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Exome chip meta-analysis fine maps causal variants and 
elucidates the genetic architecture of rare coding variants in 
smoking and alcohol use.
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Abstract

Background: Smoking and alcohol use have been associated with common genetic variants in 

multiple loci. Rare variants within these loci hold promise in the identification of biological 

mechanisms in substance use. Exome arrays and genotype imputation can now efficiently 
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genotype rare nonsynonymous and loss of function variants. Such variants are expected to have 

deleterious functional consequences, and contribute to disease risk.

Methods: We analyzed ~250,000 rare variants from 16 independent studies genotyped with 

exome arrays and augmented this dataset with imputed data from the UK Biobank. Associations 

were tested for five phenotypes: cigarettes per day, pack years, smoking initiation, age of smoking 

initiation, and alcoholic drinks per week. We conducted stratified heritability analyses, single-

variant tests, and gene-based burden tests of nonsynonymous/loss of function coding variants. We 

performed a novel fine mapping analysis to winnow the number of putative causal variants within 

associated loci.

Results: Meta-analytic sample sizes ranged from 152,348–433,216, depending on the phenotype. 

Rare coding variation explained 1.1–2.2% of phenotypic variance, reflecting 11%−18% of the 

total SNP heritability of these phenotypes. We identified 171 genome-wide associated loci across 

all phenotypes. Fine mapping identified putative causal variants with double base-pair resolution 

at 24 of these loci, and between 3 and 10 variants for 65 loci. 20 loci contained rare coding 

variants in the 95% credible intervals.

Conclusions: Rare coding variation significantly contributes to the heritability of smoking and 

alcohol use. Fine mapping GWAS loci identifies specific variants contributing to the biological 

etiology of substance use behavior.

Keywords

Tobacco; Nicotine; Alcohol; GWAS; Heritability; Behavioral Genetics

Introduction

Tobacco and alcohol use together account for more morbidity and mortality in Western 

society than any other single risk factor or health condition(1). These preventable and 

modifiable behaviors are heritable(2), but previous human and model organism research, 

including genome-wide association studies of common variants, have resulted in few 

associated genetic variants, which most prominently feature genes involved in alcohol/

nicotine metabolism and nicotinic receptors(3–7).

Advances in sequencing, genotyping, and genotype imputation now allow cost effective 

investigation of rare and low frequency variants. Compared to common variants (minor 

allele frequency [MAF] > 1%) most commonly used in genome-wide association studies 

(GWAS), rare variants have greater potential to elucidate biological mechanisms of complex 

traits, including substance use and addiction(8, 9). In particular, nonsynonymous and loss of 

function (LoF) coding variants, which result in the loss of normal function of a protein, may 

have greater phenotypic impact and more direct mechanistic interpretation than other 

variants that do not have obvious biological consequences(10, 11).

No large-scale genome- or exome-wide study of rare variation has been conducted to date. 

The vast majority of existing addiction-related rare variant studies have used targeted 

sequencing of putative addiction-associated loci to discover and test for association in 

relatively small samples. Existing research has led to intriguing leads, including rare variant 
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associations in loci that span nicotinic receptor gene clusters(12–21) and alcohol metabolism 

genes(22–24) for nicotine and alcohol dependence, respectively. This strategy has also 

produced rare variant associations in novel loci. In one case, gene-level association tests 

were used to find an association with rare variants in SERINC2(24). In another case, a 

burden test across PTP4A1, PHF3, and EYS showed association with alcohol 

dependence(25). Unfortunately, these genes are not obviously involved in etiological 

processes related to addiction, and replications have not been reported to date.

