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Abstract

Hepatocellular carcinoma (HCC) is the third most-common cause of cancer-related death 

worldwide. Most cases of HCC develop in patients that already have liver cirrhosis and have been 

recommended for surveillance for an early onset of HCC. Cirrhosis is the final common pathway 

for several etiologies of liver disease, including hepatitis B and C, alcohol, and increasingly non-

alcoholic fatty liver disease. Only 20–30% of patients with HCC are eligible for curative therapy 

due primarily to inadequate early-detection strategies. Reliable, accurate biomarkers for HCC 

early detection provide the highest likelihood of curative therapy and survival; however, current 

early-detection methods that use abdominal ultrasound and serum alpha fetoprotein are inadequate 

due to poor adherence and limited sensitivity and specificity. There is an urgent need for 

convenient and highly accurate validated biomarkers for HCC early detection. The theme of this 

review is the development of new methods to discover glycoprotein-based markers for detection of 

HCC with mass spectrometry approaches. We outline the non-mass spectrometry based methods 

that have been used to discover HCC markers including immunoassays, capillary electrophoresis, 

2-D gel electrophoresis, and lectin-FLISA assays. We describe the development and results of 

mass spectrometry-based assays for glycan screening based on either MALDI-MS or ESI analysis. 

These analyses might be based on the glycan content of serum or on glycan screening for target 

molecules from serum. We describe some of the specific markers that have been developed as a 

result, including for proteins such as Haptoglobin, Hemopexin, Kininogen, and others. We discuss 

the potential role for other technologies, including PGC chromatography and ion mobility, to 

separate isoforms of glycan markers. Analyses of glycopep-tides based on new technologies and 

innovative softwares are described and also their potential role in discovery of markers of HCC. 

These technologies include new fragmentation methods such as EThcD and stepped HCD, which 

can identify large numbers of glycopeptide structures from serum. The key role of lectin extraction 

in various assays for intact glycopeptides or their truncated versions is also described, where 

various core-fucosylated and hyperfucosylated glycopeptides have been identified as potential 

markers of HCC. Finally, we describe the role of LC-MRMs or lectin-FLISA MRMs as a means to 

validate these glycoprotein markers from patient samples. These technological advancements in 

mass spectrometry have the potential to lead to novel biomarkers to improve the early detection of 

HCC.
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I. INTRODUCTION

Hepatocellular carcinoma (HCC) is the third most-common cause of cancer-related death 

worldwide (Perz et al., 2006; Kanwal et al., 2011; El-Serag, 2012; White et al., 2017). The 

primary risk factors for development of cirrhosis are chronic hepatitis B (HBV) infection 

and presence of hepatic cirrhosis from any cause (e.g., hepatitis C [HCV], alcohol [ALD], 

non-alcoholic fatty liver disease [NAFLD]) (Table 1). Because patients with cirrhosis have a 

2–8% annual risk to develop HCC, they are recommended to undergo surveillance for HCC 

with abdominal ultrasounds every 6 months (Kanwal et al., 2011; El-Serag, 2012). In the 

United States, Europe, and Japan, <30% of the patients are diagnosed with HCC at an early 

stage which would result in a 5-year survival rate near 70%, whereas patients diagnosed at 

later stages have a 2-year survival rate <16% (White et al., 2017). HCC is increasing in 

incidence in many countries worldwide and is responsible for over 700,000 deaths per year 

globally. Thus, early detection of HCC and the ability to distinguish early HCC from 

patients being monitored for cirrhosis is critical for patient survival and this is best achieved 

through reliable surveillance testing in patients with cirrhosis.

The risk of HCC development depends on several different factors that vary depending on 

geography and demographic factors. HBV infection is the most-common etiologic factor to 

develop HCC and is associated with >80% of the HCC cases worldwide. There are more 

than 350 million people that are chronically infected with HBV globally, with the largest 

number in East Asia. Chronic hepatitis C infection is the most-common etiologic agent that 

leads to cirrhosis and HCC in many Western countries and the United States. The prevalence 

of cirrhosis has increased over the past 20 years, largely due to the prevalence of hepatitis C 

in the baby boomer population and the emergence of NAFLD-related liver disease which has 

resulted in steady increases in the incidence of HCC.

Only about 20–30% of patients with HCC are eligible for curative therapy with surgical 

resection, liver transplantation, or local ablative procedures (Bruix et al., 2005). Liver 

transplantation can cure HCC and the underlying liver disease; however, it is limited by 

recipient selection and organ availability. Surgical resection and local ablative therapies, 

although potentially curative, can only be applied to a minority of patients. The goal to 

development of new biomarkers for HCC detection is to increase the proportion of patients 

diagnosed at an early stage that would be eligible for such curative therapies.

The most-common non-invasive detection of HCC involves imaging, including ultrasound, 

computer tomography, and magnetic resonance imaging (Trevisani et al., 2001). Ultrasound 

is often used to detect small masses at an early stage in the liver but requires at least a 2 cm 

mass and often is not effective for early-stage detection. However, the American Association 

for the study of Liver Diseases guidelines recommends that surveil-lance for HCC be 

performed with ultrasonography at 6- to 12-month intervals. MRI is an effective method of 
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detection, but the cost is excessive for routine screening. Serum biomarkers are often used 

together with these imaging techniques to improve the sensitivity for early detection of HCC 

(Marrero & Henley, 2011).

Serum biomarkers are used as a complementary method for early detection in patients with 

cirrhosis (Marrero & Henley, 2011; Singal et al., 2012). Serum alpha-fetoprotein (AFP) is 

the most widely used as a clinical HCC diagnostic marker; however, detection of AFP 

suffers from low sensitivity. The receiver operating characteristic curve (ROC), a plot of the 

data pairs for sensitivity and 1–specificity, and the area under the curve (AUC) (Hanley & 

Mcneil, 1982) have been widely used for the assessment of diagnostic ability of biomarkers. 

One study has shown that AFP has a specificity of 90.6% and a sensitivity of 60.0% at the 

cut-off value of 20 ng/mL (Flores & Marrero, 2014). AFP accuracy in HCC early detection 

varies by etiology of disease. The performance of AFP to differentiate cirrhosis versus HCC 

in patients with HCV is only an AUC of 0.64 whereas the AUC to differentiate HBV-related 

HCC from HBV-related cirrhosis is 0.9.

Des-gamma carboxy prothrombin (DCP) has been widely used as an alternative marker for 

AFP in Japan. However, the diagnostic value of DCP varies depending on the underlying 

characteristics of the patients (Marrero et al., 2009). AFP-L3 has also been used as a marker, 

but has not been shown to add significantly to the sensitivity for early detection of HCC 

(Marrero et al., 2009). All these markers still have relatively low sensitivity for early HCC 

detection, and current guidelines do not recommend their routine use in HCC surveillance. 

In any case, serum markers are urgently needed to enhance the sensitivity of HCC early 

detection over the currently available tests in order to increase the number of patients 

eligible for curative therapies.

Glycosylation has been associated with a majority of cancer serum biomarkers. Most prior 

work though has involved monitoring changes in the protein level rather than any distinctive 

changes in the actual glycan structure. However, new developments in mass spectrometry 

based technology and informatics have allowed the detailed study of glycan structure and 

site specificity. These developments have been applied to studies of glycoproteins in patient 

serum where it has been shown that changes in the structures of glycans on specific sites in a 

protein may provide potential markers for monitoring changes in disease state and as 

markers for early detection of cancer. Such work has been demonstrated in several different 

cancers but particular progress in this area has been made in the case of HCC where glycan 

and glycopeptide markers have been identified which can provide early detection for the 

development of HCC from patients being monitored for cirrhosis (Zhu et al., 2014; Yin et 

al., 2015).

In the current review, we discuss developments in state of the art methods to find new 

glycoprotein markers for early detection of HCC and the ability to distinguish HCC from 

cirrhosis based on changes in glycan structures identified via novel mass spectrometry 

techniques. These markers would be used for early detection of HCC, which includes 

screening and surveillance of potential patients at risk with cirrhosis or other liver diseases 

or as a diagnostic tool to differentiate patients with cirrhosis from those who have developed 

HCC. However, there are other uses for many of these markers, which include markers to 
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stratify at-risk populations, stratify patients for clinical trials, and to predict treatment 

response to therapies. Some of the markers that might prove ineffective for early detection 

might prove valuable for these other purposes.

This article will cover various methodologies that have been used for biomarker 

glycoprotein analysis in the context of early detection of HCC, and will include methods for 

glycanand glycopeptide-based assays. Methods to be covered include mass spectrometric 

analysis of glycans and glycopeptides using both targeted and untargeted techniques, 

strategies to enrich glycopeptides and glycoproteins from biological fluids, micro-array 

assays, and gel-based methods of analysis and separation methods that can separate glycans 

and glycopeptides including isomeric forms of these units. The applications of these 

methods to important biomarker discoveries for liquid biopsies in serum for HCC will be 

discussed including efforts to validate some of these markers.

