks have to be noted. For instance, the 

heat-flow curves obtained reflect the overall activity of the worms. It is not possible to 

distinguish between worm contractions and increased movement, because both physiological 

processes result in increased metabolic activity with heat production. Other disadvantages 

includes the high cost of the microcalorimeter, the number of replicates (at least 400) 

required to achieve analyzable signals, and reduced throughput caused by extensive time for 

each analysis done in a real time fashion [24].

3.2.2 Impedance-based assay—Measurement of electrical impedance has been 

applied to assess motility of S. mansoni cercariae, adult worms, and hatching of eggs. The 

system named xCELLigence™ worm real-time motility assay [25], also known as xWORM 

assay [26], comprises a 96-well E-plate covered in gold microelectrodes which measure 

changes in conductivity due to contact of the worms with the electrodes. This technique has 

been favorably received in the field of lead discovery because of its sensitivity, broad 

applicability and adaptability, ability to measure motility under high-throughput, and 

minimal effort and training required [25,26].

3.2.3 Image-based assays—With advances of high-resolution cameras and computer-

based image analysis programs, imaging also has become a powerful tool for demonstrating 

anti-schistosomal activity. Image-based assays have the advantage over the use of 

fluorescent labels in requiring fewer manipulation steps and avoiding use of potentially toxic 

fluorophores that may affect the outcome of the assay. In this context, high-content 

screening (HCS) microscopes/cameras are now able to capture high resolution images of 

schistosomula and adult worms in order to demonstrate phenotypic and/or motility changes 

[23].

HCS machines are so termed due to the large amounts of data produced requiring use of 

advanced automated image analysis software. Regarding HCS analysis for schistosomula, 

there has been recent progress in development of automated imaging algorithms utilizing 

video microscopy, so that time-dependent phenotypic changes following drug treatment 
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could be monitored [27,28]. Of special interest, is the well validated high-throughput system 

developed by Paveley and colleagues [29]. This system includes compound stamping, 

robotic integration, incubation, parasite resuspension, and automated image analysis. Test 

compounds are cultured with schistosomula for 3 days in 384-well plates; then well content 

is first re-suspended by repeat aspiration to redistribute individual larvae across the field of 

view and to disrupt clumping of schistosomula. The HCS then collects 4-tiled objective 

images for phenotype analysis and five time-lapse images for motility analysis (with 4x 

objective). The image analysis algorithms integral to the HCS are then applied in three 

distinct stages. The first step in this algorithm is to identify sufficient schistosomula or to 

segment them from the background image using basic segmentation algorithms to detect 

individual larvae. Following successful segmentation, a phenotype score for individual 

larvae is assigned by a Bayesian classification model built using a dataset of 20,000 

manually phenotyped schistosomula treated with a range of known anti-schistosomal 

compounds. Finally, to assess larvae motility, a score is produced for each larva based on the 

change in area between successive time-lapse images which is averaged across the well 

[23,29].

In contrast, WormAssay was developed to quantify motility of adult worms. This system is 

based on dark-field microscopy imaging, where plates are illuminated from the side. This 

enhances the contrast between the background and the worms, allowing a more efficient 

detection of the parasites, and consequently generates ideal images for recording and 

analysis. Images comprising the entirety of the plate are collected, and a further analysis 

assesses movement of all worms within each well by two separate algorithms based on 

contour velocity and area occupation. As result, WormAssay quantifies each worm’s 

movement simultaneously on the entire plate, with each plate taking approximately 30 

seconds to 1 minute to read. The system is cost-effective and capable of screening a large 

number of compounds. The application supports 6-, 12-, 24-, 48-, and 96-well plates, but the 

assay throughput is currently limited by number of worms produced and delivered [30].