Previous studies have also attempted to leverage information about predicted functional 

consequences of rare mutations to improve association analyses. One study of nicotine 

dependence found significant rare single-variant associations in CHRNB4, but only when 

variants were weighted by their predicted effect on the cellular response to nicotine and 

acetylcholine(26). Such positive findings could benefit from replication, which has not 

always been straightforward. For example, all rare variant associations in addiction are, to 

our knowledge, candidate gene analyses with type I error thresholds based only on the 

number of tests within that region. Historically, such analyses have produced overly 

optimistic estimates of the number of associated loci(27). Genome-wide analyses with more 

conservative type I error thresholds have reported null rare variant findings across an array 

of phenotypes relevant to addiction(28–30). Precisely because genome-wide analyses are 

conducted on many variants across the genome, they are in principle able to discover novel 

rare variant associations within new or known loci. One way to improve power in genome-

wide analyses is through genetic association meta-analysis, which entails the aggregation of 

results across many studies to achieve large sample sizes.

Here, we attempted to expand on these previous discoveries by conducting the largest meta-

analytic investigation of exonic rare variants to date. We conducted an exome-wide 

association meta-analysis of nicotine and alcohol use across 16 studies genotyped on the 

exome array, which genotypes low-frequency nonsynonymous and putative loss of function 

exonic variants. We combined these data with the UK Biobank, which includes 

approximately 400,000 individuals of European ancestry with genotype imputation to the 

Haplotype Reference Consortium(31) imputation reference panel and relevant smoking/

drinking phenotypes. Sample sizes for well-imputed variants were thus enlarged and the 

availability of noncoding variants from UK Biobank enabled comprehensive analysis of 

genetic architecture(32) and fine mapping(33).

We conducted single variant and gene-based tests of association with five smoking and 

drinking phenotypes. We applied a novel fine mapping analysis to prioritize causal variants 

using statistical and functional information. We also evaluated the contribution of rare 

exonic variants to the heritability of these phenotypes. Family studies, as well as studies of 

the aggregate effects of common variants, have found both alcohol use and tobacco use to be 

heritable behaviors(30, 34–38). Research on the aggregate contribution of rare variants, 

however, has been scarce, with previous work on related phenotypes in smaller samples 

failing to detect aggregate effects for smoking and alcohol consumption(28). We used meta-

analytic summary statistics to quantify the contribution to heritability of variants in various 

functional categories and frequency bins.
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Methods and Materials

Seventeen studies contributed summary statistics for meta-analysis. These studies, their 

sample sizes, and available phenotypes are listed in the online supplement (Tables S1 and 

S2). We augmented our sixteen exome chip cohorts with the UK Biobank, where imputation 

to the Haplotype Reference Consortium panel was used in lieu of an exome chip array. All 

individuals were of European ancestry, as determined by genetic principal components.

Phenotypes

Phenotypes were selected to represent multiple stages of smoking. These included initiation, 

heaviness of use among smokers, and a measure of total lifetime exposure to tobacco. For 

alcohol use only a measure of amount of alcohol use was systematically available across 

studies. The selected phenotypes are relevant to prior GWAS of smoking and alcohol use; 

are commonly available in psychological, medical, and epidemiological data sets; and are 

known to be correlated with measures of substance dependence(4, 39–41).

1. Cigarettes per day (CigDay).—The average number of cigarettes smoked in a day 

among current and former smokers. Studies with binned responses used their existing bins. 

Studies that recorded an integer value binned responses into one of four categories: 1=1–10, 

2=11–20, 3=21–30, 4=31 or more. Anyone reporting 0 cigarettes per day was coded as 

missing. This phenotype is a component of commonly used measures of nicotine 

dependence such as the Fagerstrom Test for Nicotine Dependence.

2. Pack Years (PckYr).—Defined in the same way as cigarettes per day but not 

necessarily binned, divided by 20 (cigarettes in a pack), and multiplied by number of years 

smoking. This yielded a measure of total overall exposure to tobacco and is relevant to 

disease outcomes for which smoking is a risk factor, such as cancer and chronic obstructive 

pulmonary disease risk.

3. Age of Initiation of Smoking (AgeSmk).—A measure of early cigarette use. 

Defined as the age at which a participant first started smoking regularly.

4. Smoking Initiation (SmkInit).—A binary variable of whether the individual had 

ever been a regular smoker (1) or not (0), and often defined as having smoked at least 100 

cigarettes during one’s lifetime.

