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There is not currently a well-established, if any, biological test to
diagnose myalgic encephalomyelitis/chronic fatigue syndrome
(ME/CFS). The molecular aberrations observed in numerous studies
of ME/CFS blood cells offer the opportunity to develop a diagnostic
assay from blood samples. Here we developed a nanoelectronics
assay designed as an ultrasensitive assay capable of directly
measuring biomolecular interactions in real time, at low cost, and
in a multiplex format. To pursue the goal of developing a reliable
biomarker forME/CFS and to demonstrate the utility of our platform
for point-of-care diagnostics, we validated the array by testing pa-
tients with moderate to severe ME/CFS patients and healthy con-
trols. The ME/CFS samples’ response to the hyperosmotic stressor
observed as a unique characteristic of the impedance pattern and
dramatically different from the response observed among the con-
trol samples. We believe the observed robust impedance modula-
tion difference of the samples in response to hyperosmotic stress
can potentially provide us with a unique indicator of ME/CFS. More-
over, using supervised machine learning algorithms, we developed
a classifier for ME/CFS patients capable of identifying new patients,
required for a robust diagnostic tool.

myalgic encephalomyelitis/chronic fatigue syndrome | diagnostic
biomarker | nanoelectronics biosensor | artificial intelligence |
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Myalgic encephalomyelitis/chronic fatigue syndrome (ME/
CFS) is a disease that affects at least 2 million Americans

and millions more globally (1–3). Several studies have found that
this disease may be triggered by a combination of factors such as
major life stressors, infection (viral: ENV, HHV-6, HHV-7, stomach
viruses, cytomegalovirus, and bacterial infections), toxin exposure,
immunodeficiency, nutritional deficiencies, genetic susceptibility,
and several others (1, 4, 5). There is currently no single bio-
marker to diagnose ME/CFS (1, 6). As a result, diagnosing ME/
CFS patients is a lengthy and costly process, which constitutes a
fundamental impediment to patient care. This lag in diagnosis
also causes barriers to research, complicating patient recruitment
and the handling of heterogeneous samples of patients with only
marginally similar conditions. However, in one of these very
recent studies (1), patients with ME/CFS showed abnormalities
in 20 out of 63 biochemical pathways, suggesting such metabolic
features as potential biomarkers. All the while, ME/CFS patients
experience one of the lowest quality of life illnesses, with an
unadjusted EuroQol 5-dimensional 3-level (EQ-5D-3L) mean of
0.47 compared with a mean of 0.69 recorded for lung cancer (7, 8).
This clearly indicates the central importance of identifying a reliable
biomarker for ME/CFS. Researchers have investigated a panoply
of potential biomarkers, many of which would indicate improper
immune function and signs of autoimmunity (5, 9), for example,
differences in cytokine profiles; natural killer cells; 5-HT auto-
immune activity; and the responsiveness of T cells (4, 5, 9–19).
The immune system is a typical focal point for ME/CFS research
supported by the observation that CFS is often preceded by a viral
infection and has many long-term flu-like symptoms (4, 5, 20).

Various researchers have even hypothesized that the source of the
illness is viral in nature (19, 21). There are other subsets of symptoms
beyond the flu-like symptoms and fatigue, such as muscle joint pain;
unrefreshing sleep; and high sensitivity to light, sound, odor, taste,
touch, and vibration. Many of the patients usually suffer from dif-
ferent types of paresthesias, such as tingling and numbness in different
parts of the body. Other symptoms include postural orthostatic
tachycardia syndrome; light-headedness; gastrointestinal symptoms
such as nausea and abdominal pain; headaches of a new type, pattern,
or severity; autonomic and endocrine symptoms such as poor tem-
perature regulation; cold or heat intolerance; and recurrent sore
throats. In some instances, researchers have linked cytokine profiles
and inflammation to the severity of ME/CFS in patients (4). One
study examined cytokine profiles postexertion to explore potential
differences in ME/CFS and sedentary controls (2). Others have
focused on finding physiological anomalies by looking at exercise
intolerance and cardiac impairment (2, 22). Molecular aberrations
have also been observed in numerous studies of ME/CFS blood
cells (1, 4). In addition, several studies have shown that inducing a
biological stressor on peripheral blood mononuclear cells (PBMCs)
in the form of hyperosmotic stress forces the cells to consume ATP,
a key metabolite, which is hypothesized to be deficient in ME/CFS
patients (1, 23, 24).
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a disease which afflicts approximately 2 million people in the
United States and many more around the globe. A combination
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established blood-based biomarker to diagnose it. Taking ad-
vantage of advancements in micro/nanofabrication, direct elec-
trical detection of cellular and molecular properties, microfluidics,
and artificial intelligence techniques, we developed a nano-
electronics blood-based assay that can potentially establish a di-
agnostic biomarker and a drug-screening platform for ME/CFS.
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in the future as an aid to physicians as well as to our colleagues in
the ME/CFS research community.