3.3 Luminescence- and fluorescence-based assays

During the last years, notable advances were obtained for detection of schistosomula 

viability through quantitation of luminescence and fluorescence emitted by cellular markers 

and metabolites. These assays can be read by an automatic plate reader, making a cheaper, 

simpler, more practical and more trainable read-out alternative, requiring little extra software 

or equipment [31]. Currently, four fluorescent assays (i.e., (i) Alamar blue [32] and (ii) 

resazurin [33] reagents; (iii) the fluorescein diacetate/propidium iodide multiplex assay [34]; 

and (iv) L-lactate commercial kit [35]) and luminescent assays based on quantification of 

adenosine triphosphate [31,36] have been studied. Although these assays are viable tools in 

anti-schistosomal lead discovery, they have some limitations. For instance, the Alamar blue 

assay [32] could achieve signal to concentration tests in schistosomula only after 24 hours of 

incubation with the marker, while the assay developed by Marxer and colleagues [33] using 

resazurin failed to generate dose-dependent viability curves and to distinguish between live 

and dead schistosomula after 72 hours of drug exposure. Fluorescein diacetate/propidium 

iodide assay [34] requires high number of schistosomula to assess viability in a drug 

sensitivity assay, which reduces its throughput. The assay developed by Howe and 
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colleagues [35] also has a reduced throughput, since screening involves measurement of L-

lactate concentrations by removal the supernatant of the well plate (without aspirating the 

schistosomula) and then diluting it to an acceptable fluorescence range.

4. The open data era

The current strategy to discover lead compounds consists on a data-driven process that is 

reliant on producing bioactivity data for large chemical libraries in high-throughput 

campaigns [37]. However, the creation of automatized schistosome screening platforms is 

beyond the reach of most researchers due to its high cost and infrastructure requirements. To 

make in vitro tests less expensive, researchers have used data retrieved from assays to 

explore computer-aided drug design (CADD) approaches. Currently, several datasets 

exclusively dedicated to lead discovery are freely available in publicly databases, such as 

PubChem Bioassay [38], BindingDB [39], and ChEMBL [40]. The data related to 

schistosomiasis could also be found in these databases. Deposited data include information 

regarding compounds, their bioactivities tested against a specific target or schistosome life 

stage, and the description of the biological assay extracted from the reference paper. Full 

exploitation of this rich source of data is of high interest to researchers in the field of CADD 

to explore the anti-schistosomal chemical space [41,42].

5. Virtual screening

Virtual Screening (VS) has emerged as a powerful and straightforward computational 

method to guide the identification of new hits from large chemical libraries. In principle, this 

method is often compared to a funnel, where a large number of compounds in chemical 

libraries (i.e., 105 to 107 compounds) are reduced by a computational tool to a smaller 

number that will then be tested experimentally (i.e., 101 to 103 compounds) [43,44]. In 

general, VS approaches do not hold the drawbacks that are characteristic of experimental 

approaches, such as accessible chemical space, time, automatization level, or number of 

worms produced. Nevertheless, the expectation that VS could completely replace in vitro or 

in vivo approaches is over-optimistic. In addition, typical hit rates from in vitro approaches 

can range between 0.01% and 0.14%, while hit rates for prospective VS typically range 

between 1% and 40% [45]. Thus, compounds from the subset that pass the initial VS are 

found to be biologically actives at a higher rate and at a lower cost. Because of their obvious 

advantages, VS approaches are widely employed in pharmaceutical industry and academic 

organizations. Nevertheless, in anti-schistosomal research, the application of VS approaches 

is limited by a small number of recent studies [46–50]. The main VS approaches that can be 

implemented in a hit identification pipeline and examples of successful applications of VS 

workflows leading to the identification of new anti-schistosomal hits are discussed in next 

sections.

5.1 Structure-based virtual screening (SBVS)

SBVS is becoming an essential tool in assisting fast and cost-efficient lead discovery. The 

application of SBVS strategies in schistosome lead discovery facilitates understanding the 

molecular basis of parasite biology and development and utilizes the knowledge of the 3D 

structure of the biological target in the process to select ligands with acceptable affinity and 
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complementarity with the binding site. In this context, genomic and proteomic studies have 

provided basis into the identification of validated schistosome targets [51,52]. Currently, 3D 

structures of 35 different schistosome targets have been solved by X-ray crystallography and 

nuclear magnetic resonance (NMR) and stored in public databases such as the RCSB Protein 

Data Bank (PDB) [53], leading to attractive opportunities for the application of SBVS 

strategies. The main SBVS approaches are discussed below.

