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Abstract

Two-node attractor networks are flexible models for neural activity during decision making. 

Depending on the network configuration, these networks can model distinct aspects of decisions 

including evidence integration, evidence categorization, and decision memory. Here, we use 

attractor networks to model recent causal perturbations of the frontal orienting fields (FOF) in rat 

cortex during a perceptual decision-making task (Erlich, Brunton, Duan, Hanks, & Brody, 2015). 

We focus on a striking feature of the perturbation results. Pharmacological silencing of the FOF 

resulted in a stimulus-independent bias. We fit several models to test whether integration, 

categorization, or decision memory could account for this bias and found that only the memory 

configuration successfully accounts for it. This memory model naturally accounts for optogenetic 

perturbations of FOF in the same task and correctly predicts a memory-duration-dependent deficit 

caused by silencing FOF in a different task. Our results provide mechanistic support for a 

“postcategorization” memory role of the FOF in upcoming choices.

1 Introduction

Perceptual decision making is a commonly studied behavioral paradigm because it requires 

multiple types of computations: sensory processing, executive functions, and motor 

responses. Several recent studies have examined the role of a rat cortical area known as the 

frontal orienting fields (FOF) in decision making and short-term memory (Erlich, Bialek, & 

Brody, 2011; Erlich, Brunton, Duan, Hanks, & Brody, 2015; Hanks et al., 2015; Kopec, 

Erlich, Brunton, Deisseroth, & Brody, 2015). These studies have used two different tasks to 
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ask separate questions about evidence integration, decision making, and short-term memory. 

During the Poisson clicks task, rats were trained to integrate noisy evidence informing them 

which choice, left or right, would be rewarded (Brunton, Botvinick, & Brody, 2013; Erlich et 

al., 2015; Hanks et al., 2015). During the memory-guided orienting (MGO) task, rats were 

presented with a nonnoisy auditory stimulus indicating a reward location, and then they were 

required to wait during a delay period before making their choice (Erlich et al., 2011; Kopec 

et al., 2015). During both tasks, performance can be assessed via a psychometric curve that 

displays the relationship between trial difficulty and the animal’s choice.

In order to investigate the causal role of the FOF in these cognitive tasks, recent studies have 

used a pharmacological agent, muscimol, to reversibly inactivate the FOF. On both tasks, 

unilateral inactivation of the FOF produced an ipsilateral bias (toward the side of infusion). 

This bias is evident as a mostly vertical scaling of the psychometric curve (see Figure 1). A 

vertical scaling is highly unusual, as it means that the rat’s bias was independent of trial 

difficulty. Easy trials were biased (scaled) by the same percentage as hard trials. Vertical 

scaling is most evident in the change in the asymptotes of the psychometric curve. An 

alternative type of bias, and one that is readily observed by perturbing evidence 

accumulation models, is a horizontal shift of the psychometric curve (Hanks, Ditterich, & 

Shadlen, 2006). In a horizontal shift, the midpoint of the curve moves laterally, while the 

curve has the same asymptotic behavior. A horizontal shift means easy trials are less biased 

than hard trials.

To understand the origin of this ipsilateral bias, Erlich et al. (2015) performed an analysis of 

perturbations to behavioral-level accumulation models that describe rat performance on the 

evidence accumulation task. They concluded that the best description of the bias was 

postcategorization bias, which was formulated as a directional lapse rate. This term 

describes the idea that on a fraction of trials, the animal responds toward the inactivated side 

regardless of the evidence. Lapses are so called because they are often assumed to come 

from a lapse of attention (Wichmann & Hill, 2001), but may have more interesting and 

nuanced sources (Scott, Constantinople, Erlich, Tank, & Brody, 2015). The term captures the 

qualitative pattern of the data but does not indicate a neural mechanism that would create 

postcategorization bias.

Optogenetic inactivation of the FOF was also found to produce an ipsilateral bias, on both 

behavioral tasks (Hanks et al., 2015; Kopec et al., 2015). During the evidence accumulation 

task, behavior was biased only when the inactivation period included the end of the evidence 

period. The interpretation given by Hanks et al. (2015) was that the FOF may be involved in 

“reading out” the decision from the accumulated evidence but not integrating the evidence 

itself. Consistent with pharmacological inactivations, the data were best fit by a model with 

a postcategorization bias term (Hanks et al., 2015). During the MGO task, Kopec et al. 

(2015) used fast timescale optogenetic inactivation and again found an ipsilateral bias. The 

changes relative to controls in the psychometric curve during optogenetic inactivation 

showed a smaller bias than with pharmacological inactivation and did not display the clear 

vertical scaling. The origin of these differences between optogenetic and pharmacological 

inactivations in the MGO task remains unclear. Kopec et al. (2015) fit a mutual inhibition 
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attractor model to the perturbation data from their MGO task and found that it was 

consistent with several aspects of the data.

Such mutual inhibition models have previously been used to model short-term memory and 

decision making (Machens, Romo, & Brody, 2005; Wong & Wang, 2006). Consisting of two 

neural population variables, they are simple yet surprisingly flexible at implementing many 

cognitive computations. At the root of their flexibility is the ability to implement many 

distinct nonlinear computations with low-dimensional dynamics (Machens et al., 2005). 

Recent studies have suggested that neural populations compute via effective low-

dimensional dynamics, including both the PFC (Mante, Sussillo, Shenoy, & Newsome, 

2013) and the hippocampus (Yoon et al., 2013). Theoretical studies of large recurrent 

network models have also found effective low-dimensional dynamics, including both trained 

networks (Sussillo & Barak, 2012) and random unstructured networks (Aljad-eff, Renfrew, 

Vegue, & Sharpee, 2016). Mutual inhibition models implement low-dimensional dynamics 

without the complications of larger network details. They can be derived from spiking 

network models through the use of simplifying mean field reductions (Wong & Wang, 

2006). When tuned correctly, they can also be reduced to a drift diffusion model that 

describes optimal integration (Bogacz, Brown, Moehlis, Holmes, & Cohen, 2006). Given 

that these models can tractably perform all three functions of decision making, they are a 

natural tool to examine the possible roles of the FOF during evidence integration, decision 

categorization, and short-term memory.