5. Drinks per week (DrnkWk).—A measure of drinking frequency/quantity. The 

average number of drinks per week in current or former drinkers.

Genotypes

Fourteen of the seventeen studies were genotyped with the Illumina HumanExome 

BeadChip, which contains ~250,000 low-frequency nonsynonymous variants, variants from 

the GWAS catalog, and a small number of variants selected for other purposes. Two studies 

were genotyped on the Illumina Human Core Exome, which includes an additional 

~250,000 tag SNPs. The remaining study, the UK Biobank, was imputed using Haplotype 

Reference Consortium panel(31, 42), as well as the reference panel by UK 10K and 1000 
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Genomes Project. An integrated callset was released by the UK Biobank team(42). Our UK 

Biobank genetic association analyses were conducted based on the integrated callset with 

additional quality control.

Generation of Summary Association Statistics

Seventeen independent studies (see Table S1) with smoking and drinking phenotypes were 

included in the discovery phase. Individual studies conducted association analysis 

accounting for age, sex, any study-specific covariates, and ancestry principal components 

(see Table S2 for genomic controls), and submitted summary statistics for meta-analysis. For 

studies with related individuals (see Table S1), relatedness was accounted for in linear mixed 

models using empirically estimated kinships from common SNPs(43). Residuals were 

inverse-normalized to help ensure well-behaved test statistics for rare variant tests.

Quality control of per-study summary statistics included evaluation and correction of strand 

flips and allele flips through systematic comparison of alleles and allele frequencies against 

the reference datasets ExAC v2.0, 1000 Genomes Phase 3, and dbSNP. Variants with call 

rates<0.9, or Hardy Weinberg p<1×10−7 were also removed. The latter filter was meant to 

avoid findings that could not be more broadly replicated across the 17 studies.

Meta-analysis

Association testing was done in stages. First, we conducted genome-wide association meta-

analysis. Variants with p-values less than the genome-wide significance threshold of 5×10 −8 

were deemed statistically significant. Loci were defined as 1 million basepair windows 

surrounding a “sentinel” (most significant) variant in the locus. Overlapping or adjacent loci 

were combined into a single locus. Conditional analysis and fine mapping was then 

performed within each locus. We attempted to replicate one very rare variant (rs36015615 in 

STARD3 associated with CigDay; see results and Table 1) that was available in two other 

exome chip consortia. These were the CHD Exome+ Consortium (N=17,789) and the 

Consortium for Genetics of Smoking Behaviour (N=28,583). Both consortia defined their 

phenotypes, including cigarettes per day similarly, as the usual number of cigarettes smoked 

in a day corrected for sex, age, principal components (and/or genetic relatedness, as 

appropriate), and inverse-normalized prior to association analysis.

We also conducted gene-level association tests grouping nonsynonymous, stop gain, stop 

loss and splice variants within each gene, using rareMETALS version 6.0(44). Variant 

annotation was conducted using SEQMINER with RefSeq 1.9(45). Two complementary 

gene-level association tests were performed: the sequence kernel association test (SKAT; 46, 

47) with a MAF cutoff of 1% and a simple burden test(48) that summed the number of rare 

alleles within a given gene, again with a maximum MAF=1%. We chose variants with 

MAF≤1% as we were interested in the contribution of variants with a frequency lower than 

that which has been reliably imputed and tested in past GWAS meta-analyses. We 

considered a gene association to be significant if the p-value surpassed a Bonferroni 

correction for the number of genes tested for a given phenotype and test, assuming 

approximately 20,000 genes in the genome (.05/20,000 = 2.5×10 −6).
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We performed iterative conditional analysis using a partial correlation based score (PCBS) 

statistic(49), which can perform proper conditional analysis for meta-analysis that combines 

datasets measured using different arrays. PCBS takes GWAS meta-analysis summary 

statistics and LD estimated from the Haplotype Reference Consortium panel as input.