Author contributions: R.E. and R.W.D. designed research; R.E. and J.W. performed re-
search; R.E. and J.W. contributed new reagents/analytic tools; R.E., A.K., and R.W.D. an-
alyzed data; R.E., A.K., M.N.-G., J.W., and R.W.D. wrote the paper; and A.K. helped
run experiments.

Reviewers: J.G., R-Water LLC; and D.R.H., University of Utah School of Medicine.

Conflict of interest statement: R.W.D. is Director of the Scientific Advisory Board of the
Open Medicine Foundation.

Published under the PNAS license.
1To whom correspondence may be addressed. Email: rahimes@uci.edu or krhong@
stanford.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1901274116/-/DCSupplemental.

Published online April 29, 2019.

10250–10257 | PNAS | May 21, 2019 | vol. 116 | no. 21 www.pnas.org/cgi/doi/10.1073/pnas.1901274116

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1901274116&domain=pdf
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:rahimes@uci.edu
mailto:krhong@stanford.edu
mailto:krhong@stanford.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901274116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1901274116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1901274116


To explore the aforementioned ATP hypothesis and to study
the biology of the disease and its molecular aberrations, we
applied a nanoelectronic array, called nanoneedle bioarray, to mon-
itor blood cells’ electrical responses to an induced stressor. The
nanoneedle bioarray is a versatile, ultrasensitive, and high-throughput
nanoelectronic device developed to detect molecular and cellular
interactions and their electrical properties in real time. The array
directly measures the impedance modulations resulting from cel-
lular and/or molecular interactions. We developed this ultrasensi-
tive, cost-effective assay by exploiting recent advancements in
nanofabrication and microfluidics. We posit that this assay can
potentially offer an outstanding biomarker to rapidly and inex-
pensively diagnose ME/CFS with high accuracy. In addition, this
assay may offer a remarkable opportunity for the discovery of new
treatments for this debilitating disease. In this study, we used ME/
CFS PBMCs as the model of study. PBMCs are generally the cells
of choice in many fields of research since they are well character-
ized and can be easily isolated (25) (SI Appendix). We also applied
different machine learning algorithms to make our platform a more
robust and precise potential diagnostic tool for ME/CFS.

Results and Discussion
Initial Motivation. The cardinal feature of ME/CFS is considered
to be a worsening of symptoms postexertion known as post-
exertional malaise (20). To mimic this condition on a cellular
level, we introduced a stressor into the patient’s clinical samples,
composed of isolated PBMCs incubated in their own plasma. We
initially hypothesized that stressing PBMCs (in a high-salt envi-
ronment) would result in extensive consumption and potential
depletion of ATP, a high-energy metabolite. Salt stress, and, more
generally, hyperosmotic stress, is a commonly applied stress model
in studies on various types of cells such as plant, yeast, bacteria,
mice, and human (26–32). To stimulate hyperosmotic stress in our
study, we increased the plasma’s NaCl concentration to 200 mmol/L.
NaCl is a typical stimulator of the osmotic response, which acts
in essentially the same way as many other agents, such as sugars
(33). However, as shown in Fig. 1C, the promising experimental
findings produced by the use of our assay led us to the conclusion
that the significantly different impedance response of the hyperosmotic-
stressed PBMCs we identified constitutes a reliable method of
differentiating CFS patients from healthy controls, which is the
main focus of this work.

Fig. 1. (A) Schematic of a single nanoelectronic sensor (not to scale). (B) Circuit model of a sensor−solution interface, where Zm-s is media−sensor surface
interactions, Zc-c is cell−cell interactions, Zc-s is cell−sensor surface adhesion, Zc is a cell impedance (membrane capacitance Cm, and cytoplasm conductivity of
the cells, σcp), and Rs is resistance of the solution. (C) The experimentally obtained impedance versus time curves illustrating the electrical response of
hyperosmotic-stressed samples of a bed-bound ME/CFS patient and a healthy control in real time. A gray region is defined experimentally and its top and
bottom borders are shown with orange and green lines, respectively (for further details see Trial Population and Statistical Analysis). (D) Array of nanoneedle
sensors fabricated on a 4-in wafer. (E and F) SEM images of a nanoelectronic sensor tips, (E) top view and (F) from the microfluidics channel side.
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Features of Assay and Theory of How Assay Operates. Our assay is
designed as an ultrasensitive assay capable of directly measuring
biomolecular interactions in real time, at low cost, and in a mul-
tiplex format. The array processing and multiplexing is an im-
portant feature to enable high-throughput sensing and monitoring
tasks on a large scale. Fabrication of an array of thousands of
sensors in parallel in a microfluidic channel integrated with their
individual on-chip amplifiers and read-out systems can provide a
single, portable platform that features a variety of clinical appli-
cations, including the detection of various biomarkers in parallel
for improved early-stage disease diagnosis. The way in which the
assay operates is theorized as follows: The assay detects any im-
pedance modulation due to the presence and/or interactions of
biomolecules of interest at the active sensing region of the sensors.
Impedance (Z), briefly, is the ratio of applied voltage (V) to the
induced current (A). It has two components: resistance, the in-
phase component (Zre), and reactance, the out-of-phase compo-
nent (Zim). With respect to an electrochemical system, the re-
sistance component is commonly dominated by a change in local
conductivity (e.g., change of ion concentration in osmolytes) (34),
while the reactance component is commonly dominated by a
change in local relative dielectric permittivity (34, 35) (e.g., local
replacement of buffer molecules with biomolecules) (for further
details, see SI Appendix). Using our sensors, we recorded and
calculated three parameters of in-phase impedance (Zre), out-of-
phase impedance (Zim), and impedance magnitudes to further
enhance the precision and accuracy of the sensors. Utility of the
assay for label-free detection of proteins and nucleic acids has
previously been demonstrated (34–40). In this study, we applied
the assay to objectively and continually quantify the effect of
hyperosmotic stress on patients’ clinical samples. For each ex-
periment, each of which lasted approximately 3 h, the sensors
collected ∼40,000 data points with a sampling frequency of 5 Hz.