Here, using mutual inhibition models, we set out to ask (1) how postcategorization bias 

could be implemented in a neural circuit; (2) whether this bias was consistent with the FOF 

integrating evidence, categorizing accumulated evidence, or maintaining a decision memory 

in the Poisson clicks task; and (3) whether the attractor model used to describe data from the 

MGO task (Kopec et al., 2015) could also explain data from the Poisson clicks task. We will 

show that a mutual inhibition neural circuit model similar to that used by Kopec et al. (2015) 

can indeed recreate postcategorization bias in the Poisson clicks task, but only when it is 

used to maintain choice memory, not when it is involved in evidence integration or decision 

categorization.

2 Results

We considered three distinct computational stages of decision making that might explain the 

results of pharmacological inactivation of the FOF during the evidence accumulation task: 

evidence integration, categorization of accumulated evidence into a decision, and decision 

memory. During the evidence integration stage, transient noisy evidence must be integrated 

over time to produce the accumulated evidence value. The accumulated evidence has been 

the primary focus of study in recent papers (Brunton et al., 2013; Hanks et al., 2015; Scott et 

al., 2015). In the categorization stage, the accumulated evidence value is evaluated to 

produce a binary choice: left or right. In the decision memory stage, a categorized choice 

must be maintained. We did not consider a motor role in producing these biases because 

FOF inactivation did not produce a bias in sensory instructed trials (see Figure 1, “left/right 

LED,” and Erlich et al., 2015). Our conceptual model assumes these three stages operate in a 

serial fashion (see Figure 2).

Piet et al. Page 3

Neural Comput. Author manuscript; available in PMC 2019 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mutual inhibition models can be tuned to implement all three of these computations 

(Machens et al., 2005; Wong & Wang, 2006). To evaluate whether the FOF could be 

implementing these computations, we fit mutual inhibition models to perform each of these 

computations with and without inactivations. Our model is a simplification of Kopec et al. 

(2015), Machens et al. (2005), and Wong and Wang (2006). It consists of two nodes that 

represent the average activity of a neural population. Each node has dynamics according to

τdUL = −UL + M ⋅ VL − I ⋅ VR + ExL dt + σdWL,
τdUR = −UR + M ⋅ VR − I ⋅ VL + ExR dt + σdWR,

(2.1)

VL(t) = 1
2tanhUL(t) + 1

2 ⋅ hL,

VR(t) = 1
2tanhUR(t) + 1

2 ⋅ hR .
(2.2)

The variable Ui represents the internal state of each population. The variable Vi represents 

the external activation of each population and is bounded between 0 and 1. Each population 

gets independent additive white noise, W, with variance given by σ2. The two populations 

have a time constant τ, which was set to 100 msec. The self-excitation has strength M, and 

the cross-inhibition has strength I.

To model a unilateral muscimol inactivation, the output of one node V is scaled by h, the 

inactivation fraction (0 ≤ h ≤ 1). Scaling the output of a node represents part of the neural 

population being inactivated, creating a weakened population signal. Allowing for a partial 

inactivation of a neural population could reflect either incomplete inactivation of the FOF 

hemisphere or the FOF operating as part of a larger distributed circuit (Kopec et al., 2015). 

Due to the decussation of motor pathways from the brain to the body, we simulate an 

inactivation of the right hemisphere of the rat’s brain by inactivating the left node of our 

model. This produces a bias toward right choices, consistent with the ipsilateral bias in the 

data. In terms of equation 2.2, a right hemisphere inactivation has hL = h and hR = 1, while a 

left hemisphere inactivation has hR = h and hL = 1, and control trials have hR = hL = 1.

The external input to each node Exi is dependent on the current epoch within each trial. 

During the stimulus period, each node gets a constant background node-independent input B 
plus an additional node-dependent input ø scaled by Ecue;

E xL = B + ϕLEcue,
E xR = B + ϕREcue . (2.3)

The input ø is either the auditory clicks, the accumulated evidence, or the categorized 

decision depending on whether the integration, categorization, or postcategorization model 

is being considered. During the memory period, we have no external inputs:
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ExL = 0,
ExR = 0. (2.4)

The value of øi, will represent either the noisy evidence, the accumulated evidence, or the 

categorized decision. At the end of each trial, we read out the model’s choice by determining 

which node has greater activity. The control and inactivation data were fit simultaneously, 

with the inactivation fraction h = 1 during simulation of control trials. The parameters M, I, 
σ, B, Ecue, h, and g (introduced below) were fit to the data.

2.1 Integration Model.

The first computational stage the FOF might implement is evidence integration. The mutual 

inhibition model can integrate evidence by setting

ϕL(t) = δt, tL
,

ϕR(t) = δt, tR
, (2.5)

where δi,t are delta functions at the times of each click on the left or right side. The model 

was fit to the data by maximizing the likelihood of observing the rat’s choice on each trial in 

the data set. The length of the memory period on each trial was the duration from when the 

center light went off, indicating to the rat the evidence period had ended, and when the rat 

left the center nose poke. The memory period was about 60 msec on average. The model 

was also fit with no memory period on each trial, and with a 100 msec memory period on 

each trial, all of these models fit the data poorly. When fit to the control data alone, the 

integration model produces a psychometric curve similar to the data (see supplementary 

Figure 1). However, when inactivation data are included in the model fitting, the model 

cannot produce the same type of vertical scaling seen in the data (see Figure 3). The 

integration model cannot produce the correct type of bias because it must encode graded, 

rather than categorical, information. To perform accurate integration, the information in the 

network must be encoded in a graded manner such that a click on each side can be 

accurately added to previous clicks. Inactivation of a network with graded information 

produces biases that make some clicks weaker. The model is unable to balance this 

constraint with the difficulty-independent bias in the data and is unable to fit the data. The 

failure of the integration model suggests that inactivation of the FOF is not perturbing an 

evidence integration process.

2.2 Categorization and Postcategorization Models.

Next we consider how the FOF might categorize accumulated evidence or maintain a 

categorized choice. For both of these roles, the input to each node will be a function of the 

accumulated evidence a:
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ϕL = f (a),
ϕR = 1 − f (a) = 1 − ϕL . (2.6)

There are many possible functions f (), but we will add several restrictions on this function. 

First, we restrict f () such that it has range [0, 1] and domain [amin, amax], determined by the 

largest and smallest accumulated evidence values the rats experience. Second, we require f () 
to be monotonically increasing, which implies f (amin) = 0 and f (amax) = 1. Third, we 

require that f() can be parameterized such that it can move smoothly between a straight line 

over its domain and the Heaviside step function. This parameterization allows the model-

fitting process to determine that degree to which input into the network is graded (linear 

function) or categorical (Heaviside step function). One function that can satisfy these 

conditions is tanh a
g , scaled appropriately:

f (a) = 1

2tanh
amax

g

tanh a
g − tanh

amin
g . (2.7)

As g ∞,  f () returns a linearly graded value on the domain between amin and amax, 

creating the categorization model. In this setting, the model categorizes the accumulated 

evidence into a binary left or right decision and then maintains that memory. As g → 0, f () 
becomes the Heaviside function, creating the postcategorization model. In this setting, the 

model performs only a decision memory role, as the input is already formed into a decision. 