As a key step to evaluate the contribution of variants within a genome-wide significant 

locus(33), we used our PCBS framework to apply two complementary fine mapping 

techniques to identify putatively causal genetic variants. The first technique was a Bayesian 

approach described previously(50) that estimates the posterior probability of association 

based upon the statistical strength of the association for variants in each locus. We also 

applied a version of fgwas(51) modified to work within PCBS, which assumes that variants 

in different functional categories have potentially different prior probability of association. 

For loci with a single association signal based, effect sizes and variance from single-SNP 

analyses were used. If a locus contained multiple signals, we used effect sizes and variance 

from conditional analysis adjusting for all other index variants in this region.

Finally, we attempted to replicate previous rare variant associations referenced in the 

introduction and listed in Table S4. We attempted replication in our phenotypes for any 

single variant when that variant was directly genotyped or imputed. We applied a liberal 

threshold that corrected only for the number of tests conducted for this replication exercise (.

05/46=.001).

Genetic Architecture

We performed heritability and genetic correlation analyses using LD score regression(52). 

The method calculates LD scores from the Haplotype Reference Consortium and the 

estimation of heritability with these LD scores then follows established methods(53, 54). 

Heritability was estimated for each trait and partitioned by annotation category and 

frequency bins. First, we annotated variants on the exome chip based upon gene definitions 

in RefSeq 1.9, using SEQMINER version 6.0(55). A variant is classified as coding if it 

belongs to either one of the following categories: nonsynonymous, stop gain, stop loss, and 

splice. Seven functional categories were considered in the model, including intergenic, 

intron, common coding (MAF>0.01), rare coding (MAF<0.01), synonymous, and 3’/5’ 

untranslated regions. We fitted the baseline model with seven categories, and estimated 

phenotypic variance explained by each category.

Results

GWAS analyses behaved well, with genomic control values for the GWAS across exome 

chip and UK Biobank imputed variants between 1.05 and 1.3. The intercept for LD Score 

regression ranged between .99 and 1.1, indicating absent or minimal effects of population 

stratification. (Per-study genomic controls can be found in Table S2.) A total of 171 loci 

were identified under the genome-wide significance threshold (p<5×10 −8), including 3, 11, 

17, 93 and 47 loci for AgeSmk, CigDay, PckYr, SmkInit, and DrnkWk. A list of all sentinel 

variants within each locus is shown in Table S5. QQ plots and Manhattan plots are available 

in Figures S1 and S2. (Additional exploratory GWAS meta-analysis of individuals with 

significant African ancestry are provided in the Supplementary Note [including up to 8,974 
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individuals from three studies]; see also Table S3, Figure S3 and S4.) The genome-wide 

significant association results included known loci associated with smoking and alcohol use 

phenotypes. These included associations between smoking phenotypes and variants within 

the CHRNA5-CHRNA3-CHRNB4 nicotinic receptor cluster, nicotine metabolism gene 

CYP2A6, and a locus near dopamine receptor DRD2. We also replicated previous 

associations between nonsynonymous variant rs1229984 in ADH1B and DrnkWk. Only one 

very rare variant was associated with any of our five phenotypes. This was rs36015615 

(MAF=.0002), a nonsynonymous variant in STARD3, associated with CigDay (p=3.2×10 
−8). This novel variant did not replicate in either of two replication consortium datasets, the 

CHD Exome+ Consortium (N=17,789, Beta=−.01, p=.94) or the Consortium for Genetics of 

Smoking Behaviour (N=28,583, Beta=.056, p=.84). Based upon the estimated genetic effects 

in the discovery sample (β = 1.2), the power for replication is >99%. However, if we assume 

the observed effect sizes in the replication datasets are correct, there is 5% power for 

replication based upon this estimated effect. The pattern of results may be due to winner’s 

curse, or the discovered variant may be a false positive finding. Additional studies are 

required to narrow the possible interpretations.