Configuration and Microfabrication of Assay. The nanoelectronic
assay structure consists of two conductive layers with an in-
sulating layer in between. There are two additional protective
oxide layers above and underneath the sensors (Fig. 1A). The
nanometer-sized sensing region of the sensor consists of a 30-
nm-thin oxide layer sandwiched between two 100-nm-thin gold
layers. The top protective oxide layer is intended to prevent the
exposure of the top conductive electrodes to the solutions. There
is a thermally grown oxide layer underneath the bottom elec-
trodes to electrically insulate the sensors from the substrate.
Each sensor’s width is ∼3 μm to 5 μm. A scanning electron mi-
croscopy (SEM) image of a single sensor is shown in Fig. 1 E and F.
The sensors are designed in 3D format to improve the molecules-to-
sensors hit rate and to help diffusion occur in multiple directions.
The sensors were fabricated on 4-in silicon wafers (Fig. 1D)
following several optical photolithography, deposition, and
etching procedures. (Details of the fabrication process can be
found in Materials and Methods.)

Real-Time Impedance Measurements. To demonstrate the clinical
utility of the assay presented here for disease diagnostic appli-
cations, we monitored the electrical response of hyperosmotic-
stressed samples of a bed-bound ME/CFS patient and a healthy
control in real time. Prepared samples (Materials and Methods
and SI Appendix) consisted of PBMCs (200 cells per μL) in-
cubated in their plasma and prepared within 5 h of use. Fig. 1C
illustrates the experimentally obtained impedance versus time
curves of these experiments. Before the electrochemical im-
pedance spectroscopy (Vrms = 250 mV at f = 15 KHz) (Materials
and Methods), all sensors were subjected to an extensive cleaning
procedure to eliminate any potential for contamination (Mate-
rials and Methods). For each experiment, there was a waiting
time of ∼20 min for the impedance to reach a baseline value.
The baseline value is defined as <2% impedance fluctuation.

After reaching the baseline, we introduced a small volume (∼6 μL)
of hyperosmotic stressor to the samples. Testing of the sample
from the healthy control showed a transient decrease in im-
pedance signal after raising the plasma’s NaCl concentration to
200 mmol/L. The signal gradually returned to a value near the
baseline signal (0.88% ± 0.2, 2.69% ± 0.2, and 1.17% ± 0.28 for
jZj, Zre, and Zimg, respectively) generated in the unstressed state
and did not change with time when tested across ∼3 h. Electrical
impedance data were continually collected until the impedance
reached a plateau (<0 slope for >500 s). The same steps were
followed for the ME/CFS patient samples. Similarly, this sample
established a baseline impedance value that did not change in
the absence of the stressor. The hypertonic stressor added to this
sample also resulted in a transient decrease in measured im-
pedance, comparable to the healthy control’s sample, which
gradually returned to the baseline after about 40 min. However,
the increase in impedance was followed by a marked excursion
above the initial baseline value by 74.92% ± 0.69, 301.67% ±
3.55, and 64.73% ± 0.62, for jZj, Zre, and Zimg, respectively,
figures that are significantly greater than the values observed for
the healthy control. As shown in Fig. 1C, the ME/CFS samples’
response to the stressor is a unique characteristic of the im-
pedance pattern and is dramatically different from the response
observed among the control samples. We believe the observed
robust impedance modulation difference of the samples in re-
sponse to hyperosmotic stress (ME/CFS versus healthy) can
potentially provide us with a unique indicator of ME/CFS. One
should also note that, for both experiments, the baseline point
served as a reference point for data normalization purposes. It
allowed us to eliminate possible critical variations such as human
error, possible dissimilarity of the sensors due to the complicated
microfabrication process, and possible blood sample alterations
due to the lengthy sample preparation process.