5.1.1 Protein-ligand docking—The most extensively used SBVS method is docking, a 

tool that involves fitting the ligands into the binding site of a 3D structure in order to predict 

their binding affinities [54]. Generally, docking calculations can be accomplished using two 

types of algorithms: the search algorithm and the scoring function. The search algorithm 

generates the various possible poses to fit the ligand into the binding pocket of the receptor. 

The most known search methods are: (i) Monte Carlo and genetic algorithms; (ii) molecular 

dynamics (MD) and energy minimization methods; and (iii) systematic methods. Scoring 

function ranks the different poses and locations of the ligand that are generated by the search 

algorithm, and orders them by a score. Commonly used scoring functions can be categorized 

as follows: (i) empirical scoring functions; (ii) force field-based functions; and (iii) 

knowledge-based functions. The discussion about search algorithms and scoring functions is 

beyond the scope of this review, so detailed information can be obtained elsewhere 

[52,54,55].

5.1.2 Structure-based pharmacophores—Structure-based pharmacophores 

complement docking procedures, including the same level of information, but are less 

computing-demanding. In structure-based pharmacophore approach, pharmacophore models 

are derived from the 3D structure of the protein. This method can work both with a free 

(apo) structure or a ligand-target complex (holo) structure. The generation of models using a 

holo structure allow complete exploration of interactions with binding site, and inclusion of 

shape and volume information derived directly from the structural data. In absence of co-

crystalized ligand in binding site, the complex can also be obtained by a docking approach, 

where a small ligands’ binding orientation in the protein is predicted [56,57]. For apo 

structures, pharmacophores can also be obtained using functional groups or small fragments, 

also referred as molecular probes, to map possible interaction sites or hot spots within a 

binding site. Selected hot spots can then be converted into pharmacophoric features in order 

to generate a structure-based pharmacophore model [57].

5.1.3 Piggy-back—The ‘piggy-back’ is a useful strategy for exploring targets studied in 

other diseases (human or parasite either) once it facilitates the development of new drugs 

against homologous targets in other organisms. The efforts in finding validated drug targets 

and identification of their homologs in schistosome provide evidence of target druggability 

and may offer new chemical scaffolds, which can be optimized for the schistosomiasis [58]. 

In this context, gene ontology informations available for schistosomes can be used in order 

to compare targets, and consequently, identify lead candidates, based on their sequence 

motifs and binding sites similarities or using 3D structural information. In many cases, these 

approaches focus on those residues that are known from experimental molecular recognition 

studies or based on prediction of functional residues. For instance, we use sequence 
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alignment to identify several S. mansoni macromolecules with homologous human and 

microbial targets [59]. As a result, several drugs with good bioavailability were predicted as 

new drugs for treatment of schistosomiasis, opening new opportunities for experimental 

validation [59].

5.2 Ligand-based virtual screening (LBVS)

LBVS is the approach of choice when the biological target is not known or its 3D structure 

is not available. In this approach, prior knowledge of a reference set of compounds with 

biological activity against a target is used to identify structural rules to identify new lead 

candidates for experimental evaluation [60]. There are four main LBVS methods: (i) 

similarity search; (ii) ligand-based pharmacophores; (iii) 3D shape matching; and (iv) 

QSAR.