The fine mapping analysis of all 171 GWAS loci pinpointed putatively causal variants with 

high resolution in some cases. The 95% credible interval for 34% of the loci had <10 SNPs 

and 24 loci had double basepair resolution, including several instances where the sole 

putative causal variant was nonsynonymous and of lower frequency, although in only one 

case with MAF<1%. The resolution increased somewhat when functional information was 

used to inform the prior, with double base-pair resolution at 32 loci, and 44% of loci having 

<10 SNPs in the 95% credible interval. Table 1 includes all nonsynonymous or loss of 

function variants within the genome-wide significant loci that had a posterior probability of 

association greater than .80 from at least one of the fine mapping methods. Additional 

results from the fine mapping analysis are available in Tables S6 and S7. Several known 

functional variants were identified through this method, including: rs16969968(56), a 

nonsynonymous variant in nicotinic receptor gene CHRNA5 associated with CigDay (PPA=.

92 and .84 from the fine mapping analysis with, and without, functional priors, respectively); 

rs1229984(57), a nonsynonymous variant in alcohol metabolism gene ADH1B associated 

with DrnkWk (PPA=1.0 and 1.0); and, although with somewhat weaker evidence, 

rs6265(58), a nonsynonymous variant in brain derived neurotrophic factor BDNF associated 

with SmkInit (MAF=.19; PPA=.83 and .32).

Novel variants in novel genes were also prioritized at high resolution. To take the most 

statistically compelling examples in Table 1, we found rs28929474, a low frequency 

nonsynonymous variant in SERPINA1, associated with DrnkWk (MAF=.02; PPA=1.0 and .

95). When homozygous, the alternate T (allele frequency = .02; frequency of TT genotype 

under Hardy Weinberg = 4 in 10,000) allele is a leading cause of alpha-1 antitrypsin 

deficiency. Here, we find the same risk allele, the T allele, is associated with an 

approximately .05 standard deviation decrease in drinks per week. We also discovered 

rs35891966, a variant in NAV2, associated with SmkInit (MAF=.07; PPA = 1.0 and .98) at 

single base-pair resolution. NAV2 is involved in neuronal development and previously 

shown to be differentially expressed between smokers and non-smokers, but not previously 

implicated in GWAS(59).
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Results of gene-based tests are provided in Table 2. A novel gene, rho guanine nucleotide 

exchange factor 37 (ARHGEF37), was associated with Age of Initiation of Smoking 

(p=1.9×10−6). ARHGEF37 has not been widely studied and its function in not well known. 

Another novel gene without an immediate biological interpretation, was HEAT Repeat 

Containing 5A (HEATR5A), associated with Smoking Initiation (p=1.4×10 −8). We also 

discovered a significant gene-based association between known alcohol metabolism gene 

ADH1C and Drinks per Week (p=1.4×10−27 and p=1.9×10−40 from the burden and SKAT 

tests, respectively). Finally, even with relaxed p-value thresholds, we failed to replicate 

genes identified in previous rare variant association studies referenced in the introduction 

(Table S4), with the exception of ADH1C and CHRNA5, two loci long known to be 

associated with alcohol use and smoking, respectively.

The estimated total SNP heritability for AgeSmk, CigDay, PckYr, SmkInit, and DrnkWk 

was 6%, 9%, 10%, 14% and 16%. Significant phenotypic variance was explained by rare 

nonsynonymous variants for all traits, ranging from 1.0%−2.2% (Table 3). As a fraction of 

the SNP heritability, rare nonsynonymous variants accounted for 11%−18%. Results for all 

seven functional categories are listed in Table S8; appreciable heritability was accounted for 

by common and rare coding variants, and intergenic variants. Variants in the untranslated 

regions and intronic regions contributed less. Almost all pairs of phenotypes were 

genetically correlated (Table 4, Panel A), and the direction of the genetic correlations were 

in the expected direction. For instance, CigDay was positively correlated with DrnkWk (0.2 

± 0.09), consistent with the observation that increased alcohol consumption is correlated 

with increased tobacco consumption. Age of initiation has a negative correlation with all 

other traits, which is consistent with the observation that an earlier age of smoking initiation 

is correlated with increased tobacco and alcohol consumption in adulthood. The patterns and 

magnitudes of correlation are highly similar when considering only rare nonsynonymous 

variants (Table 4, Panel B).