Trial Population and Statistical Analysis. To pursue the goal of
developing a reliable biomarker for ME/CFS and to demonstrate
the utility of our platform for point-of-care diagnostics, we fur-
ther validated the array by testing patients with moderate to
severe ME/CFS. A total of 40 patients and healthy controls were
prospectively included. All of the ME/CFS patients included in
this study had previously been diagnosed by a physician in line
with the Canadian Consensus Criteria (CCC) (20). These ex-
periments were approved by Stanford IRB, and written consent
was obtained following Stanford IRB-40146 before any testing or
analysis began. Of the 20 ME/CFS patients studied, 5 were se-
verely ill and 15 were moderately affected by their condition. Of
the 20 healthy controls studied, 5 were age- and gender-matched
to 5 of our ME/CFS patients (with both sets of samples collected
simultaneously), 10 were selected at random and recruited by us,
and 5 were anonymous donors collected by the Stanford Blood
Center. The recruited healthy controls (excluding the blood
center samples) were not diagnosed with ME/CFS or related
diseases and had no blood relatives diagnosed with ME/CFS.
Patient and control samples were handled exactly the same in all
preprocessing steps. For each experiment, we analyzed and
recorded all three parameters of in-phase impedance (Zre), out-
of-phase impedance (Zim), and the impedance magnitudes
(Materials and Methods). Impedance signal excursion above the
initial baseline value for ME/CFS patients ranged from
75.61% ± 12.69 to 406.2% ± 1.32, 12.46% ± 0.13 to 94.98% ±
0.92, and 7.42% ± 1.45 to 81.49% ± 0.88 for Zre, jZj, and Zimg,
respectively. The ranges for healthy controls were −27.33% ±
0.56 to 34.7% ± 5.18, −14.89% ± 0.32 to 18.02% ± 0.41, and
−16.44% ± 0.22 to 18.38% ± 0.44 for Zre, jZj, and Zimg, re-
spectively. Additionally, minimum-to-plateau impedance signal
change for ME/CFS patients ranged from 95.79% ± 12.8 to
427.29% ± 1.57, 14.13% ± 1.24 to 109.25% ± 0.95, and
13.36% ± 0.99 to 94.99% ± 0.9 for Zre, jZj, and Zimg, respectively.
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Experimentally calculated values of these signals for healthy con-
trols are 0.05% ± 0.53 to 49.15% ± 4.64, 1.15% ± 0.17 to 19.69% ±
0.46, and 0.16% ± 0.71 to 19.29% ± 0.74 for Zre, jZj, and Zimg,
respectively (Fig. 2 B and C). According to our analyses, the in-
phase impedance (Zre) from the baseline to plateau showed the
greatest separability (P = 4.48E-9), while out-of-phase impedance
(Zim) and magnitude (jZj) signals were also significantly separable
(P = 2.73E-5 and P = 1.12E-5, respectively). Supplementary to
analyzing the percentage change to the plateau from the baseline,
the percentage change to the plateau from the minimum also
showed strong separability, as shown in Fig. 2 D and E. Similarly,
in-phase impedance showed the greatest separability (P = 7.27E-9),
while Zim and jZj signals were also significantly separable (P =
5.06E-5 and P = 2.67E-5, respectively). Furthermore, other pa-
rameters such as slopes and the time taken to reach both the
minimum and plateau were also analyzed. Most notably, the max-
imum positive slope showed the greatest separability (P = 1.19E-7,
P = 1.67E-5, and P = 2.22E-5 for Zre, jZj, and Zimg, respectively),
although it was not as significant as the percentage change from the
minimum to the plateau (P = 7.27E-9 for Zre) and from the
baseline to the plateau (P = 4.48E-9 for Zre). Fig. 2A shows the
experimentally obtained impedance versus time curves of all ME/
CFS and healthy control samples. To generate each plot, about
∼40,000 data points per experiment were collected. Fig. 2A also
shows an experimentally defined gray region. According to our

experimental results, the ME/CFS signals that lay in the top range
of this gray region belonged to the moderately affected ME/CFS
patients, while severely ill patients all showed signals far above the
gray region. Considering these findings, we think there might be a
correlation between the level of disease severity and signal strength.
Additionally, the healthy controls that lay in the bottom range of
the gray region had a familial link to fibromyalgia. Also, the re-
peatability and reproducibility of the assay were validated for both
ME/CFS patients and healthy controls (Fig. 2 F and G). Repeating
the experiments for the healthy control showed the baseline-to-
plateau impedance signal varied at 7.08% ± 0.23, 18.95% ± 0.69,
and 5.04% ± 0.36 for jZj, Zre, and Zimg, respectively, while varia-
tions for the minimum-to-plateau signals were 5.96% ± 0.35,
16.23% ± 0.65, and 4.02% ± 0.47 for jZj, Zre, and Zimg, re-
spectively. For the ME/CFS sample, variations for jZj, Zre, and Zimg
were 1.66% ± 0.42, 14.09% ± 2.71, and 1.35% ± 0.41, and 1.68% ±
0.41, 17.71% ± 2.62, and 1.29% ± 0.41 for the baseline-to-plateau
and for the minimum-to-plateau signals, respectively.