Intermediate values of g can create partially categorized inputs. We will refer to f () as the 

thresholding function. Introducing f () allows us to fit the degree of categorization in the 

input to the FOF.

The model described thus far computes the probability of a choice right (or left) as a 

function of the accumulated evidence, P(R|a). However, in order to fit the models to the 

psychometric curves, we need to compute the probability the model will choose right (or 

left) given a click difference: P(R|ΔR,L). We could do this directly by using the click 

difference as the accumulated evidence: a = ΔR,L. However, this approach assumes perfect 

integration and ignores the noise of integration. Previous studies have demonstrated and 

quantified the impact of sensory noise in evidence integration (Brunton et al., 2013; Scott et 

al., 2015). To respect the noisy integration process, we introduce a latent accumulation 

variable:

P R ΔR, L = ∫ P(R a)P a ΔR, L da . (2.8)

We can determine P(a|ΔR,L) by use of a previously developed evidence accumulation model 

(Brunton et al., 2013). This accumulation model gives us a moment-by-moment estimate of 
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the accumulation variable given the trial’s evidence, a t, δt, tR
, δt, tL

.The accumulation model 

outputs a distribution over possible a values, reflecting model uncertainty P a | t, δt, tR
, δt, tL

.

To construct P(a|ΔR,L), we used parameters for the accumulation model taken from the fit of 

the model in Erlich et al. (2015) to the control data set. The accumulation model was then 

used to generate a distribution of a values at the end of each trial. All trials with the same 

click difference were averaged to produce P(a|ΔR,L). The best-fit parameters of the 

accumulation model included sticky bounds on integration at a = ±15. We can compute P(R

\a) by simulating the mutual inhibition model with ϕL = f (a), with −15 ≤ a ≤ 15. The sticky 

bounds also determined the domain of the threshold function f (). Combining these two 

terms, we can estimate the probability of our model’s behavior given a click difference on 

each trial. Practically, we discretize and bin a:

P R ΔR, L = ∑
a

P(R a)P a ΔR, L . (2.9)

Our results are insensitive to particular bin sizes for these values. The same bin sizes and the 

same values for P(a|ΔR,L) were used in all the model fits presented. The model was fit by 

maximizing the likelihood of observing the data given the model. The model was simulated 

with a 1 evidence period and a 100 ms memory period.

We fit the categorization model by fixing g = 50, which is large enough to create a linear 

input function (see Figure 3). A linear input function requires that the model must categorize 

graded inputs into a decision. The categorization model fits better than the integration model 

but still fails to qualitatively match the bias in the psychometric curve (see Figure 3). This 

suggests that FOF inactivations do not perturb the decision categorization process.

We fit the postcategorization model by allowingg to be a parameter in the fitting process. 

The maximum likelihood estimate of g is 0.167 ± 0.18, which creates a steep sigmoid 

function (see Figure 3, bottom right). In addition, the best-fitting model includes significant 

mutual inhibition (I: 7.04 ± 0.027). The best-fit model produces a psychometric curve that 

matches the data well (see Figure 3, top right). This suggests that perturbing the FOF 

disrupts a postdecision binary memory because the bistable attractor model can match the 

FOF bias when perturbed.

2.3 Postcategorization Is the Best-Fitting Model.

To quantify the performance of each model, we computed the Bayesian information criterion 

(BIC). BIC allows for model comparison between models with a different number of 

parameters by penalizing models with more parameters, favoring more parsimonious 

models. BIC punishes additional parameters more harshly than other model comparison 

tools like AIC. The integration and categorization models have 6 parameters, while the 

postcategorization model has 7 parameters. The categorization and postcategorization 

models have an additional 7 parameters from the accumulation model used to compute P(a|
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ΔR,L), for a total of 13 and 14 parameters, respectively. A smaller BIC value indicates a 

better fit. We can compare models by examining the ΔBIC relative to the best-fit model: Post 

Categorization ΔBIC 0, Categorization ΔBIC +274, Integration ΔBIC +640. BIC values 

were computed using two-fold cross-validation (see section 4 for more details). Despite the 

penalty for more parameters, the postcategorization model significantly outperforms the 

integration model.

Table 1 shows the best-fit parameters for each of the models, as well as parameter 

uncertainty. Parameter uncertainty for each model was estimated using the Laplace 

approximation, which approximates the local likelihood landscape with a multidimensional 

gaussian (Daw, 2011). The eigenvector associated with the largest eigenvalue of the 

approximated covariance matrix tells us the “sloppiest” direction in parameter space, for 

which the model is the least constrained (Brown & Sethna, 2003). In the postcategorization 

model, 95% of the total variance (the sum of covariance matrix eigenvalues) in our 

parameters lies along the vector associated with the parameter g. Due to g’s nonlinear 

implementation, the model is relatively insensitive to this parameter near g = 0. All other 

eigenvalues were relatively small and within one order of magnitude of each other, 

suggesting all other directions in parameter space were equally “stiff.” This analysis 

suggests that there are not significant trade-offs in parameter space that would replicate our 

model’s behavior.

The categorization model transforms a graded signal into a categorical decision by the use of 

bistable dynamics. The postcategorization model works by implementing bistable dynamics 

that encode an already categorized signal. Because the thresholding function f () is a steep 

sigmoid function, the information in the model is categorical, reflecting only the upcoming 

choice, not the evidence for that choice. To understand the bistable dynamics in the 

postcategorization model, we computed phase plane diagrams and a bifurcation diagram 

with respect to inactivation strength (see Figure 4). When one of the nodes is partially 

inactivated by muscimol, the stable fixed point weakens, allowing noise to more easily 

corrupt the stored memory.