Discussion

With a maximum sample size ranging from 152,348 to 433,216, the present study is the 

largest study to date of low-frequency nonsynonymous and loss of function variants in 

smoking and alcohol use. Our meta-analytic study design combined studies genotyped on 

the exome array with imputed genotypes in the UK Biobank, allowed us to comprehensively 

evaluate the contribution of rare and low frequency variants to the etiology of tobacco and 

alcohol use. All told, we identified 171 genome-wide significant loci for the five phenotypes.

We showed that the rare variants (MAF≤1%) together explain 1.0% - 2.2% of the phenotypic 

variance for the five traits, amounting to 11–18% of the total SNP heritability. A number of 

putatively causal low frequency nonsynonymous variants in novel genes were identified 

through two complementary fine mapping techniques. These include a variant known to 

affect alpha-1 antitrypsin deficiency in SERPINA1. The effect of the risk allele resulted in a 

decrease in drinks per week. One interpretation is that this variant leads to impaired liver 

function through alpha-1 antitrypsin deficiency which, in turn, reduces alcohol consumption. 

Interestingly, neither this particular variant or the locus surrounding it was associated with 

smoking phenotypes, even though alpha-1 antitrypsin deficiency also affects lung function 
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over time. Other mechanisms by which SERPINA1 exerts its effect on alcohol consumption 

are certainly possible. Another novel nonsynonymous variant was in neuron navigator 2 

(NAV2), associated with smoking initiation. NAV2 has not previously been associated with 

substance use or addiction. Given its suspected involvement in neuronal growth and 

migration, a putatively causal nonsynonymous variant is a strong candidate for functional 

follow up experiments. Other genes implicated in the fine mapping analysis have less direct 

interpretations (e.g., HEATR5A) and such results will benefit from replication and/or 

follow-up experiments. In general, fine mapping studies narrowed the credible set of likely 

causal variants to single or double base pair resolution for 24 loci (Table S6). Some loci 

were not amenable to fine mapping, with credible intervals containing thousands of SNPs in 

some cases. Given the cost in money and time of conducting functional experiments at the 

cellular or organismal level, fine mapping likely causal variants can be extremely useful in 

predicting functional consequences and prioritizing variants for further work.

Gene based tests identified a small number of associated genes, including an expected 

association with ADH1C and drinks per week. The other two associated genes, ARHGEF37 
and HEATR5A, do not lend themselves to ready biological interpretations.

We showed that rare coding variants available on the exome chip or imputable by the 

Haplotype Reference Consortium, with frequency <1%, explain significant proportions of 

phenotypic variance, and a substantial proportion of the total SNP heritability. The exome 

chip was designed to genotype coding variants uncovered in ~12,000 sequenced exomes. By 

design, it comprehensively ascertained high confidence rare nonsynonymous, splice, and 

stop variants within those sequences and only sparsely genotypes other classes of variation, 

including common variants. The Haplotype Reference Consortium panel imputed data also 

have limited accuracy when the underlying genetic variants are rare. Therefore, our current 

investigation did not fully explore the genetic architecture of very rare variants (i.e. with 

MAF<0.1%). With the development of larger imputation reference panels, and the 

availability of large scale deep whole genome sequences (such as the Trans-Omics for 

Precision Medicine Study [TOPMed]), we expect to be able to conduct an even more 

comprehensive analysis of the genetic architecture for variants with ever lower frequencies. 

Ultimately, the discovery of low frequency with small effects will require even larger sample 

sizes. For example, for rare variant with MAF of .1% and effects of .2, .15, and 0.1 standard 

deviations on the phenotype, to identify associations at α = 5 × 10−8 with 80% of power, 

sample sizes of 500,000 890,000 and 1,990,000 are required. While such numbers seemed 

astronomical just a few years ago, they will indeed be attainable in the next few years with 

the availability of large biobank datasets and ever improving imputation. Another limitation 

of the present study is the limited samples sizes from non-European ancestries, where only 

exploratory analyses were possible. Substantial improvements can be made to the resolution 

of fine mapping analysis by leveraging disparate LD information across samples with 

diverse ancestry(33). Future research will do well to include individuals of diverse ancestry.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 2.