Sample Selection. To adapt this assay for use as a potential di-
agnostic tool for ME/CFS, we optimized the assay using several
different clinical samples. We tested patients’ PBMCs in their
whole-blood, serum, and plasma samples to find the most reli-
able and distinguishable indicators. According to our experi-
mental data, both serum and plasma samples showed a unique,

A B C

D E F

G H I

Fig. 2. Trial population and statistical analysis. (A) The experimentally obtained impedance versus time curves of 40 ME/CFS and healthy control samples used
in this study with an experimentally defined gray region. Top and bottom borders of the gray region are shown with orange and green lines, respectively. To
generate each plot, about ∼40,000 data points per experiment were collected. (B−E) Analyzed percentage change of (B) minimum-to-plateau and (C) baseline-
to-plateau impedance signals, in which both showed a strong separability, (D) with P = 7.27E-9 for minimum-to-plateau and (E) P = 4.48E-9 for baseline-to-
plateau impedance signals. (F and G) Repeatability and reproducibility validation of the assay for both ME/CFS patients and healthy controls. (H) Primary ME/
CFS classifier created by applying supervised SVM machine learning algorithm to our experimental datasets. (I) Perfect linearly separable dataset in PCA space
after performing PCA on a data matrix comprising six features of impedance change signals from the baseline and minimum to the plateau for all three
components of impedance (jZj, Zre, and Zim). *P < 1e-8.
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reliable, and repeatable pattern, while such a pattern was not
observed for the whole-blood samples. As a result, platform
validations and optimization studies were performed for the
plasma samples. Furthermore, we explored a number of differ-
ent preparation and storage methods to minimize the need for
freshly drawn blood, and to provide the possibility of using pa-
tient samples collected around the globe. We conducted the
assay with samples kept at 4 °C, room temperature, and in a
37 °C storage cabinet, as well as those frozen in −20 °C freezers
and in liquid nitrogen (at 200 cells per μL). We concluded that
plasma used within 5 h of preparation at 200 cells per μL gives
the most reliable and reproducible results. The other most successful
techniques tested were 24 h storage at room temperature and liquid
nitrogen freezing for 1 wk, both of which preserved the pattern of
fresh samples, although the response was slightly attenuated.

Discussion. Although the initial hypothesis of this study was that
the ATP consumption rate differs in ME/CFS patients’ blood
cells compared with healthy control blood cells, our experi-
mental results on 40 ME/CFS individual patients and healthy
controls revealed that ME/CFS hyperosmotic-stressed samples
(PBMCs in plasma) display a unique characteristic in their im-
pedance pattern, and one that is significantly different than what
was observed in the controls. Our work thus far indicates that the
impedance signature itself can potentially represent a distinctive
indicator of ME/CFS patients versus controls and can potentially
establish a diagnostic metric for the disease. Furthermore, it can
also provide insights into the biology of this complex syndrome.
Previous studies have also sought to find a differentiating at-
tribute of ME/CFS by inducing exertional malaise (41). While
the exact mechanisms behind the discovered differences remain
unclear and further analysis is needed to pinpoint their precise
source, we envision that a number of mechanisms may be trig-
gered when plasma samples containing PBMCs are exposed to a
stressor. To this end, frequency-resolved impedance readings (10
Hz to 1 MHz) at different time points were subjected to a
mathematical model developed by Giaever and Keese (42) to
understand the exciting circuit model representing the sensor−
solution interface components. The impedance results are inte-
grations of the impedance that are attributed to the media−
sensor surface interactions (Zm-s), cell−cell interactions (Zc-c),
cell−sensor surface adhesion (Zc-s), impedance of cells (mem-
brane capacitance Cm, cytoplasm conductivity of the cells, σcp),
resistance of the solution (Rs), and other components (e.g.,
proteins, exosomes, and lipids) in plasma. The assumption here
is that the current flows radially into the space between the cell’s
ventral surface and the substrate and then escapes between the
cells. The current density is assumed to be consistent in the y
direction, and the cells are disk-shaped objects with membrane
surfaces and filled with a conducting electrolyte. Moreover, to
identify the mechanisms and components involved at the cellular
and molecular levels, we have started to investigate the plasma
components (e.g., proteins, exosomes, and lipids) and individual
cell types (e.g., T cells) separately. This investigation forms part
of on-going studies that require further investigation before
mechanisms may be suggested with a good degree of certainty.
In terms of the mechanisms involved, one of the first candi-

dates to be considered is Na/K ATPase, which is present in the
plasma membrane of all cells. It is responsible for pumping so-
dium and potassium ions across the cell membrane using an
active transport mechanism that requires the consumption of
ATP. The normal intracellular concentration of PBMCs is
around 10 mM, while that of plasma is about 135 mM. The re-
verse is true for potassium (around 140 mM intracellular and
5 mM extracellular). Upon the increase in extracellular sodium
ion concentration, passage of some additional Na ions into cells
may occur by diffusion, depending on the permeability of the
PBMCs to this ion. As for the active transport of the ions by Na/K