We highlight two properties of the post-categorization model that are consistent with the 

data. First, a direct result of the categorical encoding is that bias strength during an 

inactivation is independent of trial difficulty Conditioned on initial decision choice, easy 

trials are biased with the same probability as hard trials. This happens because information 

about trial difficulty is never present in the mutual inhibition model. This is the striking 

feature of the data, and the one we set out to model. Second, the categorical encoding of the 

accumulated evidence variable (see Figure 4D) is consistent with analysis of spike trains 

recorded from the FOF that found the FOF encodes evidence in a more categorical manner 

than other brain regions (Hanks et al., 2015). In order to quantify the categorical encoding in 

the FOF, we constructed tuning curves for the post-categorization model, using the method 

developed by Hanks et al. (2015; see Figure 5A). We fit a sigmodial curve to the tuning 

curve to find the slope of the curve at a = 0. Our model has a slope of 0.133 compared to the 

FOF population average of 0.158 ± 0.015 reported by Hanks et al. (2015). The post-

categorization model categorically encodes the accumulated evidence, in a manner similar to 
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the FOF. Our model is also supported by data from temporally precise optogenetic 

inactivations and muscimol inactivations with long memory periods.

2.4 Postcategorization Model Matches Bilateral Muscimol Inactivation Psychometrics.

In addition to the unilateral inactivations focused on in our study, Erlich et al. (2015) also 

performed bilateral inactivations. When the FOF was infused bilaterally with muscimol, the 

psychometric curve had both the upper and lower asymptotes move closer together. To 

assess if the postcategorization model was consistent with the bilateral results, we fit the 

postcategorization model simultaneously to the unilateral and bilateral inactivation data. We 

modeled the inactivations in the same manner as before by scaling the output of each node V 
by an inactivation fraction h. We allowed a different inactivation strength during unilateral 

inactivations and bilateral inactivations. In addition, during bilateral inactivations, we 

allowed each node to have a different inactivation fraction (hR and hL can be different). This 

created three inactivation parameters. The model was able to produce psychometric curves 

that match both the bilateral and unilateral inactivations (see Figure 5B). The 

postcategorization model matches the bilateral inactivation psychometric curve by an 

increased lapse rate in both directions and the unilateral inactivation curve by a 

unidirectional lapse rate.

Using a behavioral model, Erlich et al. (2015) found that the bilateral inactivation data, 

unlike the unilateral data, were better described by a change to the integration time constant 

than an increased lapse rate. Our model does not produce a change in the integration time 

constant by itself. Erlich et al. (2015) also hypothesized that a short time constant integration 

circuit becomes dominant when the FOF is bilaterally inactivated. Our model could be 

consistent with this hypothesis, but since it involves an alternate circuit and pathway, it lies 

outside the scope of the current work and we did not investigate it.

2.5 Postcategorization Model Predicts the Pattern of Bias during Temporally Precise 
Inactivations.

Muscimol infusions have hours-long effects on brain activity. In contrast, optogenetic 

inactivations (e.g., through the use of light-gated chloride pumps such as eNpHR3.0; 

Gradinaru et al., 2010) have millisecond time resolution and allow investigation into 

temporal roles of brain regions (Hanks et al., 2015; Kopec et al., 2015). One study, Hanks et 

al. (2015), found that the FOF produces a significant bias only when it is inactivated during 

the end of the evidence period. To evaluate whether our model is consistent with the 

temporal pattern of bias from optogenetics, we simulated the postcategorization model with 

temporally precise inactivations using the same pattern as Hanks et al. (2015). These trials 

had inactivation during the first or second half of the evidence period or during the memory 

period. In our model, the memory period is the duration from when the rat receives the “go” 

signal and when the rat leaves the center fixation port. Our standard model formulation does 

not model the temporal dynamics of the evidence accumulation variable “a,” instead relying 

on the distribution of “a”at the end of evidence integration P(a|ΔL,R). Temporally precise 

inactivations may interact with the temporal trajectories of “a” In order to evaluate this 

concern, we simulated the trials using both our standard approach using the distribution of 

“a” as inputs to the mutual inhibition model and by simulating sample trajectories of “a,” 
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and using that as input to the mutual inhibition model. Both methods produced the same 

results; we report here the sample trajectory simulations.

In agreement with FOF data, our model produced a large bias when it was inactivated during 

the second half of the evidence period, but not during the first half of the evidence period 

(see Figure 5C). Our model also produces a small bias during the memory period. The 

feedforward nature of the postcategorization model means that inactivations during the first 

half of the evidence period have no effect as the network has time to recover. However, 

inactivations during the second half of the evidence period perturb the decision encoding in 

the model. We emphasize here that our model was not fit to the temporally precise 

optogenetic inactivation data. The model was fit to full-trial muscimol inactivation data, and 

the temporal pattern of bias in our model is a consequence of the feedforward memory role 

of the FOF. In the FOF data, the bias amplitude during the second half of inactivation is as 

strong as inactivation during the entire trial. Our model, fit only to whole-trial data, produces 

a bias following second-half inactivation that is slightly weaker than the entire trial 

inactivation, but still in qualitative agreement with the experimental data. In sum, the 

temporal pattern of bias after unilateral inactivation in our model offers further support for a 

postdecision memory role of the FOF.

We next simulated bilateral temporally precise inactivations of the postcategorization model 

to make predictions about future experiments. The bilateral inactivation produces a 

flattening of the psychometric curve across all click differences. Here, we report the average 

impairment on each side of the psychometric curve. We computed impairment on each side 

of the psychometric curve using the same definitions of postcategorization bias (see section 

4 for details). Similar to the unilateral results, our model produces no impairment during the 

beginning of the stimulus period, a strong impairment during the end of the stimulus period, 

and a small impairment during the memory period (see Figure 5D). If experimental bilateral 

inactivations produce similar data, that would offer support for our model.

2.6 Postcategorization Model Predicts Time-Dependent Bias.

The postcategorization model can be biased in two ways. First, the memory can be set 

incorrectly during the evidence period. This type of bias is readily observed during 

temporally precise inactivations of the memory model during the second half of the evidence 

period. Second, the memory can be corrupted during the memory period, the result of the 

white noise added to each node. We can conceptualize this as a bistable energy landscape 

with a weakened energy well. During an inactivation, the categorized signal has an increased 

probability of flipping in one direction but not the other. Simulating the model for increasing 

memory period durations, the amount of bias increases (see Figure 6A).