II. GLYCOSYLATION

Glycosylation is the most-frequent and important post-translational modification (PTM) of 

proteins, which has been demonstrated to participate in many key pathological steps during 

tumor development and progression (Fuster & Esko, 2005; Miyoshi et al., 2008; Pinho & 

Reis, 2015). Aberrant glycosylation is highly associated with the development of HCC, 

where increased fucosylation, sialylation, and branching structures have been determined in 

target serum proteins or total serum glycan analysis between HCC and liver cirrhosis 

patients (Mehta et al., 2015). These cancer-related alterations in glycosylation are, therefore, 

valuable sources of biomarkers for HCC (Miyoshi et al., 2012). We provide a brief overview 

of the rationale for glycosylation as a marker of cancer, different types of glycosylation, and 

methods to isolate/purify glycoproteins and their glycans/glycopeptides applied in glyco-

marker studies for HCC.

A. Rationale for Glycosylation as a Marker of Cancer

Accumulating evidence has documented that alterations in the glycosylation patterns of cell 

surface and secreted glycoproteins are directly associated with malignant transformation and 

cancer progression (Dube & Bertozzi, 2005; Meany & Chan, 2011; Pinho & Reis, 2015). A 

recent review by Munkley and Elliott (2016) has elucidated in detail that aberrant 

glycosylation is not only itself a hallmark of cancer but also enables acquisition of all other 

recognized hallmarks of cancer. Aberrant glycosylation is a hallmark of many types of 

cancer, which indicates its clinical significance for cancer diagnosis, monitoring, and 

prognosis (Dube & Bertozzi, 2005; Meany & Chan, 2011; Kailemia et al., 2017). In the case 

of HCC, fucosylation levels in normal liver are relatively low, but distinctly increase during 

carcinogenesis (Miyoshi et al., 2008). The first notable glycosylation change identified as a 

more-specific marker for HCC was the a1–6 fucosylated (core-fucosylated) structure in 

serum AFP (Li et al., 2001). Subsequently, elevated levels of fucosylation in other serum 

proteins, such as alpha-1 anti-trypsin, alpha-1 acid glycoprotein, haptoglobin, fetuin, and 

transferrin were found in HCC patients. Increased fucosylated proteins in sera of patients 

with HCC originate from changes in fucosylation states in the liver and present a promising 

marker for cancer diagnosis (Mehta & Block, 2008; Miyoshi et al., 2012).
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B. Different Types of Glycosylation

With glycans (also known as oligosaccharides) covalently attached to proteins at specific 

amino acid residues, glycosylation can be classified into two main categories: (1) N-

glycosylation, linked to the amide group of asparagine (Asn) residues in the consensus 
sequence of N-X-S/T, where X can be any amino acid except proline and (2) O-

glycosylation, linked to the hydroxyl group of serine (Ser) or threonine (Thr) residues. In 

humans, glycans are assembled from ten monosaccharides: mannose (Man), galactose (Gal), 

glucose (Glc), N-acetylglucosamine (GlcNAc), N-acetyl-galactosamine (GalNAc), sialic 

acid (Neu5Ac), fucose (Fuc), glucuronic acid (GlcA), iduronic acid (IdoA), and xylose (Xyl) 

(Stowell et al., 2015). According to the Swiss-Prot database, the majority of serum proteins 

are glycosylated, whereas about 90% of glycoproteins carry either N-linked glycans alone or 

N- and O-linked ones, and 10% carry O-linked glycans (Apweiler et al., 1999). N-linked 

glycans contain a conserved GlcNAc2Man3 core structure and several branches, whereas O-

linked glycans are usually short, and contain one to four oligosaccharides. Due to the 

immense complexity and diversity of glycan structures, such as composition heterogeneity, 

branching, differences in linkages (1–3 vs. 1–4, etc.), and the different glycosylation sites 

within a protein, the characterization of glycome/glycoproteome is far more challenging 

than that of the proteome.

III. CURRENT MARKERS

There has been a marked advance in the discovery of HCC biomarkers over the last 10 years. 

Alpha-fetoprotein (Marrero et al., 2009), which can typically be monitored through a 

validated immunoassay, has been the standard biomarker for HCC and is the only FDA-

approved marker for diagnosis. DCP (Marrero et al., 2009), also known as PIVKA-II, is also 

a popular alternative in East Asia for HCC detection (Yamamoto et al., 2010). Although 

these pre-approved clinical markers remain under research to improve the sensitivity and 

specificity of their use, several proteins have been studied as potential candidates to improve 

early detection, among which haptoglobin and GP73 (GOLPH2) are the closest to clinical 

advancement. In Table 2 are shown the currently used markers for early HCC detection with 

their performance in terms of the AUC and the sensitivity and specificity as determined by 

Marrero et al. (2005, 2009). Several other proteins such as A1AT (Comunale et al., 2010), 

Apo-J (Comunale et al., 2011), kininogen (Wang et al., 2009), HGF (Liu et al., 2010), and 

hemopexin (Benicky et al., 2014) have shown differential expression between HCC and 

cirrhosis. Further research on these markers is needed where some, such as hemopexin, have 

been demonstrated to confer only marginally better results than AFP (Kobayashi et al., 

2012). More recently, fucosylated kininogen has been shown to have great potential as a 

marker in combination with other clinical variables (Wang et al., 2017). Only GP73 has 

undergone a multi-center epidemiological study to determine real-world sensitivity and 

specificity values (Mao et al., 2010).

Laboratory methods for protein biomarker discovery have involved quantitation through 

traditional methods such as ELISA, Western blots, microarrays, and immunoblotting. 

Cancer-related glyco-markers have also been extensively explored because aberrant 

glycosylation is recognized as a hallmark in oncogenic transformation (Fuster & Esko, 
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2005). More recently, mass spectrometry has proven critical in biomarker identification as 

well as glycoproteomic profiling. Research in the last 10 years on HCC biomarkers in blood 

is summarized in Table 3.

IV. NON-MASS SPECTROMETRY BASED METHODS

A. Immunoassays

HCC biomarker studies that do not involve mass spectrometry have predominantly centered 

on the use of ELISA kits or other related immunoassays. In these ELISAs, sample 

preprocessing is minimal and relatively simple absorbance measurements can be performed. 

These tests are ideal in a clinical setting where they can be performed with a simple set-up 

by a technician. The use of a clinical ELISA does require the use of a well-validated 

antibody for that assay. If such an antibody is available then it is difficult to surpass the 

performance of an ELISA in terms of analytical sensitivity and specificity. Additionally, 

diagnostic sensitivity, specificity, and AUC values can be quickly derived from these simple 

tests. Of course the results from these assays depend on the sample sets being tested where 

for different sets there may be a mix of different etiologies, early versus late stage samples, a 

mix of genders and the presence of confounding diseases. Nevertheless, ELISA assays have 

been generally used for large scale validation of HCC markers for early detection. The 

markers being tested for HCC are generally glycoproteins but these ELISAs measure the 

level of protein and do not take advantage of the glycan structure as a potential marker for 

early detection.

There have been several validation studies on the currently used markers for HCC including 

AFP, DCP, and AFP-L3. Among these is a study conducted by Marrero et al. (2009) under 

the auspices of the National Cancer Institute (NCI) Early Detection Research Network 

(EDRN). In this study there were a total of 836 patients of which 417 were cirrhosis controls 

and 419 were HCC cases of which 208 had early stage HCC. The results of these studies are 

shown in Table 2 where AFP had the best AUC value at 0.8, followed by DCP at 0.72 and 

AFP-L3 at 0.66. The optimal AFP cutoff value was 10.9 ng/mL, leading to a sensitivity of 

66%. When only the samples with very early HCC were evaluated the AUC value was 0.78. 

Thus, according to this study AFP was more sensitive than DCP and AFP-L3 for the 

diagnosis of early stage HCC.

Another alternative marker for HCC is GP73 that has been analyzed as a biomarker with 

immunoassays. Although GP73 is a known glycoprotein with fucosylation suggested to play 

a discriminatory role in HCC diagnosis (Hu et al., 2010), recent studies have focused instead 

on relative abundance in serum protein level with primarily ELISA kits (Riener et al., 2009; 

Hu et al., 2010; Mao et al., 2010; Morota et al., 2011; Zhang et al., 2016), with AUC values 

that range from 0.89 via a western blot study (Hu et al., 2010) to 0.94 in a full epidemiologic 

study with over 4000 participants (Mao et al., 2010). In another study, immunoassays were 

used to compare GP73 with hemopexin, fucosylated hemopexin, PIVKA-II, and AFP 

(Morota et al., 2011). Interestingly, PIVKA-II was found to have the highest total 

discriminatory power (AUROC = 0.90) among several types of chronic liver diseases of 

different etiologies; however, GP73 was found to have higher discriminatory power (AUC = 

0.90) for HCC and cirrhosis versus hepatitis and normal samples (Morota et al., 2011). The 
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most recent study found the sensitivity and specificity of GP73 to be 74.6% and 97.4%, 

respectively, with a cutoff of 8.5 relative units (Mao et al., 2010), which is higher than any 

reported specificities for haptoglobin, but lower in sensitivity (Shang et al., 2017). In other 

recent work, GP73 and AFP-L3 were studied for their capabilities for diagnosing AFP-

negative HCC (Zhao et al., 2018). It was found that, by using these two markers together, 

one could improve the diagnostic accuracy and sensitivity for detection of AFP-negative 

HCC. Other immunoassays have suggested beta-catenin as a biomarker for HCC with 

sensitivity and specificity of 96.9% and 92.6%, respectively (Zekri et al., 2011). However, 

because these results have not been pursued further, their use is limited. Nevertheless, 

immunoassay techniques have been essential for current clinical assays for HCC early 

detection.