ATPase, the pumping of three Na ions to the outside of the
cell and two K ions to the inside takes place in each cycle of
operation, thereby sustaining the large excess of Na ions outside
and high concentration of K ions inside required for maintaining
cell potential. Accordingly, increasing sodium concentration in
plasma while keeping its original low potassium level unchanged
would be in line with the main function of the membrane enzyme
in preserving the concentration gradients of Na and K ions
across PBMC plasma membranes. While an increase in Na ion
concentration per se does not appear to be antagonistic to the
normal functioning of Na/K ATPase, it may act as a factor
causing osmotic stress. In such a situation, some specific mech-
anisms may be triggered as a response to the new, unfavorable
situation to achieve intracellular water homeostasis (43). Indeed,
a number of reports in the literature indicate that the addition of
salts or other osmotic agents to the cell environment may induce
the production of inflammatory cytokines (20, 39–44). These
studies indicate that the development of inflammation as a
consequence of osmotic stress may be a general phenomenon
affecting PBMCs (44, 45) and a number of other cell types (46–
50). Both lower (20 mM to 41 mM) (48) and higher (100 mM to
135 mM) (47) concentrations of NaCl than the amount tested in
the present study (65 mM) have been investigated. In a study on
the effect of osmotic stress on human bronchial epithelial cells,
IL-8 production was stimulated by additional NaCl (ranging
from 50 mM to 150 mM) in a time- and dose-dependent manner
(50). These findings confirm the ability of cells to alter gene
expression in response to changes in the osmotic environment
(51). These mechanisms may contribute to altering media−
sensor surface interactions (Zm-s), cell−cell interactions (Zc-c),
cell−sensor surface adhesion (Zc-s), impedance of cells (membrane
capacitance Cm, cytoplasm conductivity of the cells σcp), re-
sistance of the solution (Rs), and other plasma components (e.g.,
proteins, exosomes, and lipids), which can modulate the value of
the impedance signals measured by our sensors. A number of
other mechanisms have been reported as being involved in the
effect of high salt concentration on cells other than PBMCs,
which may play a role relevant to the present study. These in-
clude a size change induced by an increase in osmotic pressure,
and accumulation of glycerol and amino acids (27), which might
contribute to altering the impedance of cells (membrane ca-
pacitance Cm, cytoplasm conductivity of the cells, σcp), cell−cell
interactions (Zc-c), and cell−sensor surface adhesion (Zc-s),
which can modulate the value of the impedance signals mea-
sured by the sensors here. However, the simultaneous standard
live microscopy imaging of heterogeneous population of the
PBMCs at different critical points of the experiments was not
able to distinguish a significant visually detectable cell size dif-
ference between ME/CFS patient cells and healthy control cells.
Nonetheless, high-resolution imaging (e.g., transmission electron
microscopy) of specific cell types at different critical points of the
experiments might help us to better understand the possible
contribution of this mechanism to our results. Additionally,
phospholipid synthesis and expansion of endoplasmic reticulum
membrane (52) can also contribute to altering the impedance of
cells (membrane capacitance Cm, and cytoplasm conductivity of
the cells σcp), which can modulate the value of the impedance
signals measured by the sensors. A change in the composition of
the plasma membrane (28) is another possible mechanism that
can contribute to altering the impedance of cells (membrane
capacitance Cm), cell−cell interactions (Zc-c), and cell−sensor
surface adhesion (Zc-s), all of which can modulate the value of
the impedance signals measured by the sensors. Moreover, the
reinforcing of the membrane by increasing the concentration of
ubiquinone-8 can also contribute to altering the impedance of
cells (membrane capacitance Cm), cell−cell interactions (Zc-c),
and cell−sensor surface adhesion (Zc-s), and to modulating the
value of the impedance signals measured by our sensors. Although
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all of the above are possible contributing mechanisms, further ex-
periments are required to understand the precise contributing
mechanisms behind the observed differences, and whether they are
specific to ME/CFS or whether the response might be found among
other similar diseases.
Additionally, our very attractive preliminary results (not in-