Significant gene based test results, assuming a Bonferroni threshold of .05/20,000=2.5×10 −6.

Phenotype Gene N Number Variants Beta SE p−value Method

Age of Initiation of Smoking ARHGEF37 147,010 17 .08 .017 1.9×10 −6 Burden

Smoking Initiation HEATR5A 427,262 41 −.02 .009 1.4×10 −8 SKAT

Drinks per Week ADH1C 353,265 4 −.15 .014 1.8e−27 Burden

Drinks per Week ADH1C 353,265 4 −.15 .014 1.9e−40 SKAT

Note: no significant genes were identified for the other two phenotypes.
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Table 3:

Estimation of Heritability Explained by Variants on Exome Array. We estimate the heritability based upon a 

baseline model with seven different functional categories. The reported heritability h2 is based upon the 

cumulative value from the functional categories with significant heritabilities. We also report the standard 

deviation (se h2 )and p−values, estimated using jackknife.

Annotation Phenotype Heritability Estimates

h2
(se (h2))

P−Value

All Variants Age of Initiation of smoking .06 .0049 7.7×10−35

Cigarettes per Day .09 .0019 < 2.2×10−303

Pack Years .10 .0022 < 2.2×10−303

Smoking Initiation .14 .0007 < 2.2×10−303

Drinks per Week .16 .0089 7.3×10−73

Rare Coding Variants (MAF<.01) Age of Initiation of smoking .011 .0015 2.8×10−2

Cigarettes per Day .010 .0006 1.7×10−2

Pack Years .018 .0007 8.5×10−6

Smoking Initiation .022 .0002 3.9×10−16

Drinks per Week .020 .0013 1.8×10−7
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Table 4:
Estimation of Genetic Correlation Between Smoking and Drinking Traits.

We estimate genetic correlations between five smoking and drinking traits. Genetic correlation estimates rg , 

their standard deviation (se rg )and p−values are reported.

Trait 1 Trait 2 Genetic Correlation

rg se rg
P−value

A. Aggregated Genetic Correlation Induced by All Variants on the Exome Array

Drinks per Week Smoking Initiation .43 .06 1.7×10−11

Drinks per Week Age of Initiation of Smoking .01 .13 9.3×10−1

Drinks per Week Pack Years .22 .10 2.6×10−2

Drinks per Week Cigarettes per Day .20 .09 3.1×10−2

Smoking Initiation Age of Initiation of Smoking −.64 .11 1.1×10−8

Smoking Initiation Pack Years .45 .08 4.9×10−8

Smoking Initiation Cigarettes per Day .10 .07 1.5×10−1

Age of Initiation of Smoking Pack Years −.63 .17 2.1×10−4

Age of Initiation of Smoking Cigarettes per Day −.26 .16 9.9×10−2

Pack Years Cigarettes per Day .77 .13 2.2×10−9

B. Genetic Correlation Induced by Rare (MAF < 1%) Nonsynonymous Variants

Drinks per Week Smoking Initiation .49 .08 1.2×10−10

Drinks per Week Age of Initiation of Smoking −.04 .30 8.9×10−1

Drinks per Week Pack Years .08 .02 2.7×10−4

Drinks per Week Cigarettes per Day .09 .02 5.2×10−5

Smoking Initiation Age of Initiation of Smoking −1.10 .21 1.3×10−7

Smoking Initiation Pack Years .63 .08 1.5×10−14

Smoking Initiation Cigarettes per Day .23 .08 3.3×10−3

Age of Initiation of Smoking Pack Years −1.10 .33 1.5×10−3

Age of Initiation of Smoking Cigarettes per Day −.69 .32 3.2×10−2

Pack Years Cigarettes per Day .87 .14 1.4×10−9
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