5.2.1 Similarity search—Similarity search is used to identify new compounds by 

measuring the level of their structural similarity to the known active compounds. This 

approach is based on the assumption that structurally similar compounds have similar 

biological properties. Here the compounds are typically represented by molecular 

fingerprints [61], a high-dimensional vector of bits that accounts for the presence (1) or 

absence (0) of a fragment in a compound, turning it into a sequence of bits that can then be 

easily compared with other bit sequences. This comparison must then be expressed in a way 

that can be quantified [61]. There are many ways to assess the similarity between two 

vectors; the most common is Euclidean distance [62]. Whereas for molecular fingerprints, 

the standard estimation of similarity method is the Tanimoto coefficient, which is equal to 

the number of common bits set to 1 in both fingerprints divided by the total number of bits 

set to 1 between both fingerprints [62].

5.2.2 Ligand-based pharmacophores—Ligand-based pharmacophores are 

commonly used when the 3D structure of the biological target is absent. They may be 

explored using a set of distance constraints of known ligands to locate the relative positions 

of common chemical features, such as hydrogen-bond donors or acceptors; aromatic rings; 

partial charges; and hydrophobicity, in order to identify key common features and the 

relative orientations of known active ligands not shared by inactive. This method delivers 

good results if enough ligand information is available and if the dataset compounds are 

known to bind to a target in the same way. One the other hand, conformational flexibility 

represents one of the main difficulties in pharmacophore generation, because the same 

ligand could have several productive conformations, which are usually unknown [63].

5.2.3 Shape-based method—Shape-based approach is an established and effective 

method for identifying hits that are similar in shape and bioactivity to a reference ligand 

[64]. The shape of a compound refers to the part of space occupied by the chemical structure 

as determined by its external boundary, abstracting from other aspects the object can have 

such as its color, atom type, and size [65]. In biological context, shape is a fundamentally 

important molecular feature that often determines the fate of a compound in terms of 

molecular interactions with biological targets. Most ligands bind to their target through van 

der Waals interactions, and hence desolvation effects dominate the binding free energy. 
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Unlike hydrogen bonds and electrostatic interactions, the strength of these hydrophobic 

interactions is mainly governed by the proximity of the respective electron densities. It is 

assumed that compounds sharing similar 3D surface shapes are likely to share similar 

biological activities [66]. Thus, 3D LBVS shape matching tools could offer a ‘scaffold 

hopping’ way to find new anti-schistosomal leads. Nonetheless, conformational flexibility 

remains the same obstacle as for ligand-based pharmacophores.

5.2.4 QSAR—Quantitative Structure-Activity Relationship (QSAR) analyses have been 

increasingly used in VS because of its high speed of screening and good hit rate. Once 

developed on a set of compounds with known activity, QSAR models are applied to untested 

chemical compounds for numerical prediction of biological activity (continuous models) or 

the discrimination between active and inactive compounds (binary models) [67]. In QSAR 

molecular fingerprints or descriptors are calculated for chemical compounds and correlated 

with a determined endpoint (experimental data) using a machine learning method. Currently, 

several machine learning methods, such as Random Forest [68] and Support Vector Machine 

[69], among others, are available to build QSAR models. The influence of various factors on 

QSAR performance is decreasing in the following row: data quality > molecular descriptors 

> machine learning approach [70].

5.3 Successful VS stories in anti-schistosomal hit discovery field

In the current scenario, VS remains a poorly explored strategy in anti-schistosomal R&D 

field. Despite the lower rate of examples available in literature, most of VS works led the 

discovery of hits with potency or affinity values in the low micromolar range. Below, we 

described the successful identification of potent anti-schistosomal hits by use of two 

different VS workflows.

Among these studies, the identification of histone deacetylase 8 (HDAC8) inhibitors, a target 

that catalyze posttranslational modifications in schistosomes could be cited [46]. Recent 

studies [71,72] showed that exposure to generic histone deacetylase inhibitors led to protein 

acetylation and dose-dependent mortality of schistosomula and adult worms. Initially, 