cluded in this paper) involving severely ill ME/CFS patients and
healthy controls indicated a clear difference in the behavior of
PBMCs among ME/CFS patients when placed in the patients’
own plasma compared with when they were incubated in healthy
plasma. These observations were one of the motivations behind
experimenting with the components of ME/CFS patients’ plasma
at the molecular level, in addition to studying cells. The observed
impedance patterns may be due to the presence or absence of
plasma-associated factors. Interestingly, cytokine production by
PBMCs (53) and human retina pigment epithelium cells (48)
treated with lipopolysaccharide have been found to be enhanced
by hyperosmotic stress, a finding that may be related to the
present study. It is also tempting to speculate that these reports
and our own findings are relevant to some recent studies indicating
an important inflammatory component in ME/CFS (4, 9, 54).
Moreover, to create a classifier for ME/CFS patients capable of

identifying new patients, required for a robust diagnostic tool, we
developed a trained kernel Support Vector Machine (SVM), a
supervised machine-learning algorithm, using our experimental
data. To classify new patients based on whether they fall to the
right of the decision boundary, we initially selected the two fea-
tures with the largest significance: change from the baseline to the
plateau and change from the minimum to the plateau for the in-
phase components of the impedance. Using these features, a cubic
polynomial kernel SVM was able to classify the two populations,
although the two features are highly correlated, as shown in Fig.
2H. To further improve the robustness of the classifier by de-
creasing the correlation between the two axes, a principal com-
ponent analysis (PCA) was performed on a data matrix
comprising six features: the change in impedance from the base-
line and minimum to the plateau for all three components of
impedance (jZj, Zre, and Zim). The results (n = 2) yielded a
seamless dataset that is linearly separable in PCA space (Fig. 2I).
Next, we aim to perform further experiments to understand

the specific mechanisms contributing to the observed results, and
to test the performance of the assay on other similar condition
diseases. Additionally, we are working on adapting the technol-
ogy to a platform capable of preclinical testing of drugs and
therapies on cells from ME/CFS patients, leading toward de-
velopment of a portable, handheld, and easy-to-use platform that
can be operated by researchers and clinicians at any skill level.
In summary, there is currently no well-established blood-based

biomarker to diagnose ME/CFS, which afflicts ∼2 million people
in the United States and many more around the globe. The
molecular aberrations observed in numerous studies of ME/CFS
blood cells offer the opportunity to develop a diagnostic assay for
blood samples. Taking advantage of recent advancements in
micro/nanofabrication, direct electrical detection of cellular and
molecular properties, and microfluidics, we developed an ultra-
sensitive and cost-effective nanoelectronic assay capable of
continual monitoring of cellular and molecular events in real
time from a very small sample volume (∼50 μL). By studying
ME/CFS at the molecular level, we demonstrate the clinical
utility of the assay for disease diagnostic applications. According
to our experimental results, ME/CFS blood cells display a unique
characteristic in their impedance pattern when subjected to
hyperosmotic stress that is significantly different from the control
(P < 4.5E-9, n = 40). To make our platform a more robust di-
agnostic tool, potentially capable of accurately identifying new
patients, we developed a precise ME/CFS classifier by applying a
supervised SVM machine learning algorithm to our experimental
datasets. In addition, we performed PCA on a data matrix of

important features, which established a seamless linearly sepa-
rable dataset in PCA space. This technology is a blood-based
impedance biomarker that can potentially establish a di-
agnostic biomarker and a drug-screening platform for ME/CFS
in conjunction with preexisting evaluation measures such as the
CCC. This is a low-cost, rapid, miniaturized, minimally invasive,
and highly sensitive assay. Given the significance of this assay
and its reliability, we envision it has the potential to be widely
employed in other research laboratories and clinics in the near
future as an aid to physicians as well as to our colleagues in the
ME/CFS research community.

Materials and Methods
Fabrication. We fabricated the arrays using the following protocol: First,
200 nm of SiO2 was thermally grown on a silicon wafer to insulate the
substrate from the other layers. This process was done in a high-temperature
atmospheric furnace to grow silicon dioxide (SiO2) on silicon wafers (∼3 h at
1,100 °C). In subsequent steps, the bottom conductive electrodes were pat-
terned and deposited through optical photolithography, and metal de-
position processes, followed by lift-off steps. To do that, first, standard
silicon wafers were prebaked on a hot plate at 200 °C for ∼2 h. Then the
manual resist spinning step was performed by applying 10 drops of
hexamethyldisilizane to the wafers as an adhesive layer. This was followed by
the coating of the wafers with MaP 1215 photoresists. The wafers were then
transferred to a contact aligner system to perform precision mask-to-wafer
alignment followed by near-UV photoresist exposure (∼3 s). Exposed pho-
toresists were developed, and the patterned wafers were transferred to an
evaporation system to deposit the bottom metallic electrodes. In the evap-
oration system, first, 3 nm of Cr was deposited as an adhesive layer, which
was followed by the deposit of 100 nm of gold to create the sensors’ bottom
conductive electrodes. The wafers then went through a metal lift-off process
(∼30 min in Acetone) to remove the remaining photoresists and form the
final configuration of the bottom electrodes. The next step was deposition
of 30 nm of silicon dioxide (sensing region) using plasma-assisted atomic
layer deposition technique. This is a high-quality, conformal, uniform, pinhole-
and particle-free oxide film to minimize the electrical shorting effect and
maximize the sensors’ yield. This was followed by the fabrication of the top
conductive electrodes. A similar procedure as for the bottom electrodes was
followed to fabricate the top electrodes. These conductive electrodes were
then coated with a protective oxide layer (SiO2). These protective layers
were deposited using a plasma-enhanced chemical vapor deposition system.
Several etching steps followed by a lithography step were performed to
form channels underneath the sensors. Then, the oxide from electrical
measuring pads, called bonding pads, was removed. To achieve this, the
patterned wafers went through a wet etching process (6:1 Buffered Oxide
Etch) to expose these bonding pads. The final step was further cleaning of
the sensing tips and forming them with sharp edges in the channel. This step
was achieved using the focused ion beam etching process.