A robust signature of this noise-corrupted memory is a bias that grows over time. To 

examine whether this second mechanism of bias is present in the FOF, we would like to 

examine bias as a function of memory period duration. In the evidence accumulation task, 

the effective memory period is short with little variability across trials. A separate task, 

memory-guided orienting (MGO), has a variable duration memory period (Erlich et al., 

2011). Erlich et al. (2011) performed unilateral muscimol inactivations of the FOF during 

the MGO task. In this data set, rats entered a center nose poke and were presented with an 
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auditory stimulus indicating either a left or right reward. The rats then waited for a go signal 

that indicated they could leave the center nose poke and make their decision. Some trials, 

called nonmemory trials, had no delay between the stimulus and the go signal. These trials 

were similar to the Poisson clicks trials. Other trials, called memory trials, had a variable-

length delay period drawn from a gaussian distribution with a mean of 750 ms. We 

quantified the effect of unilateral FOF inactivation in this data set by binning memory trials 

into two bins, shorter or longer than the mean duration. Nonmemory trials were put in a 

third bin. We compared the ipsilateral bias of the muscimol data relative to the control data 

in each time bin. This analysis reveals that the bias increases with the duration of the 

memory period, consistent with our model’s prediction (see Figure 6B).

Our model predicts a bias that grows faster over time; however, our model was fit to Poisson 

clicks data, not MGO data. We present the model prediction only to demonstrate the 

qualitative behavior of the model. Further, our model was fit to trials with short, fixed-

duration memory periods. This demonstrates that both mechanisms of memory biases are 

present in the MGO data. First, nonmemory trials are biased while being set or decoded. 

Second, memory trials show time-dependent degradation of the memory.

3 Discussion

Unilateral inactivations of the FOF during two different decision-making tasks produce an 

ipsilateral bias characterized by a vertical scaling of the psychometric curve. While the 

stimulus-independent nature of this bias suggested a poststimulus-categorization effect of 

the perturbation, the neural mechanisms underlying that, and the question of whether the 

FOF itself participated in the categorization or is driven by an already-categorical signal was 

left unaddressed. Exploring these questions with a mutual inhibition model, we found that 

the experimental effects, including the vertical scaling of the psychometric curve, could be 

reproduced by a mutual inhibition model when acting as a postcategorization memory unit 

but not when integrating evidence or being part of categorizing accumulated evidence into a 

choice. Our findings are consistent with analysis of spike trains from the FOF during two 

decision-making tasks, which show categorical encoding of decision choices (Erlich et al., 

2011; Hanks et al., 2015). This model provides further evidence that inactivation of the FOF 

is perturbing a fully postcategorization memory by suggesting a neural mechanism for this 

bias.

The postcategorization model has two additional properties that are consistent with the data. 

First, both the model and the data show sensitivity to inactivation at the end of the stimulus 

period while being insensitive to inactivation at the start of the stimulus period. This 

temporal pattern of bias is a consequence of the postdecision memory function of the model 

and emerges without fitting directly to the optogenetic data. Second, the model makes a 

prediction that bias should grow with increasing memory perids. Post hoc examination of 

memory-guided orienting data demonstrated time-dependent increases in bias.

3.1 Biological Details.

This model opens a number of questions about how a simple memory model might be 

implemented in a cortical circuit. First, where does the transformation from a graded 
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evidence signal into a categorized evidence signal take place? Our model fitting suggests 

that the bistable dynamics of the FOF are insufficient to compute the transformation without 

changing the type of bias. One barrier to examining this question is our limited knowledge 

of how the accumulated evidence is represented in the brain. It is also possible that a subset 

of cells in the FOF computes this transformation in a feedforward fashion. Spike trains 

recorded from the FOF show a wide distribution of tuning curves, meaning that some cells 

represented the accumulated evidence in a graded fashion.

Second, cell tuning in the FOF does not appear to be lateralized. Cells in the FOF show left 

and right orientation firing preferences with roughly equal percentages (Erlich et al., 2011; 

Hanks et al., 2015). How does a unilateral inactivation produce an ipsilateral bias given the 

lack of lateralization? One possibility is that there is lateralization in the FOF in the number 

of cells that project to subcortical structures. A recent study in mouse premotor cortex 

(ALM) found that cells are not lateralized by firing preference, but the cells that project 

subcortically are lateralized (Li, Chen, Guo, Gerfen, & Svoboda, 2015). Although ALM and 

FOF could have important functional differences, lateralization of subcortical projections is 

a possible mechanisms of bias. A recent study suggested that the FOF is part of a larger 

memory network including the superior colliculus (Kopec et al., 2015). If that is true, then 

blocking subcortical projections might disrupt the ipsilateral coding more than the 

contralateral coding.

Third, bilateral inactivations of the FOF during the Poisson clicks task were better described 

by a leaky integration process than a bidirectional lapse rate (Erlich et al., 2015). Our model 

produces a bidirectional lapse rate during bilateral inactivations. We did not directly model 

the temporal evolution of the evidence integration process in the postcategorization model, 

so the model cannot address the apparent leaky integration process. Erlich et al. (2015) 

hypothesized the existence of a parallel leaky integration circuit that becomes dominant 

when the FOF is bilaterally inactivated. Our model cannot speak directly to this hypothesis 

and could be consistent with either outcome. A further possibility is that some cells in the 

FOF are involved in the integration of evidence but are not lateralized, while the 

postcategorization memory circuit has lateralized projections subcortically. If this was true, 

then unilateral inactivations would bias the postcategorization memory but not the evidence 

integration process. Additionally, bilateral inactivations would perturb the evidence 

integration process, potentially producing a shorter integration time constant. This 

hypothesis predicts that bilateral optogenetic inactivations would perturb behavior during the 

first half of the evidence period, unlike our model.

3.2 Relationship to Other Modeling Studies.

Our modeling study has some similarities to and differences from other recent studies in the 

literature, and we conclude by providing a few comments. First, Wong and Wang (2006) 

propose a model in which evidence integration and decision memory happen in the same 

network. Our analysis suggests that this situation is not compatible with the FOF data; 

instead, we offer a picture of an integration process feeding into a short-term memory 

network. Our model executes the same computations as Wong and Wang (2006) model but 

separated in space. Spatial separation of evidence accumulation, decision thresholding, and 
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decision memory mechanisms have been proposed in the human neuroscience literature 

(Simen, 2012) and have been used to described human EEG data (van Vugt, Simen, 

Nystrom, Holmes, & Cohen, 2014). Our study adds to this literature by examining which of 

these mechanisms can explain causal perturbation data to rodents.

Second, recent studies have examined unilateral and bilateral inactivations of a mouse 

prefrontal area known as ALM (Guo et al., 2014; Li, Daie, Svoboda, & Druckmann, 2016). 