B. CE-Based Assays for HCC Markers

Capillary electrophoresis (CE) has proven to be a valuable tool to separate glycans. This 

method is dependent on the differential migration of analytes in an applied electric field. It 

has been used to study the N-Glycan profile of the protein Hemopexin in patient serum in 

HCC versus cirrhosis to detect HCC (Debruyne et al., 2010). In this study, Hemopexin was 

purified from patient serum with heme agarose beads; IgG was depleted with protein A 

agarose, and Hemopexin glycans were removed and labeled for detection. The glycans were 

analyzed with CE and detected based on a fluorescent probe. Branching alpha-1,3-

fucosylated multi-antennary glycans on Hemopexin were increased in the HCC group 

compared with cirrhosis, fibrosis, and healthy volunteers as compared to non-modified 

biantennary glycans, which decreased progressively across patients from fibrosis to cirrhosis 

to HCC. This Hemopexin glycan marker differentiated patients with HCC and cirrhosis from 

healthy volunteers and patients with cirrhosis or fibrosis with a sensitivity and specificity of 

79% and 93%, respectively.

C. Lectin Fluorophore-Linked Immunoabsorbent Assays

1. Method—Methods for antibody and lectin arrays for glycoprotein detection have been 

reviewed elsewhere (Patwa et al., 2010). The lectin-FLISA method has advantages as a 

simple method to detect the response of various lectins to target proteins in biofluids (see 

Fig. 1). Often, the changes in glycan structures are more informative than the absolute 

changes in protein levels as determined by ELISAs. The lectin-FLISA uses an antibody that 

has had its glycans oxidized so they will not interfere with the analysis. The antibody 

selectively extracts the target protein from the serum, and a fluorescently labeled lectin is 

used to detect glycan structures with the appropriate structural moiety. The list of lectins and 

their corresponding recognized glycan structures has been summarized in the literature 

(Clark & Mao, 2012). Much of the published work has targeted fucosylated glycans (Wang 

et al., 2009; Liu et al., 2010) but other lectins that detect other structures could also be used. 

The method has the advantage that it can be used in an ELISA format or on a microarray-

based format for high-throughput assays. A disadvantage of the method is that the assay is 

only as good as the antibody used, and there might be cross reactivity from other 

components in complex fluids such as serum. Also, the lectins can detect total amounts of 

the target carbohydrate, but cannot distinguish subtle differences in the number of sugars 

present, such as the case for mono-, di, or tri fucosylation, where individual minor structures 
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might serve as the optimal biomarker but might be masked by the total sugar detection (Zhu 

et al., 2014).

2. Lectin-FLISA Targeting Fucosylation—Taniguchi and coworkers (Kinoshita et al., 

1991) have developed an antibody-lectin enzyme immunoassay to detect fucosylated alpha-

fetoprotein in liver cancer. The use of fucosylated AFP has served as an alternative marker to 

AFP to detect HCC versus cirrhosis. The assay developed was similar to that described 

above where AAL was used as the lectin to detect AFP captured by an antibody on a 

microtiter plate. Taniguchi and coworkers also developed a method for enrichment of AFP to 

be used with this platform. The methodology measured highly fucosylated AFP diluted to 5–

80 ng/mL in human serum.

Mehta and coworkers (Comunale et al., 2009, 2013) have also developed a lectin-FLISA that 

targeted fucosylation for early detection of HCC. They point out that AFP and core-

fucosylated AFP can be produced under other circumstances than HCC, including other liver 

diseases, and is not present in all patients with HCC. Also, it is difficult to discriminate AFP 

levels in early-stage HCC from cirrhosis. They therefore used a lectin-FLISA to explore the 

levels of fuc-kininogen and fuc-A1AT in patient serum individually and in combination with 

the level of AFP and also GP73 to distinguish between a diagnosis of cirrhosis and HCC. 

They found that the levels of fuc-Kin and fuc-A1AT were significantly higher in patients 

with HCC compared to cirrhosis. The optimal performance was obtained with a combination 

of fuc-Kin, AFP, and GP73 to result in a sensitivity of 95% and a specificity of 70%, and an 

AUC of 0.94. Thus they concluded that the fucosylated proteins can act as markers to detect 

HCC by themselves or could improve detection in combination with other markers at the 

protein level.

In other work, Lubman and coworkers (Liu et al., 2010) used a lectin antibody array version 

of the lectin-FLISA to test 26 potential markers discovered with a mass spectrometry-based 

technique to distinguish early HCC from cirrhosis. In this method, the antibodies were 

printed on glass slides and incubated with AAL lectin to detect fucosylation differences. The 

AAL was tagged with a fluorescent probe, and each spot was quantitatively detected with a 

microarray scanner. C3, CE, HRG, CD14, and HGF were found to be potential biomarker 

candidates to distinguish early HCC from cirrhosis with a sensitivity of 72% and a 

specificity of 79%.

It should be noted that a mass spectrometry version of the lectin-FLISA was recently 

developed by Yoo and coworkers (Ahn et al., 2012) to detect HCC. This method will be 

discussed below.

D. 2-D Gels and Lectin Analysis

Lectin analysis has also been used with 2-D gel electrophoresis to search for HCC markers. 

Block and coworkers (Block et al., 2005) performed glycoproteomic analysis with 2-D gels 

to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. 

Their strategy used several lectins to extract fucosylation from serum and then analyzed the 

bound and unbound fractions with 2-D gels. This analysis showed there were clearly 

proteins that were fucosylated that were upregulated in the bound versus the unbound 
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fraction. An HPLC analysis of the glycans from the bound fraction showed the presence of 

fucosylated glycans as compared to the unbound fraction. They performed the experiment 

for the bound fractions for HCC versus non-HCC (healthy), and found that there were 

proteins that were upregulated in the HCC sample; with further analysis these proteins were 

found to be highly fucosylated. One such protein of interest was fucosylated GP73, which 

was also tested in human samples and was found to be upregulated significantly compared to 

other control groups.

The summary of the four non-mass spectrometry methods is presented in Table 4.

V. DISCOVERY—MASS SPECTROMETRY-BASED ASSAYS

A. Mass Spectrometry Versus Non-Mass Spectrometry Methods

In this section, we will review the advances in mass spectrometry for the analysis of glycans 

and glycopeptides related to early detection of HCC. There are several key advantages for 

mass spec based techniques (see Table 5). One of these advantages is that MS assays do not 

require antibodies, although antibodies are sometimes used to enhance MS based assays in 

the case of studies of target glycoproteins. The performance and availability of antibodies 

may vary and affect an assay whereas MS is a more general technique and can be performed 

on any protein. With no need of prior knowledge of the protein identity, MS can perform 

large scale screening of glyco-marker candidates in complex biological samples that 

underwent glycosylation changes, which can be efficiently conducted for in-depth 

quantitation of glyco-markers with the support of sophisticated MS softwares. An additional 

advantage of MS assays such as MRM for example is that the assays can be multiplexed for 

many different proteins simultaneously. Also, the advent of tagging methods such as iTRAQ 

and TMT labels has allowed quantitative multiplexing of samples not readily possible by 

current non-MS methods. This feature is essential in biomarker studies comparing multiple 

samples. Probably the most signifi-cant advantage of MS based techniques is the ability to 

obtain detailed structural analysis of glycan structures as well as to pinpoint the 

glycosylation sites that underwent glycan changes in complex biological samples, which 

might have direct impact on biomarker studies. Although CE/lectins and gel/lectins provide 

some information on glycan structure, assays using these methods cannot provide the level 

of detail that modern MS-based techniques can achieve, especially in the in-depth structure 

information (structural isomers, linkage information, etc.). The main advantage of these 

tools compared to MS is that they do provide a means of visually monitoring changes in 

glycan composition. Also, these non-MS based techniques do not require the sophisticated 

instrumentation or expense of modern mass spectrometers. Nevertheless, as discussed in the 

following sections, mass spectrometry can provide a level of detail in glycan analysis not 

available to any other method.