Kannan and colleagues [46] built a homology model for S. mansoni HDAC8 based on the 

available X-ray structures of the human orthologue. Next, MD simulations were employed 

to optimize structure and evaluate the structural flexibility of the residues at the binding site 

of the build model. The optimized homology model was then used in a docking-based VS 

the drug-like subset of the ZINC database. At this stage, authors also refined chemical space 

of the chemical library using sub-structure filters (i.e., hydroxamate, anilinobenzamides, or 

thiazole-sulfonamide groups), which are known as zinc binding groups, based on 

information derived from human HDAC8 inhibitor complexes. Next, 75 predicted 

compounds were selected based on their intermolecular interactions with the zinc ion 

located at the binding site and docking scores. Identified hits was then tested for estimate its 

inhibition activity on human and S. mansoni HDAC8, resulting in the identification of eight 

hydroxamate derivatives as potent and lead-like inhibitors of the parasitic enzyme. Solving 

of the X-ray structure of S. mansoni HDAC8 with two of the VS hits, authors also confirmed 

the predicted binding mode.
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In another study, Jacques and colleagues [50] describe a VS approach to identify inhibitors 

of S. mansoni NAD+ catabolizing enzyme (NACE), a target suspected to be involved in 

immune evasion by the parasite at the adult stage. An initial filtering biased of the chemical 

library toward compounds was performed to select small molecular weight compounds, in 

agreement with the small size of the binding site of NACE. Docking of filtered compounds 

into a homology model of the enzyme has led to the discovery of 1,701 virtual hits. Then, 

best poses were filtered using a machine learning model developed using a training set of 

positive and negative reference binding modes described with protein-ligand interaction 

fingerprints. The automated selection protocol returned 188 compounds. A visual inspection 

rejected 90 compounds because of high similarity between structures. Predicted compounds 

were then tested for estimate its inhibition activity on S. mansoni NACE, resulting in the 

identification of six hits active in nanomolar concentrations, accompanied by a largely 

enhanced selectivity for the parasitic enzyme over the human homologue CD38.

5.4 Best practices in virtual screening

Prior to performing any VS workflow, it is important to consider many pitfalls that can 

influence the erroneous selection of inactive compounds, also known as false positives 

[73,74]. It is well known that the success of any VS campaign largely depends on 

development of integrated approaches, combining different search methods as well as 

structure- and ligand-based methods, along with use of additional filters and statistical 

approaches to improve the selection of hits. In the following subsections, we will give some 

important recommendations to increase the reliability of a VS campaign.

5.4.1 Quality of dataset—Publicly available datasets contain a fraction of erroneous 

records, which presence is caused by lack of or incomplete data curation, measurement 

variations, and insufficient quality check. In short, these ‘bad’ data encompass entries 

containing unclear stereoisomer annotations, wrong chemical structures, experimental 

values, and activity units, and duplicated records [75]. The data compiled from different 

laboratories under possibly different experimental conditions also add certain discordance 

[76]. Therefore, the concordance analysis between original and compiled bioactivities as 

well as structure standardization procedures should be applied for the data to ensure 

consistency and quality of the data [77].

Pan-assay interference compounds (PAINS) could also lead the VS campaign astray. The 

apparent activity of PAINS is typically caused by their reactivity rather than non-covalent 

binding. Such compounds typically interact nonspecifically with proteins of buffer in a high 

percentage of bioassays [78]. Time and money are consequently wasted in attempts to 

optimize the biological activity of these compounds. Therefore, the use of computational 

filters for identifying and removing PAINS in a VS workflow is highly recommended [78].

5.4.2 Balancing the dataset—Unbalanced datasets have been widely discussed in 

QSAR-based VS field [79,80]. Most classifiers assume equal weighting of the classes in 

terms of both number of instances and the level of importance.. However, prediction a 

minority class of an unbalanced dataset results in a large number of erroneous predictions. 

Two following strategies can be used for unbalanced datasets: dataset balancing and cost-
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sensitive classifiers. Dataset balancing could be employed by either removing some 

compounds from the majority class (i.e., under-sampling) or adding some artificially-

generated compounds to the minority class (i.e., over-sampling) [79,80]. The cost-sensitive 

classifiers were used to reduce the level of importance of majority class, a strategy in which 

samples are predicted to have the class that has the lowest expected cost [81].