One study found that behavioral performance and network activity recovered from unilateral 

inactivations, but not after bilateral inactivations (Li et al., 2016). Associated modeling 

proposed modular redundant networks that could recover from unilateral inactivation, 

examining both modular memory and modular integration networks. Here, we examined an 

orthogonal question. We examined full trial inactivations from which the network activity 

does not recover and asked what computations are consistent with the pattern of bias from 

the perturbed network.

3.3 Conclusion.

Simple models using neural-like elements can reproduce the temporal and stimulus-

difficulty patterns of bias caused by unilateral inactivation of the FOF in two different 

behavioral tasks, but only when the computational role of the FOF is configured to be 

maintenance of post-categorization decision memory. These results extend and support the 

findings of (Erlich et al., 2015).
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Appendix

Appendix: Methods

A.1 Data Sets.

Our analysis examines several data sets. First are unilateral muscimol inactivations of the 

FOF during the Poisson clicks task as described in Erlich et al. (2015). This data set was 

used in Figures 1 and 3. Second, we used unilateral optogenetic inactivations of the FOF 

during the Poisson clicks task as described in Hanks et al. (2015). The trials in this data set 

were used in Figure 5 to simulate the model. The rat choices were not used. Third are the 

unilateral muscimol inactivations of the FOF during memory-guided orienting (MGO) task 

described in Erlich et al. (2011). This data set was used in Figure 6. A fourth data set, 

unilateral optogenetic inactivations of the FOF during the MGO task, was not analyzed here 

but was extensively and comparably analyzed in Kopec et al. (2015).

We used each of these data sets as presented in their original papers; we did not exclude any 

rats or sessions. For each of these data sets, we analyzed the meta-rat data set produced by 

combining inactivation sessions from all the rats together. In general, we also combined data 

sets from left-and right-side inactivations to produce a larger combined data set. This 
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merging was done by switching the labels of left and right choices and stimuli. Confidence 

intervals were computed using the 95% CI from a binomial distribution.

A.2 Quantifying Post-Categorization Bias.

Postcategorization bias was measured as the percentage of “go left” (or “go right”) trials that 

flipped to a right choice (or left choice) out of the number of “go left” (or “go right”) trials 

in the control data set. In terms of right hemisphere inactivations,

BR = M − C
1 − C . (A.1)

B is the bias, M is the muscimol psychometric curve (expressed in a probability of going 

right), and C is the control psychometric curve. In terms of left hemisphere inactivations,

BL = C − M
C . (A.2)

B is then a curve of the bias at each point along the click difference axis, which is the 

independent axis of the psychometric curve. Sometimes B is averaged across the click 

difference axis to get a single number bias.

A.3 Quantifying Bilateral Impairment.

For data and simulations with bilateral inactivations, the psychometric curve flattens, 

indicating impairment rather than producing a bias. We quantified this impairment by 

computing the postcategorization bias on each side of the psychometric curve. We used 

equation A.1 for impairment on the left half of the psychometric curve and equation A.2 for 

impairment on the right half of the psychometric curve. These two impairments were 

averaged into one impairment score reported in the text.

A.4 Model Fitting.

The mutual inhibition model used in our study was used previously in Kopec et al. (2015) 

and numerically simulated using the same approach as Kopec et al. (2015). Given that the 

model contains stochastic inputs, we cannot simply evaluate a single trajectory of the model 

because the response with the same parameters would be dependent on the specific 

realization of the stochastic noise. In order to get a reliable model response to the same 

parameters, one possibility would be to simulate many trials with different realizations of the 

noise. An alternative strategy, used in this study, was to compute the entire probability 

distribution of possible model responses given all noise realizations. (See section A.5 and 

Brunton et al., 2013, for a detailed description of this numerical algorithm.)

The integration model was implemented by numerically simulating every trial in the data set 

using the actual click trains as input to the model. The length of the memory period on each 

trial was the duration from when the center light went off, indicating to the rat the evidence 

period had ended, and when the rat left the center nose poke. For each trial, the model output 

Piet et al. Page 14

Neural Comput. Author manuscript; available in PMC 2019 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



was the probability of choosing left or right given the model parameters θ. By assuming 

independent trials, we can compute the likelihood of the data by the product of the 

probability of the rat’s choice on each trial:

L = ∏
i

P rat choicei θ, clicksi , (A.3)

−LL = − ∑
i

log P rat choicei θ, clicksi . (A.4)

We then used gradient descent to minimize the —LL. We found the model had local minima, 

so we used 100 restarts of gradient descent with random initial conditions. Parameter 

uncertainty was estimated by approximating the local likelihood landscape with a gaussian. 

The Hessian of the negative log-likelihood function was estimated using finite difference 

methods. The inverse of the Hessian is the standard estimator for the covariance of the 

parameter estimates (Daw, 2011). This means each diagonal entry is the variance of each 

parameter alone, and their square roots are the standard error of that parameter. Table 1 

reports the standard error for each parameter.

The categorization and postcategorization models were not evaluated by simulating every 

trial. Given that integration dynamics from individual trials were captured by the P a |ΔR, L

term, we discretized a values and simulated the model response to each a value. Each 

simulation had an evidence period 1 s in duration, where the input from accumulation value 

was constant in time. The stimulus period was followed by a 100 msec memory period with 

no input. The model’s response probability for each trial was computed by multiplying the 

probability of accumulation values for that trial’s click difference, P a |ΔR, L, i , by the 

probability of model response for that accumulation value, P R |a . We then used the same 

likelihood function and gradient descent methods as the integration model.

The postcategorization model was also fit to the bilateral and unilateral inactivation data 

simultaneously. The likelihood function was modified so trials from three separate groups 

were weighted equally: control trials, unilateral inactivation trials, and bilateral inactivation 

trials. This weighting was done to prevent an unequal number of trials from distorting the 

model fit.

A.5 Numerical Simulation of the Mutual Inhibition Model.

Our model is a two-dimensional nonlinear stochastic differential equation. We used a 

numerical procedure to obtain the probability distribution over model responses. This 

procedure is a generalization of the Euler-Maruyama algorithm (also known as the stochastic 

Euler algorithm) from simulating a single sample trajectory to simulating the distribution 

over trajectories. Rather than track the dynamics of a single trajectory, we track the 

dynamics of probability mass. We provide a brief description of the Euler-Maruyama 
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algorithm and our generalization of it. Consider a stochastic differential equation (SDE) of 

the form

τd x = G( x )dt + σdW , (A.5)

which describes the time evolution of a variable x , with a time constant τ, deterministic 

dynamics G(x), and an additive white noise process W with variance σ2. This SDE may also 

be written as a Fokker-Planck equation, a partial differential equation that tracks the 

evolution of the probability density function of x:

∂
∂t p(x, t) = − 1

τ
∂

∂x (G(x)p(x, t)) + σ2

2τ
∂2

∂x2 p(x, t) . (A.6)

The Fokker-Planck equation may be solved analytically or numerically simulated (Risken, 

1989).