B. Methods to Enrich Glycoproteins and Their Glycans/Glycopeptides

Due to low abundance of glycoproteins and the inherent structural complexity of protein 

glycosylation, isolation/purification of glycoproteins and their glycoforms such as glycans 

and glycopeptides is an essential element of successful characterization of the 

glycoproteome, glycome, and glycopeptidome. Advanced analytical technologies have been 
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developed to selectively enrich glycoproteins and their glycans/glycopeptides (Table 6), 

including lectin-based affinity chromatography, hydrazide chemistry, hydrophilic interaction 

chromatography (HILIC), porous graphitized carbon (PGC) chromatography, and cotton 

wool SPE tips. Among these separation methods, lectin affinity chromatography and 

hydrazide chemistry can be performed either to capture glycoproteins at the protein level 

(Xu et al., 2007; Zhang, 2007; Wang et al., 2008; Liu et al., 2013) or capture glycopeptides 

at the peptide level (Chen et al., 2013; Yin et al., 2015; Tanabe et al., 2016). Whereas lectins 

have well-characterized sugar specificities to capture specific carbohydrate residues in 

glycoproteins/glycopeptides, hydra-zide chemistry can be used in the unbiased enrichment 

of glycoproteins/glycopeptides. PGC columns or tips are the most commonly used strategy 

to enrich glycans from protein mixtures (Zhu et al., 2014). HILIC is a well-recognized 

technique that can effectively enrich glycans/glycopeptides (Yang et al., 2017), whereas 

cotton SPE tips have been recently developed to purify glycopeptides and glycans (Selman 

et al., 2011). These strategies of glycoprotein/glycan/glycopeptide enrichment can be further 

coupled with advanced mass spectrometry analysis (An et al., 2009; Kailemia et al., 2014) 

with LC-MS/MS, QIT-TOF, MALDI-TOF/TOF, and MRM to discover more clinically 

relevant markers with greater sensitivity and specificity (Dai et al., 2009). Table 6 

summarizes the methods for the enrichment of glycans/glycopeptides/glycoproteins.

C. MALDI-MS Profiling of Glycans

1. Method—MALDI-MS has been used as a convenient method to profile glycans. The 

MALDI processed applications have been reviewed in prior publications (Michael et al., 

1992; Zhao et al., 2006; Fukuyama et al., 2008). Because there is no intrinsic pre-separation 

in the MALDI process, the method is best for simple mixtures. In most glycan biomarker 

studies, the glycans from a single isolated protein or a limited number of proteins is usually 

studied. Also, generally the glycans must be derivatized, usually with permethylation, to 

enhance the volatility and to improve the limit of detection. It is also possible to perform an 

LCMALDI experiment (Young & Li, 2006; Chen et al., 2017b) for more-complex mixtures, 

where the glycans can be separated and placed on different spots on the MALDI plate to 

provide a simpler spectrum for interpretation. It should be noted that a major advantage of 

this method is that rapid screening of a large number of samples can be accomplished with a 

high-capacity MALDI plate and modern high repetition rate lasers.

2. Targeted MALDI Profiling for Haptoglobin (Hp) and Alpha-1-Acid 
Glycoprotein (AGP)—With a quantitative MALDI-QIT-MS/MS approach with only 10 

μL of serum in individual patients, Lin and coworkers identified that fucosylated N-glycans 

in Hp were significantly elevated in pancreatic cancer compared to chronic pancreatitis (Lin 

et al., 2011). In this study, Hp was isolated with a monoclonal antibody, and the glycans 

removed for analysis with MALDI-MS where the glycans were also permethylated. Eight 

desialylated N-glycan structures of haptoglobin were identified, where a bifucosylated 

triantennary structure was reported for the first time in pancreatic cancer samples. Core and 

antennary fucosylation were both elevated in pancreatic cancer samples compared to 

samples from benign conditions. Structural analysis could be provided with the QIT-MS/MS 

capabilities (Nishikaze, 2017). Fucosylation degree indices were calculated, and showed a 

significant difference between pancreatic cancer patients of all stages and the benign 
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conditions. This study showed the feasibility of MALDI-MS as an assay for cancer from 

serum samples.

The MALDI-MS profiling method was applied by the same group to study the glycans 

expressed in the different HCC etiologies (see Fig. 2) (Zhu et al., 2014). A unique pattern of 

bifucosylated tetra-antennary glycan, with core and antennary fucosylation, was identified in 

HCC patients. Quantitative analysis indicated that the increased fucosylation degree was 

highly associated with HBV and ALD-related HCC patients compared to that of the 

corresponding cirrhosis patients. Notably, the bifucosylation degree was distinctly increased 

in HCC patients versus that in cirrhosis of all etiologies. The elevated bifucosylation degree 

of haptoglobin could discriminate early-stage HCC patients from cirrhosis in each etiologic 

category. This unique pattern of bifucosylated tetra-antennary N-glycan could outperform 

the clinically used AFP to discriminate early-stage HCC from cirrhosis (AUC = 0.834, P < 

0.0001) (Zhu et al., 2014). More recently, Zhu et al. have developed an antibody-extraction 

column, which improves markedly over immunoprecipitation to isolate Hp for this 

experiment. This antibody column can extract Hp from 20 μL of serum in 40 min with >90% 

recovery (Zhu et al., 2015).

In other work by Zhang et al. (2011), N-linked changes in serum Hp beta chain were studied 

with MALDI-QIT-MS. The Hp was isolated from serum using a Hp-antibody column and 

the glycans removed for analysis. In this work they specifically studied patients with HBV 

etiology which is predominant in China. Their studies included 20 each of HBV patients, 

cirrhosis patients, and HCC patients and also normal controls. They found that two 

fucosylated glycans, whose structures were identified with MS/MS in the QIT, were clearly 

elevated in the cirrhosis and HCC patients relative to HBV and normal. This result was also 

confirmed with lectin blot using AAL lectin.

In related work, Liang et al. applied MALDI-MS glycan profiling to AGP from serum where 

AGP was isolated with a chemical precipitation method. The AGP glycan profile was more 

complex than Hp, and yielded nine peaks in the MALDI MS spectrum. It was shown that a 

trifucosylated tetra-antennary glycan could distinguish HCC from cirrhosis samples with a 

performance for NASH-based samples that was comparable to AFP. Wang et al. studied 

glycans from IgGs isolated from serum and analyzed them with MALDI-MS. They found 

that several glycans from the IgGs improved detection of HCC versus cirrhosis relative to 

AFP. The ratio of galactose was particularly promising.

3. Global MALDI Screening to Profile HCC Markers in Serum—Goldman et al. 

(2009) evaluated the use of total glycan profiling with MALDI-MS to identify markers for 

HCC. In several studies they used 10 mL of serum; they removed the N-glycans with 

PNGaseF and solid-phase extraction, and permethylation was used to process the glycans for 

MALDI TOF-TOF MS. They studied HCC samples and controls with chronic liver disease 

and without liver disease. They used novel computational methods to analyze the complex 

set of glycan patterns obtained, and they found three selected N-glycans that could classify 

HCC with 90% sensitivity and 89% specificity in an independent set of patients with chronic 

liver disease. Because these samples were obtained from a hospital in Egypt, the marker 

performance might prove different for other populations. Although these glycans could 
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identify HCC from cirrhosis and fibrosis, the proteins associated with the glycans are not 

known and are probably from high-abundance proteins. The latter makes it difficult to 

develop an antibody based version or ELISA to detect these markers.

4. MALDI-Imaging of Tissues in HCC—Although this review is focused on analysis 

from serum, it should be noted that there has been significant recent activity in the area of 

MALDI imaging which can evaluate changes in tissues during the progression of cancer. 

Recent work in this area related to HCC is that of Powers and coworkers, where they used 

MALDI-imaging to study changes in glycan structure between normal and HCC tissue 

samples (Powers et al., 2015). The method can be used in fresh tissues or in FFPE, where 

PNGaseF is sprayed on the sample to release N-glycans directly on the tissues mounted on 

glass slides before adding the MALDI matrix. They evaluated FFPE samples of HCC tissues 

using this method and detected over 30 N-glycans. Distinct differences were observed 

between the HCC versus normal samples. They also were able to study the distribution of 

singly fucosylated N-glycans detected in these tissues and could compare them to the 

staining pattern obtained using a core fucose binding lectin. In more recent work by this 

group, they analyzed 138 HCC tissues and compared the N-linked glycans in cancer tissue 

to tissue with liver cirrhosis (West et al., 2018). Ten glycans were found to be significantly 

elevated in HCC tissues compared to cirrhosis. These glycans were found to be with 

increased levels of fucosylation and/or with increased levels of branching. They also found 

that increased levels of fucosylated glycoforms were associated with a reduction in survival 

time (West et al., 2018).

D. ESI-MS Profiling of Glycans

1. Method—Electrospray ionization has been used to profile glycans from various 

biofluids in an attempt to find markers for HCC and other cancers. A major advantage of 

ESI is that it can readily be coupled to HPLC to pre-separate complex glycan mixtures. The 

method allows total glycan analysis from serum or other biofluids or of glycans from target 

proteins. The glycans can be analyzed without prior derivatization or with derivatization to 

increase detection sensitivity. The ESI source can be coupled to any type of mass 

spectrometer, and has been used with Orbitraps for structural analysis of the glycans using 

CID and HCD for MS/MS analysis. It can also be interfaced to ion mobility or PGC 

columns to separate glycan isoforms. The glycan profile often provides a distinct signature 

of a cancer versus control; however, the glycans cannot be associated with a specific protein 

so that an antibody-based assay cannot be readily developed.