Other VS approaches, such as structure- and ligand-based pharmacophore models, docking-

based and shape-based models are highly sensitive to balanced datasets or datasets with 

lower rates of inactive compounds. In these specific cases, it is highly recommended the use 

of unbalanced datasets at a standard ratio of 36 inactive compounds for each active 

compound [82]. This data distribution corresponds to what would be found in a completely 

unbiased approach, i.e., the HTS of a large library of compounds, which could be termed as 

the ‘natural’ distribution.

5.4.3 Protonation and tautomerism—Ionization and tautomerism may significantly 

change properties in the ligand, and therefore will have an impact in descriptor calculation, 

definition of pharmacophore interaction points, and interaction possibilities between ligand 

and a target protein in docking simulations. Therefore, those phenomena could have an 

important effect on CADD. Consequently, accurate and relevant assignment of protonation 

and tautomeric states is crucial in order to match the biological system targeted in the 

screening process [74,83].

5.4.4 Protein flexibility—Flexibility of the target binding site is an essential but 

frequently overlooked aspect in structure-based studies. Proteins are flexible, which may be 

stabilized by ligand binding in one conformer out of an ensemble of conformations of 

similar energy in the unbound state. Taking into account the flexibility of the protein by 

docking programs is still an area of active development [84]. The ideal approach to increase 

protein flexibility would be screening of all possible conformations of a ligand against the 

full degrees of freedom of the protein structure, using MD simulations. Unfortunately, such 

an approach is infeasible because of the high cost of computing resources [85,86]. Currently, 

two streamlined strategies have been developed to solve this problem: ensemble methods 

and induced-fit docking. To incorporate protein flexibility, ensemble methods make use of 

multiple input conformations of a target using a set of different X-ray and NMR data 

available on PDB or extracted from multiple time steps produced by MD or Monte Carlo 

simulations [87,88]. The induced-fit docking allows for conformational search of the protein 

and the ligand is performed in parallel (i.e., both conformations are altered at the same time). 

To limit the combinatorial explosion of conformations that need to be generated and 

energetically evaluated, a small number of degrees of freedom are considered. Variables that 

characterize the magnitude of the conformational change along the selected degrees of 

protein flexibility are optimized in parallel to the ligand degrees of freedom, such as 

translational, rotational, and torsion changes [89].

5.4.5 Statistical validation of VS models—The quality of a VS model is mostly 

measured in terms of their ability to discriminate between known active and inactive 

compounds experimentally evaluated against a target or a whole-organism. Irrespective to 

the approach chosen, the VS model should be rigorously externally validated before 
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applying it to prospective VS. The most useful statistical metrics to measure the quality of 

developed models for VS are: sensitivity (SE), specificity (SP), positive and negative 

prediction values (PPV and NPV), correct classification rate or balanced accuracy (CCR or 

BA), Cohen’s kappa (κ), receiver operating characteristic (ROC) curve, area under the ROC 

curve (AUC), determination coefficient (Q2), enrichment factor (EF), and Boltzmann-

enhanced discrimination of ROC (BEDROC). The choice of these metrics depends on the 

approach used; for instance, CCR, SE, PPV, etc., are commonly used for QSAR, while 

BEDROC, AUC, EF, etc., are usually used for docking and pharmacophore modeling. We 

also want to remind that these metrics are just an indicator that the model could be useful for 

VS, but its real quality will be determined only by experimental testing of selected VS hits. 

In a previous paper, we have extensively discussed those and several other metrics for VS 

validation [90].

5.4.6 Consensus modeling—The main reason for errors for selection of inactive hits 

in VS lies in the usage of a single classifier or a single scoring function that very often fail to 

predict the activity class or binding affinity of screened compounds. This could lead to the 

selection of many false positives that will be erroneously placed in the top scorers of a 

ranked list. In an effort to optimize VS models, the consensus strategy could be applied by 

averaging the predicted values from the individual models, providing better statistical fit and 

predictive ability as compared to the individual models. This can be very useful, as it 

combines the advantages of different approaches and simultaneously attenuates the 

prediction errors of each classifier [91].