The Euler-Maruyama algorithm, like its deterministic version, starts from a first-order 

Taylor series expansion of the deterministic dynamics. On each time step, the state variable 

takes a step in the direction given by G(x), plus a random variable with variance scaled 

relative to the time step:

x t + Δt = x t + Δt
τ G( x ) + 𝒩 0, σ2Δt

τ . (A.7)

In order to track probability mass, we discretize our state space into spatial bins. Let fi,t be 

the probability mass in the ith spatial bin at time t. In the t + Δt time step, this mass will be 

displaced by deterministic motion given by d i = Δt
τ G x i . Let xi  be the coordinates of the 

center of the ith bin. Centered at the end point of this deterministic step xi + d i, we have 

gaussian dispersion with variance σ2Δt
τ . The gaussian dispersion represents the distribution 

of possible noise realizations for this time step. Let n be a grid over this gaussian, 

𝒩 xi + di,
σ2Δt

τ , with grid spacing much smaller than the grid over state space. The 

probability mass in each noise bin n is settled into state-space bins f j, t + Δt such that the 

mean location of the mass is at xni
, the state-space coordinate of ni. This preserves the mean 

of the probability distribution. In practice, for a given set of parameters, this algorithm can 

be written into a set of Markov transition matrices F, so each time step iteration is given by

f t + Δt = F × f t, (A.8)
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where the F used is dependent on the current inputs into the model.

The supplementary materials of Brunton et al. (2013) offer more description of this 

numerical algorithm. The major bottleneck is the computation of the F matrices. Once it has 

been computed, the algorithm has 𝒪(m3t) time complexity where m is the number of spatial 

bins and t is the number of timesteps.

A.6 Model Validation and MetaParameter Choices.

To ensure the numerical simulation was working correctly, model behavior was compared to 

an ensemble of sample trajectories from the Euler-Maruyama method. This allowed 

verification that the mean and variance of the distribution were correct. In addition, the fixed 

points of the deterministic system were computed analytically for an example parameter set 

and agreed with the numerical results. Several metaparameters needed to be determined for 

use in all simulations: the spatial boundaries, the number of spatial bins, and the time step 

size. We performed the numerical simulation over the internal variable state space (−4, 4). 

Beyond this domain, the external variable changes very little. We found that 40 spatial bins 

in each dimension (for a total of 1600 bins) and a time step of 10 msec had high accuracy 

and reasonable computational cost. In contrast to most numerical methods, increasing the 

time step may not lead to more accurate results unless the spatial bins scale as well. Given 

that the spatial bins are the larger computational bottleneck, the time step was selected based 

on the spatial bins.

A.7 Computing P(a|ΔR,L).

An evidence accumulation model as described in Brunton et al. (2013) was fit to the control 

behavior sessions. Each trial in the data set was simulated using this accumulation model to 

get the distribution of accumulation values at the end of the trial P(a|tend). This distribution 

was averaged over all trials with the same click difference to get P(a|ΔR,L). The model was 

evaluated with different bin sizes for the click difference and accumulator values. The results 

did not depend on these choices.

A.8 Cross-Validation.

In order to assess how well different model architectures generalized beyond the data used to 

fit the model, we used two-fold cross-validation. The data were split into two equal data sets 

with the same number of trials from each individual rat going into each set. For each set, the 

data were fit to one half with 100 random initial parameter restarts of gradient descent. The 

parameters that best fit the training half were then tested on the other half. The likelihoods 

on the two test sets were averaged to produce the total likelihood.

A.9 Constructing a Psychometric Curve from the Model Output.

Once the model has been fit, to construct a psychometric curve P(a|ΔR,L) we multiply the 

vector of model go-right probabilities given accumulator values, P(R|a), with the matrix of 

P(a|ΔR,L)accumulator value probabilities given click differences.
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A.10 Simulating Temporally Precise Inactivations.

During the temporally precise inactivation simulations, we wanted to simulate the 

trajectories of the evidence accumulation variable “a.” We simulated sample trajectories of 

both the evidence accumulation model used to construct P(a|ΔR,L) and the mutual inhibition 

model. We simulated 14,000 trials from the opto-genetic data set in Hanks et al. (2015). For 

each trial, we computed 100 sample trajectories. From these 140,000 trials, we computed the 

bias during each of the inactivation patterns (see Figure 5). In order to accurately estimate 

the uncertainty of our model, we performed a boostrapping procedure. We generated 100 

bootstrapped data sets where we pulled one of the 100 sample trajectories from each trial 

and computed the bias on this bootstrapped data set. This preserved the distribution of 

different trial types across the 14,000 trials but sampled the variability of model responses 

across the 100 sample trajectories.

A.11 Tuning Curve.

A tuning curve for the FOF model was constructed following the method developed in 

Hanks et al. (2015). First, a collection of trials was generated. Then, for each trial, a sample 

trajectory of the accumulation variable was used as input to the postcategorization model 

producing the firing rate for the model and a behavioral choice. The trial and the behavioral 

choice were used to produce the distribution of accumulation values from the evidence 

accumulation model from (Brunton et al., 2013). Consistent with Hanks et al. (2015), we 

used the backward propagation model, which utilizes the behavioral choice to produce a 

more accurate model of the accumulation variable.

A.12 Memory-Guided Orienting Data.

To evaluate how postcategorization bias increases with the memory period duration, we 

binned trials by their stimulus difficulty and the duration of the memory period. The 

memory period was defined as the duration between the end of the stimulus and the go 

signal. All trials had an additional effective memory period between the go signal and the 

rat’s response. However, this duration did not depend on the length of the memory period, so 

we did not use it in our analysis. The markers shown in Figure 5 are placed at the center of 

each bin in time (on the x-axis).
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Figure 1: 
Cortical inactivation produces an ipsilateral bias during decision making. Description of the 

behavioral data modeled in this study. (Left) Task schematic of an evidence accumulation 

task (adapted from Brunton et al., 2013; Erlich et al., 2015; Hanks et al., 2015). Rats enter a 

center nose port and hear Poisson-generated clicks from both a speaker to their left and a 

speaker to their right. After the click trains have ended, the rats must enter a nose port on the 

side that played the greater total number of clicks to get a reward. (Right) Muscimol infusion 

into the frontal orienting fields produces an ipsilateral bias. Sensory instructed trials in 

which a visual sensory signal (LED turning on in the reward port) indicates which of the two 

side ports is the correct choice, are not biased after FOF inactivation (left/right LED). 