2. Global Profiling of Glycans With LC-ESI-MS for Biomarkers of HCC—LC-

ESI analysis has been used to profile glycans for a number of cancers, including ovarian 

(Leiserowitz et al., 2008; Kim et al., 2014), pancreatic (Zhao et al., 2007), HCC (Chandler et 

al., 2013; Tsai et al., 2014; Wang et al., 2017), and prostate cancer (Hua et al., 2011), among 

others. There have been a number of studies on global screening of glycans from serum for 

HCC biomarker studies. Ressom and coworkers (Tsai et al., 2014) used LC-ESI-MS to 

analyze N-glycans in sera from 183 patients to distinguish HCC from cirrhotic controls. N-

glycans were released from serum proteins with PNGaseF and the glycans were 

permethylated with a solid-phase permethylation procedure. The glycans were profiled with 
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LC-ESI interfaced to an Orbitrap Velos MS. Several glycans that were found to be 

significantly up- or down-regulated in their cohorts were identified for further analysis. 

These glycans were then analyzed with targeted MRM analysis, and 11 N-glycans were 

identified as being statistically significant between HCC cases and cirrhotic controls. This 

study demonstrated the use of an integrated approach for profiling and targeted assays for 

biomarker analysis of glycans.

3. Profiling of Glycans for Specific Proteins with LC-ESI-MS for Biomarkers 
of HCC—The alternative strategy to global profiling of glycans is to isolate a targeted 

protein from serum for analysis of its glycan content. This strategy has been performed for 

HCC for a number of different target proteins. One important target has been Haptoglobin, 

as shown in prior work on the MALDI-MS analysis of its glycan content. In the work of 

Lubman and coworkers (Zhang et al., 2015b), a workflow was developed that isolated Hp 

with an HPLC-based affinity column followed by glycan removal, extraction and 

desialylation. The fucosylated glycans from Hp were derivatized with Meladrazine which is 

a reagent developed in China (Tie & Zhang, 2012) that can significantly enhance the 

sensitivity for ESI-MS detection. The separation of the glycans with a HILIC column 

resulted in detection and quantitation of eight glycans with less than 1 mL of serum. The 

ratio of the various fucosylated peaks to their corresponding non-fucosylated forms showed 

that the fucosylated glycans are upregulated in the case of early HCC samples versus 

cirrhosis. In particular, a relatively low abundance bifucosylated tetra-antennary form might 

serve as a marker of HCC as shown in their prior MALDI-MS work.

A different strategy developed by Mechref and coworkers (Huang et al., 2017) involved the 

use of isomeric profiling to identify glycan markers for cancer. Isomeric forms of glycans 

were separated and identified based upon separations with elevated temperatures in a PGC 

column followed by ESI-MS in an Orbitrap Velos MS (see Fig. 3). This method separated 

isoforms of sialic acid, including the isoforms of sialic acid with alpha-2,3 and alpha-2,6 

linkages. A comparison of non-isomeric and isomeric permethylated glycan forms from Hp 

released from patient serum was achieved with C18 and porous graphitic carbon (PGC) 

columns. This method was used to distinguish early-stage HCC from cirrhosis, whereby 8 

out of 34 glycans identified by PGC-LC-MS/MS were found to be significant due to the 

isomeric distributions of a particular glycan. This work represents the first example of the 

use of isoforms of glycans as potential cancer biomarkers. Other attempts have been made to 

distinguish glycan isoforms from serum with ion mobility spectrometry, although at this 

point with limited success (Gaye et al., 2012).

An alternative strategy developed by Clemmer and coworkers (Isailovic et al., 2012) used 

ion mobility spectrometry-mass spectrometry (IMS-MS) to profile serum N-linked glycans 

for HCC (see Fig. 4). In the ion mobility strategy, ions separate according to their mobility 

in a drift gas under the influence of an electric field. The drift time depends on the 

collisional cross section of the ion, which depends on its shape. The result is that isomers 

can often be separated that could not be detected in mass spectrometry alone. In this work, 

they profiled the glycans from HCC, cirrhosis, and normal with the IMS-MS technique, and 

they found that the ion mobility profiles for as many as ten different mass-to-charge ratios 

for glycans together with supervised PCA analysis distinguished the different disease states. 
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The resolution of ion mobility is limited, but they nevertheless speculate that they were able 

to distinguish some isomer forms based on differences in the ion mobility. The method has 

distinct advantages in terms of speed of analysis compared to other separation methods. In 

other work, Li and coworkers developed a relative quantification platform for quantitative 

analysis of N-glycans released from human serum protein digests by combining aminoxy 

TMT labeling with CE-ESI-MS/MS, which has been demonstrated to be efficient in 

resolving glycan isomers and improving the relative quantification accuracy (Zhong et al., 

2015). A review that details advances in the use of IMS to separate isomeric glycans has 

recently been published (Chen et al., 2017a).

E. ESI-MS of Glycoproteins/Glycopeptides to Profile Proteins Related to HCC

1. Method—The description for ESI-MS of glycoproteins and glycopep-tides is similar to 

that described above; however, there are several experimental issues that must be considered. 

In the case of glycopeptides, there can be other interfering peptides that must be removed or 

separated from the non-glycosylated peptides. The peptides tend to have a much higher 

ionization efficiency than the glycopeptides, and will suppress the signal from the 

glycopeptides. Also, an advantage to study glycopeptides is that one can identify site 

specificity for the glycans, which might be an important marker in itself for disease. An 

issue to study glycopeptides with MS/MS is that various methods are required for analysis of 

the peptide backbone and glycan structure. Some of these methods that have been used in 

HCC biomarker studies will be discussed in this section. Alternatively, one can study the 

glycoproteins based on the selective isolation of the glycoproteins with certain structures 

with lectin methods, and study of the peptide changes. There is some loss of structural 

information in this strategy, but it can differentiate protein levels according to the expression 

of specific glycan structures.

2. Lectin Extraction of Proteins—In one strategy used by several groups (Yang et al., 

2006) for biomarker analysis in serum, lectin columns were used to quantitatively extract 

glycoproteins. This method has been used in studies of HCC versus cirrhosis in the work of 

Lubman and coworkers (Liu et al., 2010) to study differential changes in fucosylation. In 

this work, a lectin array was first used to establish that AAL and LCA provided the largest 

changes in response between HCC and cirrhosis in serum. The proteins in the sera samples 

were labeled with Exactag labels for quantitative analysis and passed through a lectin AAL 

or LCA column for further analysis. The extracted glycoproteins were digested with trypsin 

and analyzed with nanoLC-MS. The changes in the fucosylation level were monitored 

through the tagged peptides. They found five proteins, including complement C3, 

ceruloplasmin, histidine-rich glycoprotein, CD14 and hepatocyte growth factor, that were 

potential markers to detect early-stage HCC versus cirrhosis. The combination of the five 

proteins had an AUC of 0.81. This work showed that there was a significant increase in the 

level of fucosylation in serum proteins in early HCC versus cirrhosis as a potential means for 

early detection.

3. Lectin Extraction of Glycopeptides

Integrated analysis of lectin-extracted glycopeptides.: In a related but alternate strategy to 

that discussed in the above section, Narimatsu and coworkers (Kaji et al., 2013) developed 
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an integrated strategy with lectins to extract glycopeptides from serum to analyze biomarker 

candidates for HCV/HBV Infection-associated liver fibrosis and HCC. The strategy focused 

on candidate glycoproteins that are expressed in the original tissues of the cancer and that 

carry glycan structures associated with carcinogenesis, in this case HCC. They analyzed the 

glycan profiles of culture media of HCC cell lines with lectin arrays, and found that AAL 

and DSA signals were significant. They used lectin affinity chromatography with different 

combinations of these lectins to extract glycopeptides from digested proteins from the 

culture media and patient serum, and analyzed the glycopep-tide profile with IGOT (isotope-

coded glycosylation-site-specific tagging), where they remove the glycan and label the site 

with 18O and analyzed with nano-LC-MS on a QTOF MS. The glycoproteome profile was 

compared, where they found 744 first-step candidates from AAL extraction. They selected 

21 of these candidates in patient serum based on liver expression and the availability of an 

effective antibody. A verification of the glycan alteration was conducted using pooled sera 

with lectin arrays to verify enhancement of fucosylation associated with HCC and detection 

of HCC-associated enhancement of fucosylation on the candidate glycoproteins with AAL-

fractionation followed by Western blotting. However, they did not look for markers of early 

HCC in this study but rather were more focused on fibrosis.

In other work by Tanabe et al. (2016), a novel strategy was used to perform global screening 

of glycopeptides in serum to discover HCC markers. The proteins in patient serum were 

digested with trypsin, and enriched first with ultrafiltration to eliminate peptides and small 

glycopeptides, and further enriched with AAL lectin-based affinity chromatography. The 

glycopep-tides were analyzed with LC-ESI-QTOF MS, where custom software was used to 

screen thousands of AAL-enriched glycopeptide peaks over large numbers of samples. 

Glycopep-tide candidates were further isolated and identified with LC-MS/MS after removal 

of glycans with PNGaseF. The glycan structure was proposed based on MS/MS analysis. 

They identified a glycopeptide from AGP with multi-fucosylated tetraanten-nary N-glycans 

that was significantly elevated in HCC patients. The ROC curves for HCC versus cirrhosis 

provided values of an AUC = 0.86 for HCC HCV versus cirrhosis and an AUC = 0.93 for 

HCC HBV versus cirrhosis. However, because the stage of the patients was not provided, it 

was not clear if these were mainly early or late stage HCC patients.