Statistical Analysis. The critical points we used for analysis of the impedance
versus time curves were baseline, minimum, and plateau levels; minimum and
maximum slope; and the time taken to reach the minimum and plateau. The
baseline, defined earlier, functioned as a reference point to normalize any
process variations. The baseline was calculated by averaging the impedance
for 200 s starting at 250 s before the addition of the stressor. The real-time
impedance was then normalized by the baseline yielding a value of 1 at the
baseline. To determine the remaining features, when salt is introduced, we
split the data into two sections to remove the large drop in impedance as-
sociated with the introduction of salt. The first section contained the baseline
and the initial drop, while the second contained the sample’s response to the
addition of salt. A high-order polynomial (d = 14) was fit to the second
section and used to estimate the rest of the critical points in closed form. The
minimum was the point at which the fitted curve is at its lowest. The plateau
was the point after the minimum where the impedance is at its largest in the
fitted portion. To calculate the minimum and maximum slopes, the fitted
polynomial was differentiated. The minimum slope was determined as the
minimum value of the differentiated curve between the start of the fitted
section and the time of the minimum. Similarly, the maximum slope was
determined as the maximum value of the differentiated curve between the
time of the minimum, and the time of the plateau. The uncertainty in the
measurement of the baseline minimum and plateau was estimated as the SD
of the raw data from 60 s before the critical point to 60 s after. All P values
were two-tailed and calculated using Welch’s t test.
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Electrochemical Impedance Spectroscopy. To perform electrochemical im-
pedance spectroscopy, a Versa STAT3 potentiostat (Princeton Instruments)
was used. An operating voltage of 250 mV RMS was established. We chose to
measure impedance at a frequency of 15 KHz, as this frequency was shown to
be the optimal working frequency of the sensors (34). The sampling rate was
five samples for all experiments. All measurements were performed at
room temperature.

Nanosensors’ Preexperiment Cleaning. To eliminate the potential for sensor
contamination, we conducted an extensive sensor cleaning process before
each experiment. The cleaning procedure consisted of two main steps: (i)
series of liquid washes to remove macroscopic particles, (ii) followed by ul-
traviolet ozone (UVO) cleaning to eliminate organic contaminants. The liq-
uid wash was performed by dipping a Micro CleanFoam TX757B swab
(Texwipe) in 2% SDS and then using the swab to remove any oils or fats
deposited on the wafer, by gently rubbing the swab on the silicon surface.
The wafer was then rinsed with an excess of deionized (DI) water to wash off
the SDS residue. An acetone rinse was then performed using a new foam
swab to dislodge any remaining particles. A wash of isopropanol was then
performed to remove the residue left by the acetone. The final wash was
performed using DI water, and the sensors were then dried with compressed
air. Next, the sensors were sanitized using a UVO cleaner (Model 42; Jetlight)
for 30 min to remove organic contamination and hydrophilize the SiO2

surface. The full cleaning procedure (liquid wash steps followed by the UVO
cleaning step) was repeated twice more (three times in total) to fully elim-
inate any contamination, residue, and organic contamination.

Sample Preparation. For each subject, blood was collected in an 8-mL sodium
citrate CPT tube and a 6-mL lithium heparin tube. Following the protocol
explained in SI Appendix, PBMCs were isolated from the whole-blood
plasma, and the cells were adjusted to a concentration of 200 cells per μL
and delivered for the experiments.

Experimental Setup. To make electrical connections to the sensors’ small
(50 μm × 50 μm) measuring pads, an S-1160 probe station (Signatone) was
used. A biocompatible silicone wells FlexWell Incubation Chamber (Grace
Bio-Labs) was cut and placed over a sensor as a microfluidic well to contain
the sample. For each experiment, 50 μL of the prepared sample (SI Appendix)
was injected into the microfluidic wells, and real-time electrical impedance
measurements were then recorded.
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