(Reproduced from Erlich et al., 2015.)
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Figure 2: 
Conceptual stages of decision making. (A) We consider three stages of decision making that 

might be perturbed during FOF inactivation: integration, decision categorization, and 

decision memory. In this cartoon, seven clicks are presented on the left and four on the right. 

The evidence is integrated, categorized into a go-left trial, and the decision is remembered. 

(B) Schematic of the integration model. Two nodes represent populations of neurons that 

self-excite and have cross-inhibition. Each node gets feedforward input consisting of the 

evidence click trains. (C) Schematic of the categorization and postcategorization models. 

The accumulated evidence a is passed through a thresholding function f () that has a 

parameter g describing how “soft” or “hard” the thresholding is and then used as inputs into 

the model. In the categorization model, the parameter g is fixed such that the function f () is 

linear, so that categorization of the value of a into a left or right choice occurs within or after 

the mutual inhibition model. In the postcategorization model, the parameter g = 0; then f () 
becomes the Heaviside step function, indicating the choice has already been categorized 

before entering the mutual inhibition model. When fitting the postcategorization model, we 

allowed g to be a free parameter in order to fit the degree to which inputs have already been 

categorized.
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Figure 3: 
The integration model fails to fit the data; The postcategorization model fits the data well. 

(A-C) Solid lines indicate model behavior. Dashed lines indicate rat data. Data from left and 

right inactivations from all rats have been transformed into one “meta-rat” data set. 

Ipsilateral refers to the side of muscimol infusion relative to choice. Error bars on data 

indicate 95% confidence intervals. (A) The best-fit integration model on a test set. (B) The 

categorization model (setting g = 50) fails to match the bias on easy contralateral trials. (C) 

The best-fit postcategorization model (fitting g) on a test set matches both the control and 

perturbed psychometric curves. (D) A visualization of P(a|ΔR,L). For every click difference, 

the average distribution of accumulator values predicted by the accumulation model is 

shown as a heat map. (E) Possible thresholding functions. Changing g allows the threshold 

function f () to vary from linear to the Heaviside function. Five example values of g are 

plotted here: 0,2, 5,10, and 50. The minimum and maximum accumulation values used to 

bound the domain of f () were determined by the accumulation model and fit to data. (F) The 

learned threshold function f () for the memory model is a steep sigmoid function (g < 1). 

This indicates the input into the model is already categorical, and thus the FOF supports a 

postcategorization memory.
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Figure 4: 
Dynamics of postcategorization model (A) Phase plane diagram for the postcategorization 

model during the memory period without inactivation. Solid lines are the nullclines of the 

external variables. (B) Same as panel A, but with partial muscimol inactivation of the left 

node. (C) Bifurcation diagram with respect to the inactivation fraction h. Near h = 0.35, the 

left attractor disappears in a saddle node bifurcation. Lines marked A and B show the 

parameter values used in panels A and B. (D) Mean activation of each node during a Go-

Left trial (a = −10).
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Figure 5: 
Properties of postcategorization model. (A) Tuning curve for FOF model showing the firing 

rate as a function of the accumulation value. Constructed using the method developed in 

Hanks et al. (2015). The slope of the tuning curve at a = 0 is 0.133, comparable to the FOF 

population average of 0.158 ± 0.015 reported in Hanks et al. (2015). (B) Psychometric curve 

for bilateral muscimol inactivations of the FOF. The model (solid line) is able to match the 

psychometric curves from the data (dashed). The model was fit simultaneously to both 

unilateral and bilateral data sets. (C, D) The postcategorization model was simulated using 

temporally precise inactivations, mimicking opto-genetic experiments. Error bars show 

model variability over repeated sampling of trajectories. Three trial epochs were inactivated: 

the first and second half of the evidence period (yellow, green) and the memory period 

(blue). All trials had a 1 s evidence period. Memory period duration was 100 msec. 

Inactivation effect is shown as the percentage of bias on model full trial inactivation. (C) 

Unilateral inactivation produces an ipsilateral bias. (D) Bilateral inactivation, showing 

average impairment on each side.
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Figure 6: 
Postcategorization bias grows with memory period duration. (Left) Model prediction for bias 

during unilateral muscimol inactivation of the FOF as a function of increasing memory 

period duration. The model produces a bias that increases over time. Bias is relative to 

control behavior at each memory duration. The model was fit to the Poisson clicks task, not 

the MGO task. (Right) Unilateral FOF inactivation data from Erlich et al. (2011) shows a 

bias that grows with memory period duration for MGO trials. Trials were either nonmemory 

or had a memory period sampled from a distribution with mean 750 msec. Memory period is 

the time from the end of the stimulus to the go signal. Both trial types had an additional 

effective memory period between the go signal and the rat’s response. Memory trials were 

binned by their memory durations into shorter or longer than 750 msec. The solid line shows 

the average bias on ipsilateral trials at each of the three time bins. Bias in each time duration 

is relative to control performance on the same time duration. Nonmemory trials show some 

bias, while longer memory periods have stronger biases. Note that the vertical axis scale is 

different between plots.
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Table 1:

Maximum Likelihood Parameters and the Standard Error for Each Parameter.

Parameter Integration Categorization Postcategorization Bilateral

M 0.01 ± 0.01 3.25 ± 0.19      2.50 ± 0.016 2.66 ± 0.19

I 8.18 ± 0.19 7.51 ± 0.14      7.04 ± 0.027 9.81 ± 0.10

B 1.44 ± 0.32 2.60 ± 0.076      4.07 ± 0.014 3.54 ± 0.10

Ecue 4.78 ± 0.10 8.83 ± 0.082      3.49 ± 0.016 9.64 ± 0.45

σ 2 2.00 ± 0.001 0.42 ± 0.025      1.97 ± 0.0070 9.32 ± 0.098

h 0.58 ± 0.013 0.91 ± 0.0037      0.693 ± 0.0073 0.56 ± 0.029

g - 50 (fixed)      0.168 ± 0.18 1.62 ± 0.23

hbi-R - - - 0.43 ± 0.052

hbi-L - - - 0.33 ± 0.054

ΔBIC +640 +274 0 -
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