Lectin extraction with truncation of glycan structure.: One of the issues to study 

glycopeptides has been to unravel the often complex structures of N-linked glycans. One 

method that has been used to study the structure of glycans involves initial removal of 

selected carbohydrate units with enzymes followed by analysis of the remaining glycan with 

CE (Varadi et al., 2013) or LC (Wu et al., 2010) or mass spectrometry. In one study by Yin 

and others, a method for mass-selected site specific core-fucosylation of serum proteins in 

HCC was developed (see Fig. 5) (Yin et al., 2015). This method involved initial depletion of 

high-abundance proteins, trypsin digestion of the remaining proteins, iTRAQ labeling of the 

peptides, LCA enrichment of core-fucosylated peptides, followed by endoglycosidase F3 

digestion before mass spectrometry analysis. The endoglycosidase digestion removed most 

of the glycan structure and left the core-fucosylation structure intact for mass spectrometry 

analysis. This strategy simplified the detection of these core-fucosylated structures and 

increased detection sensitivity compared to the intact glycan. In this study, they detected 
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1,300 CF peptides from 613 CF proteins from patient sera, where 20 CF peptides were 

differentially expressed in ALD-related (alcohol) HCC samples compared with ALD-related 

cirrhosis samples and 26 CF peptides changed in hepatitis C virus (HCV)-related HCC 

samples compared with HCV-related cirrhosis samples. Among these there were three CF 

peptides from fibronectin upregulated in ALD-related HCC samples compared to cirrhosis 

with an AUC value of 0.89 at site 1007 for detection of early HCC. When combined with the 

AFP value, the AUC reached to 0.92; therefore, CF peptides of fibronectin might serve as 

potential biomarkers for early-stage HCC screening in ALD-related cirrhosis patients.

F. Analysis of Target Glycoproteins From Patient Serum With an Intact Glycopeptide 
Approach

1. Method—The ability to analyze intact glycopeptide analysis with mass spectrometry 

offers great advantages for biomarker discovery based on the ability to define glycan sites 

and structures. However, the analysis of intact glycopeptides has remained difficult due to 

the complexity of the glycopeptide structure, which contains a carbohydrate and a peptide 

structure, the low ionization efficiency and low abundance of glycopeptides compared to 

peptides in protein digests, and difficulties in data interpretation. The glycopeptides can be 

enriched from the peptides by a number of methods, including lectin or HILIC. However, the 

ability to analyze the glycopeptides has remained a challenge. In recent work, there have 

been a number of techniques developed to deal with this problem (Table 7), including 

collision-induced dissociation (CID)/electron-transfer dissociation (ETD) (Alley et al., 

2009), CID/higher-energy collisional dissociation (HCD) (Segu & Mechref, 2010; Lee et al., 

2016), stepped HCD (Liu et al., 2017a; Yin et al., 2018), and electron-transfer/higher-energy 

collision dissociation (EThcD) (Yu et al., 2017; Chen et al., 2018; Glover et al., 2018), for 

example. The use of CID/ETD MS to analyze glycopeptides has been recently reviewed by 

Mechref (Mechref, 2012). CID can provide information related to the composition of the 

glycan unit attached to the peptide, whereas ETD can sequence the peptide because it causes 

only peptide backbone fragmentation and keeps the glycans intact. Stepped collision energy 

(SCE) HCD-MS/MS uses different collision energies in HCD-MS/MS to produce 

complementary fragments of the glycan and peptide. It has been found that SCE-HCD-

MS/MS under 20-30-40% energies generated highly informative fragment ions for peptide 

and glycan of a glycopeptide for structural analysis (see Fig. 6A) (Liu et al., 2017a; Yin et 

al., 2018). In other work by Heck and coworkers, ETD and HCD were combined to develop 

a hybrid technique called EThcD (Frese et al., 2012). In this method, a supplemental energy 

is applied to all ions formed by ETD to generate spectra with enhanced capabilities in 

glycopeptide studies (see Fig. 6B). There has been extensive work on some of these 

techniques towards analysis of glycoproteins/glycopep-tides for standard proteins, but more 

limited work for clinical samples as in serum.

2. EThcD Analysis of Glycopeptides—A recent strategy to analyze intact 

glycopeptides with mass spectrometry developed a quantitative EThcD-MS/MS method to 

determine changes in intact N-glycopeptides between early HCC and liver cirrhosis for Hp 

in patient serum (Zhu et al., 2018). In this work, Hp was immunopurified from 20 μL of 

serum followed by digestion with trypsin and GluC, glycopep-tide enrichment with HILIC 

TopTips, and LC-EThcD-MS/MS analysis on an Orbitrap Fusion Lumos Tribrid mass 
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spectrometer. The development of the Orbitrap mass spectrometer is an important advance 

for glycopeptide analysis. The EThcD method was developed by Li and coworkers (Yu et 

al., 2017), where HCD and ETD fragments could both be collected in a single spectrum to 

markedly improve intact glycopeptide characterization. Site-specific identification and 

quantitation of N-glycopeptides were achieved with novel software developed by Protein 

Metrics Inc.; that is, Byonic and Byologic softwares (Bern et al., 2012). Byonic provides a 

means to interpret the structure of the glycopeptides, whereas Byologic provides a means to 

quantitate the structures. This software is also an important advance because manual 

analysis would be difficult and time-consuming. The analysis of patient serum resulted in 

279 N-glycopeptide spectral matches that corresponded to 98 site-specific N-glycopeptides 

(Zhu et al., 2018). In addition, several key structures were found to be quantitatively 

different between early stage HCC and cirrhosis, including a bifucosylated tetra-antennary 

form reported in earlier work (Zhu et al., 2014). The combination of LC-EThcD-MS/MS 

and Byonic/Byologic software represent a potential major breakthrough for the analysis of 

intact N-glycopeptides.

The group of An (Lee et al., 2018) has also identified and quantified the site-specific 

glycopeptides of serum haptoglobin between gastric cancer and healthy controls with Q-

TOF LCMS/MS. Ninety-six glycopeptides of serum Hp were characterized across all cancer 

and control samples, where three glycopeptides exhibited exceptionally high fold-changes in 

gastric cancer (Lee et al., 2018).

VI. VERIFICATION LC-MRM ANALYSIS OF GLYCOSYLATION

A. Method

LC-MRM serves as an alternative method for targeted protein quantification. The method 

has been used in complex mixtures, including patient serum where the proteins are digested 

into peptides, which are monitored with mass spectrometry. The peptides monitored for each 

target protein are selected according to criteria to optimize sensitivity and at the same time 

provide a peptide that is unique to that protein. In order to quantitate the peptide, an 

isotopically labeled reference peptide with the same sequence is used. The target peptides 

are selected in the mass spectrometer and fragmented; where several transitions are 

monitored. The method has great advantages in that one can multiplex large numbers of 

target peptides in modern mass spectrometers, it does not require an antibody, the assay once 

developed can be automated, and the data are highly reproducible compared to standard 

ELISAs. In the case of glycoproteins, the assay becomes more difficult because glyco-

peptide standards are generally not available. There have been several strategies developed 

for LC-MRMs of glycoproteins (Ahn et al., 2009; Song et al., 2012; Ruhaak & Lebrilla, 

2015). Herein, we will just present some of those studies that directly pertain to detection of 

HCC.

B. LC-MRM of IgGs in Plasma

In recent work, Goldman and coworkers (Yuan et al., 2015) developed a method for 

quantitative analysis of immunoglobulin subclasses and subclass specific glycosylation with 

LC-MSMRM in liver disease. Immunoglobulins were first isolated from human plasma with 
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protein A and G columns. The IgGs were digested with trypsin and subjected to LC-

MS/MS. Goldman and coworkers developed a novel method whereby glycan oxonium ions 

and peptide-GlcNAc fragment ions were used to quantify glycoforms of IgG purified with 

affinity chromatography with normalization to a unique peptide associated with each IgG 

subclass. They found that HCC patients have increased circulating IgG1, IgG3, IgA1, and 

IgM compared to healthy controls. A comparison of HCC and Cirrhosis patients showed that 

HCC patients have a significantly higher concentration of IgG1 and IgM but lower IgG2 

concentration. An increase in galactose-deficient core fucosylated glycoforms was observed 

in cirrhosis and HCC patients. They also found that specific glycoforms such as FA2G0 and 

FA2B0 increase in all IgG subclasses, whereas the FA2G2 form decreases. This work in 

effect developed a method whereby quantities and glycoforms of immunoglobulins both 

change significantly in liver disease progression to HCC.

Goldman and coworkers (Sanda et al., 2013) also developed a quantitative LC-MS-MRM 

method for site-specific glyco-forms of Hp in liver disease. In this work, they first isolated 

Hp from plasma samples, where the Hp was added to an internal standard and digested with 

trypsin. The digest was treated with alpha-neuraminidase to remove the sialic acids to 

enhance the sensitivity for detection. A further digestion of the glycan with beta (1–4)-

galactosidase further simplified the glycan structure. The glycopeptides were subjected to 

LC-MS-MRM, where the oxonium ions and peptide-GlcNAc fragments were monitored as 

MRM transitions. The T3 glycopeptide of Hp was chosen for particular attention because of 

the large number of potential diagnostic isoforms. The combination of LC-MS-MRM with 

exoglycosidase digestion resolved isobaric glycoforms of the Hp T3 glycopeptide for 

quantification of multiply fucosylated glycoforms. They found that 14 multiply fucosylated 

glycoforms increased significantly in the liver disease group compared to healthy controls. 