5.4.7 ADME/Tox filters—It is well established that poor pharmacokinetics and toxicity 

(ADME/Tox) properties represent one of the main reasons drug candidates failing in clinical 

trials. However, during the last decade, combinatorial chemistry and HTS have significantly 

increased the number of compounds for which early data on ADME/Tox are needed, and, 

therefore, has increased efforts and costs in the lead discovery process [92]. Obviously, the 

use of computational tools cannot replace the experimental screens, but they reveal an early 

ADME/Tox profile in VS campaigns. In this context, our group has been working to 

overcome or reduce these failures by developing computational tools and web services for 

the early prediction of some ADME/Tox properties [74,93,94]. Our knowledge points to the 

importance of these filters in the early stages of hit-to-lead discovery campaigns, which 

helps in the selection of virtual hits before acquisition and biological evaluation. However, 

usually the application of all possible ADMETox and other possible structural filters could 

result in elimination of all VS hits [95]. At first glance, this statement seems to be 

paradoxical, however, all computational approaches are just an instrument developed to help 

the researcher but not to substitute his expertise and knowledge.

5.4.8 Integrated VS workflows—The development of integrated workflows, i.e., 

combining several VS methods and computational tools, is also a useful approach to 

increase hit rates during experimental validation. Compilation of these workflows could be 

either in sequential or parallel forms. In the sequential approach, different methods are used 

in a pipeline to sequentially filter the number of hits retrieved, until the number is small 

enough for extensive biological testing. Often, methods like pharmacophore screening are 

Neves et al. Page 12

Expert Opin Drug Discov. Author manuscript; available in PMC 2019 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



used in the beginning of the multi-step screening process. As the number of hits decreases, 

computationally more expensive methods can be applied to further filter the retrieved 

compounds, such as docking. In the parallel approach, different methods are run 

independently and the predicted hits in both screens are combined in a consensus approach 

for biological testing. The methods used should be complementary and ideally should 

include ADME/Tox filters, pharmacophore models, QSAR models, similarity-based models, 

as well as docking-based models [96,97].

6. Conclusions

In conclusion, we emphasize the importance of integrating modern experimental and 

computational approaches to accelerate schistosomiasis drug discovery. We propose a 

workflow, presented in Figure 1, showing the possible road map to integrate such 

approaches. Combinatorial chemistry and organic synthesis can provide a large number of 

compounds to be screened using automated assays, for the whole organism in different life 

stages or for selected schistosome targets. The large amount of data generated from these 

HTS/HCS assays and public availability of this information started the era of big and open 

data. These data boost the use of computer-assisted technologies for VS, allowing generation 

of predictive models for prioritization of VS hits or structural design of novel compounds 

with desired properties. Further, these computational hit are assayed in the target-based, 

whole-organism, luminescence or fluorescence-based platforms. Successful integration of all 

these technologies can accelerate the discovery of new anti-schistosomal leads that could 

ultimately enter clinical trials.

7. Expert opinion

Despite the urgent need in finding a new treatment for schistosomiasis and the relative 

success that has been recently achieved, defeating this NTD may still be far reaching. There 

are multiple potential ways of battling schistosomiasis. The first one is the development a 

vaccine. At present, there are ongoing clinical trials regarding several vaccines against 

various Schistosoma strains [98]. To this purpose, a vaccine against Schistosoma 
haematobium is under Phase III of clinical trials in Senegal and Niger and two vaccines 

against Schistosoma mansoni are under Phase I of clinical trials in US and Brazil [98]. 

However, despite this, there are numerous challenges in vaccine development related to 

protective antigen discovery, product development, and the preclinical and clinical testing 

stages. For instance, reverse vaccinology approaches that work well for small bacterial and 

viral genomes have not yet been successful for eukaryotic parasites because of the greater 

complexity of the parasite genome and the requirement to employ eukaryotic expression 

systems to reliably produce soluble and properly folded antigens. In addition to scientific 

challenges, socioeconomic issues also present a bottleneck for the development and 

implementation of new vaccines that should be available to those who need them most, 

especially in developing countries in South America, Africa, and Asia.