They also found that the tri- and tetra-antennary singly fucosylated glycoforms are 

associated with MELD score and low platelet counts. The group recently carried out LC-

MS-MRM quantification of core fucosylated N-glycopeptides of serum proteins and found 

increased core fucosylation of five glycopeptides at the stage of liver fibrosis (i.e., N630 of 

serotransferrin, N107 of alpha-1-antitrypsin, N253 of plasma protease C1 inhibitor, N397 of 

ceruloplasmin, and N86 of vitronectin), increase of additional six glycopeptides at the stage 

of cirrhosis (i.e., N138 and N762 of ceruloplasmin, N354 of clusterin, N187 of hemopexin, 

N71 of immunoglobulin J chain, and N127 of lumican) (Ma et al., 2018).

C. LC-PRM of AFP in Serum

Most recently, An and coworkers (Kim et al., 2018) developed a quantitative LC-MS/MS-

PRM to monitor fucosylated glycopep-tides in serum AFP to distinguish between HCC and 

cirrhosis patients. Because AFP is normally present at low levels in serum, even in patients 

with liver disease, a more sensitive approach is required. To overcome the sensitivity issues, 

AFP was immunoprecipitated from serum, followed by trypsin digestion, neuraminidase 

treatment to remove sialic acids, and LC-MS/MS-based PRM analysis. With a combination 

of these approaches, the MS detection limit was significantly improved (LOD < 2 ng/mL). 

The result showed that the relative percentage of fucosylated AFP (AFP-fuc%) had a better 

performance than serum AFP levels to differentiate early-HCC and cirrhosis (AUC = 0.962) 

with a sensitivity of 92.3% (Kim et al., 2018).
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D. Lectin-FLISA Based MRM

A mass spectrometry version of the lectin-FLISA was recently developed by Yoo and 

coworkers (Ahn et al., 2012, 2013) to detect HCC. In this work (Ahn et al., 2012), 

fucosylated proteins from plasma were captured onto AAL lectin immobilized on beads (see 

Fig. 7). The proteins were digested with trypsin and the samples were spiked with stable 

isotope-coded internal standards of the target peptides to be quantified with MRM mass 

spectrometry in a triple-quadrupole mass spectrometer. They studied HCC of HBV etiology 

and used controls from cirrhosis, HBV patients, and healthy people. They found that AGP, 

AACT, A1AT, and Ceruloplasmin were potential markers. The AUC from these markers 

ranged from 0.73 to 0.92, and combinations of these candidates yielded an AUC of >0.95. 

The mass spectrometry version of the lectin-FLISA has distinct advantages in that it 

eliminates the use of antibodies and associated problems such as cross reactivity. The MRM 

can allow marker multiplexing where large numbers of peptides can be analyzed 

simultaneously. The assay can also be performed on a very standard triple quadrupole mass 

spectrometer. Also, MRM assays can be automated to analyze large numbers of samples and 

tend to be more stable than conventional ELISAs.

E. Other Lectin-Based MRM Assays for HCC

In work by Qian and coworkers (Zhao et al., 2011), a method for site-specific quantification 

of core fucosylated glycoproteins with MRM-MS was developed. In this assay, a serum 

sample with bovine thyroglobulin added was first enriched at the protein level with LCH 

lectin. The CF proteins underwent trypsin digestion, and a normalized internal standard, 

which is a pool of CF peptides from normals with CF peptides from bovine thyroglobulin, 

were labeled with 18O was added to the sample and was further purified using ultrafiltration. 

The CF peptides underwent partial deglycosylation with Endo F3 to remove most of the 

glycan structure to thus increase ionization efficiency. The CF peptides underwent MRM-

MS with a triple quadrupole MS; in the MS2 spectrum, product ions PGn+, yG+, and y+ 

appeared regularly with high abundance. These ions were used for MRM quantification, and 

were applied to HCC and normal serum samples with the peptide markers; see Comunale et 

al. (2006). Their studies did not show a significant difference between the healthy controls 

and HCC groups for the CF levels of seven peptides; however, these were preliminary 

results.

In more recent work by Lubman and coworkers, a similar assay was designed to validate 

markers of core-fucosylated proteins from previous work (Yin et al., 2015). In this method, 

serum samples from HCC, cirrhosis, and a pool of normal standards was first depleted of 

albumin and the IgGs with a spin column. At this point, standard proteins, which were 

targets of analysis, were added to the serum to enhance the ability to detect the peptides with 

MS/MS. The remaining proteins were digested with trypsin, and the CF-glycopeptides were 

extracted with LCA lectin. These CF-peptides were labeled with iTRAQ tags, and the 

samples were combined. The CF peptides were treated with endoF3 to remove most of the 

glycan structure and leave the truncated CF stem. The CF peptides were subjected to MRM 

analysis on an Orbitrap Q-Exactive. This method yielded a relative type of MRM where one 

can compare the changes in HCC CF-peptides to that of cirrhosis, and can use the pool of 
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normal controls to standardize the signals. This work is currently underway to validate CF-

fibronectin as a marker of early stage ALD-based HCC.

VII. CONCLUSION

There has been great progress in the development of methods to analyze glycoproteins from 

patient samples, including plasma and serum. These methods will be essential to discover 

and validate markers for detection of early-stage HCC where treatment can be effective. 

They might also be used for diagnosis, prognosis, and therapeutic treatment, where often the 

glycan structures might change during the course of cancer progression. These methods have 

included mass spectrometry methods to analyze glycans that have been removed from the 

protein or intact glycopeptides, which retain the glycan structure and site specificity. These 

methods can be applied to the global glycoprotein content of serum, or more often they can 

be applied to target proteins such as Haptoglobin, Hemopexin, or Kininogen, for example, 

which have been proven to have diagnostic utility in cancer.

Glycans have been analyzed with methods such as MALDI generally for target proteins and 

also with electrospray, where the glycans have been analyzed for either target proteins or 

large numbers of glycoproteins from serum. Other methods such as ion mobility have also 

been employed to separate isomeric structures. Glycan analysis has often proven diagnostic 

of HCC versus cirrhosis, but the diagnostic glycans might not be unique to HCC and are 

often found in other cancers. An antibody-based method to screen a large number of samples 

cannot be readily developed. Alternatively, there have been significant developments to 

analyze glycopeptides, where various methods, including stepped HCD and EThcD, have 

been developed to obtain the sequence of the peptide backbone and the glycans. In addition, 

the development of new software that can analyze the many glycopeptide isoforms and also 

quantitate these isoforms have made possible the identification of specific isoforms that 

might be potential markers of HCC. The use of PGC columns has recently shown the ability 

to separate these isoforms for analysis.

Although a number of potential biomarker candidates has been identified, validation of these 

markers in large Phase-3 biomarker validation sample sets such as the Hepatocellular 

Carcinoma Early Detection Strategy study (HEDS) set sponsored by the EDRN will be 

necessary before these markers can be further considered for clinical use. There have been 

various mass spectrometry-based techniques developed for such validations of glycopeptides 

such as a glyco-MRM and a lectin-FLISA based MRM. With the development of new 

technologies, we expect even more advances towards analysis of glycoproteins from patient 

samples. Nevertheless, the future of this field appears very exciting with many possibilities 

for clinical applications.

The success of future work will depend on the new instrumental developments described 

herein, but will also depend heavily on the quality, type, and number of clinical samples 

available. These issues will present important challenges in this work. The quality of the 

samples is essential and the NCI-EDRN has developed standard operating procedures 

(SOPs) for collection, processing, and storage of samples to eliminate these issues from 

affecting the biomarker discovery and verification process. Also the types of samples 
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collected in regard to having available different etiologies of diseases available for study will 

be essential where each of these may have their own unique glycan structure specific 

markers. It is also important to eliminate biases in analysis by having a sufficient number of 

samples from different genders and ethnic groups and also sufficient clinical information 

available to evaluate biomarker performance. It will also be essential to have a sufficient 

number of samples to run properly powered discovery and validation sets to assess the 

clinical utility of these markers.
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ABBREVIATIONS

A1AT alpha-1-antitrypsin

AAL Aleuria aurantia lectin

AGP alpha-1-acid-glycoprotein

ALD-disease alcohol-related disease

AUC area under the curve

CID collision induced dissociation

CE capillary electrophoresis

CLEIA chemiluminescent enzyme immunoassay

DSA Datura stramonium agglutinin

DSA-FACE DNA sequencer-assisted fluorophore-assisted carbohydrate 

electrophoresis

EDRN Early Detection Research Network

ELISA enzyme linked immunosorbent assay

ESI electrospray ionization

ETD electron transfer dissociation

EThcD Electron-Transfer/Higher-Energy Collision Dissociation

FLISA fluorescence-linked immunosorbent assay

HCC Hepatocellular Carcinoma

HCD higher-energy collisional dissociation

HEDS Hepatocellular Carcinoma Early Detection Strategy study

HILIC hydrophilic interaction chromatography

Hp Haptoglobin
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IGOT isotope-coded glycosylation-site-specific tagging

IMS ion mobility spectrometry

IMS-MS ion mobility spectrometry-mass spectrometry

iTRAQ isobaric tags for relative and absolute quantitation

LCA lens culinaris agglutinin

MALDI matrix-assisted laser desorption ionization

MRM multiple reaction monitoring

MS2 tandem mass spectrometry

NAFLD non-alcoholic fatty liver disease

NCI the National Cancer Institute

PGC porous graphitic carbon

PHA-L Phaseolus vulgaris leucoagglutinin

PRM parallel reaction monitoring

PTM post-translational modification

QIT-TOF quadrupole ion trap-Time of Flight

SELDI-TOF-MS surface-enhanced laser desorption-ionization time-of-flight 

mass spectrometry

TMT tandem mass tags
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FIGURE 1. 
General lectin FLISA methodology for the measurement of glycoproteins with specific 

glycan motif. The method involves an antibody to selectively capture the target glycoprotein 

from biological samples and then a fluorophore-conjugated lectin is used to detect the 

glycan motif with the appropriate structural moiety. The antibody’s glycans are oxidized so 

they will not interfere with the analysis.