Another way of tackling schistosomiasis is the development of new drug(s) which, ideally, 

should be active against all the different species of Schistosoma. Thus, such drug(s) need(s) 

to be promiscuous enough to cover a variety of species and selective enough not to hit other 
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targets in human cells, because the interaction with some of them could lead to strong 

undesirable side effects. Although this is likely to be achievable, as in the case of vaccines, 

similar socioeconomic challenges could limit the development and distribution of such drug 

in poor resource countries. Another interesting possibility is the use of combination therapy, 

which could help overcome scientific bottlenecks such as drug resistance, toxicity, etc. 

Despite the fact that combinatorial therapy may eventually lead to undesired drug-drug 

interactions, careful planning of drug combinations will easily circumvent this issue

One of the solutions to decrease the potential economic burden related to drug R&D for 

schistosomiasis is the use of computational techniques for targeted design of new chemical 

entities that will decrease both the time and costs associated. Expected future development 

of combined therapy will in turn boost the development and/or optimization of reliable 

computational tools for handling and analyzing mixtures [99]. In addition, these approaches 

should take into account both synergistic and antagonistic effects. We strongly believe that 

socioeconomic battle against schistosomiasis emerged with London Declaration of 2012 as 

evidence of willingness to advance through partnerships and provision of funding to R&D 

[100], but the future battle may include novel approaches that will help to overcome 

scientific challenges. In conclusion, the era of big and open data has just started and data is 

increasingly accumulating. Integration and curation of these data will greatly improve the 

success of drug discovery efforts. Furthermore, development of novel computational 

approaches capable of handling millions of compounds is essential, in order to avoid that the 

amount of data generated exceeds the amount of data that can be processed. In turn, these 

improved tools may also contribute to reducing the number of animals that are required for 

in vivo testing of new compounds. Finally, we note that even the best computational and VS 

approaches are just the tools and the overall success of the project still depends only on the 

ability of a scientist to think critically, to understand the advantages and disadvantages of 

computational and other tools, to perceive the final goals of his research, and to interpret the 

consequences of his discoveries.
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Abbreviations

NTD neglected tropical disease

PZQ praziquantel

R&D research and development

DNDi Drugs for Neglected Diseases Initiative

HTS high-throughput screening
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TGR thioredoxin glutathione reductase

HCS high-content screening

CADD computer-aided drug design

SBVS structure-based virtual screening

LBVS ligand-based virtual screening

HDAC8 histone deacetylase 8

NACE NAD+ catabolizing enzyme

QSAR quantitative structure-activity relationships

PAINS pan-interference assay compounds

MD molecular dynamics

CCR correct classification rate

ROC receiver operating characteristic

AUC area under the ROC curve

EF enrichment factor

BEDROC Boltzmann-enhanced discrimination of ROC

ADME/Tox pharmacokinetics and toxicity
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Article highlights box

• The possible evolution of praziquantel-resistant schistosomes and the lack of 

new effective drugs call for a paradigm shift from contemporary to modern 

anti-schistosomal lead discovery strategies;

• The main advances in high- and medium-throughput lead screening 

technologies have opened up new possibilities for anti-schistosomal drug 

discovery pipelines.

• Data produced on extract bioactivity from medium- and high-throughput 

assays, i.e., open data available on publicly databases, can now be explored in 

a computational data-driven process.

• Both experimental (i.e., target-based assays, automated whole-organism 

assays, and luminescence- and fluorescence-based assays) and computational 

(i.e., structure-based and ligand-based strategies) drug discovery approaches 

have strengths and pitfalls, but carefully planned integration of these 

strategies could lead to new treatments for schistosomiasis in the near future.
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Figure 1. 
Suggested antischistosomal lead discovery workflow in open data era.
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