Zhu et al. Page 34

Mass Spectrom Rev. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 2. 
(a) Workflow of N-glycan profiling of haptoglobin and fucosylation changes between HCC 

and liver cirrhosis of the three most common etiologies, infection with HBV or HCV, and 

heavy alcohol consumption (ALD). (b) MALDI-QIT-MS spectra showing the difference of 

fucosylation in tri- and tetra-antennary N-glycans of haptoglobin between HCC and cirrhosis 

in relation to the etiology, HBV (A), HCV (B), and ALD (C), respectively. The 

bifucosylated tetra-antennary (m/z 3316.69) glycan was predominantly present in HCC 

samples but not in liver cirrhosis. The tetra-antennary glycans were highly elevated in HBV- 

and ALD-related HCC compared with the corresponding levels in cirrhosis; however, no 

significant difference in tetra-antennary glycans was observed between HCV-related HCC 

and cirrhosis. The elevated presence of fucosylated tetra-antennary glycans in HCC samples 
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compared to that in cirrhosis of each etiology is highlighted with a red rectangle. Reprinted 

with permission from Ref [J Proteome Res 2014, 13, 2986–2997] Copyright 2014 American 

Chemical Society.
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FIGURE 3. 
EIC of biantennary monosialylated branch-fucosylated glycan linkage isomers derived from 

(a) cirrhotic and (b) HCC patients. (c) MS/MS interpretation of biantennary monosialylated 

branch-fucosylated glycan. (d) Unsupervised PCA plot of the glycans that were 

quantitatively determined by C18-LC-MS/MS analysis. Reprinted with permission from Ref 

[Electrophoresis 2017, 38, 2160–2167].
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FIGURE 4. 
IMS profiles of glycan ions (A) [S1H5N4 + 3Na]3+ and (B) [S1F1H5N4 + 3Na]3+ glycans 

showing both conformational and intensity differences with respect to disease state. Note 

that in the case of S1H5N4, the disease states exhibit lower overall intensities than the 

healthy state, while S1F1H5N4 shows higher overall drift time intensities in the case of 

diseased states than in the healthy state. This might be due to increased fucosylation of 

glycans with cancer and cirrhosis. Reprinted with permission from Ref [J Proteome Res 

2012, 11, 576–585] Copyright 2012 American Chemical Society.
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FIGURE 5. 
Workflow for screening of changes in site-specific core-fucosylation (CF) of serum proteins 

in early stage HCC with different etiologies. The methods involve depletion of high 

abundance proteins, trypsin digestion of medium-to-low abundance proteins into peptides, 

iTRAQ labeling, and Lens culinaris Agglutinin (LCA) enrichment of CF peptides, followed 

by endoglycosidase F3 digestion before mass spectrometry analysis. 1300 CF peptides from 

613 CF proteins were identified from patient sera, where 20 and 26 CF peptides were 

differentially expressed in alcohol (ALD)-related HCC samples compared with ALD-related 

cirrhosis samples and HCV-related HCC compared with HCV-related cirrhosis samples. 

Reprinted with permission from Ref [J Proteome Res 2015, 14, 4876–4884] Copyright 2015 

American Chemical Society.
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FIGURE 6. 
Examples of (A) the stepped-energy HCD MS/MS collision for an intact glycopeptide, 

reprinted with permission from Ref [Nature Commun 2017, 8, 438] and (B) the EThcD 

MS/MS collision of N-glycopeptide TVLTPATNHMGNVTFTIPANR, reprinted with 

permission from Ref [J Am Soc Mass Spectrom 2017, 28, 1751–1764].
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FIGURE 7. 
A scheme which shows the process for identifying aberrantly glycosylated biomarkers using 

the lectin-coupled MRM-based approach. Reprinted with permission from Ref [J Proteomics 

2012, 75, 5507–5515].

Zhu et al. Page 41

Mass Spectrom Rev. Author manuscript; available in PMC 2020 May 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 42

TA
B

L
E

 1
.

R
is

k 
fa

ct
or

s 
fo

r 
ci

rr
ho

si
s 

an
d 

su
bs

eq
ue

nt
 h

ep
at

oc
el

lu
la

r 
ca

rc
in

om
a.

R
is

k 
fa

ct
or

s
A

nn
ua

l r
is

k 
fo

r 
H

C
C

 w
it

h 
ci

rr
ho

si
s 

(B
ru

ix
 e

t 
al

., 
20

11
;I

oa
nn

ou
 e

t 
al

., 
20

18
;K

an
w

al
 e

t 
al

., 
20

18
)

H
ep

at
iti

s 
C

 (
H

C
V

)
3–

5%

H
ep

at
iti

s 
B

 (
H

B
V

)
3–

8%

A
lc

oh
ol

ic
 li

ve
r 

di
se

as
e 

(A
L

D
)

0.
8%

-1
.0

%

N
on

-a
lc

oh
ol

ic
 f

at
ty

 li
ve

r 
di

se
as

e 
(N

A
FL

D
)

0.
9%

-1
.1

%

O
th

er
 E

tio
lo

gi
es

 C
ir

rh
os

is
1.

0%

Mass Spectrom Rev. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 43

TA
B

L
E

 2
.

D
ia

gn
os

tic
 p

er
fo

rm
an

ce
 o

f 
cu

rr
en

t m
ar

ke
rs

 f
or

 e
ar

ly
 H

C
C

 d
et

ec
tio

n.

Sy
m

bo
l

N
am

e
A

U
C

E
ar

ly
 D

et
ec

ti
on

R
ef

er
en

ce
Se

ns
it

iv
it

y(
%

)
Sp

ec
if

ic
it

y(
%

)

A
FP

A
lp

ha
-f

et
op

ro
te

in
0.

8
53

90
(M

ar
re

ro
 e

t a
l.,

 2
00

9)

D
C

P
D

es
-g

am
m

a 
ca

rb
ox

y 
pr

ot
hr

om
bi

n
0.

72
61

70
(M

ar
re

ro
 e

t a
l.,

 2
00

9)

A
FP

-L
3

A
lp

ha
-f

et
op

ro
te

in
 (

bi
nd

s 
to

 L
C

A
)

0.
66

28
97

(M
ar

re
ro

 e
t a

l.,
 2

00
9)

G
P7

3
G

ol
gi

 p
ro

te
in

 7
3

0.
77

62
88

(M
ar

re
ro

 e
t a

l.,
 2

00
5)

A
FP

 +
 D

C
P

0.
83

78
62

(M
ar

re
ro

 e
t a

l.,
 2

00
9)

Mass Spectrom Rev. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 44

TA
B

L
E

 3
.

R
es

ea
rc

h 
on

 s
er

um
 b

io
m

ar
ke

rs
 f

or
 H

C
C

 in
 r

ec
en

t 1
0 

ye
ar

s.

B
io

m
ar

ke
r

T
yp

e
M

et
ho

do
lo

gy
R

ef
.

A
lp

ha
-1

-a
nt

itr
yp

si
n 

(A
1A

T
)

co
re

 α
-1

,6
 f

uc
os

yl
at

io
n

2D
E

+
M

A
L

D
I-

T
O

F 
M

S;
 L

ec
tin

-F
L

IS
A

(C
om

un
al

e 
et

 a
l.,

 2
01

0)

fu
co

sy
la

te
d 

pr
ot

ei
n 

le
ve

l
A

A
L

 a
ff

in
ity

 c
hr

om
at

og
ra

ph
y+

L
C

-M
R

M
-M

S
(A

hn
 e

t a
l.,

 2
01

3)

A
FP

-L
3

co
re

 α
-1

,6
 f

uc
os

yl
at

io
n

M
A

L
D

I-
T

O
F 

M
S;

 L
C

A
-a

ff
in

ity
 e

le
ct

ro
ph

or
es

is
(N

ak
ag

aw
a 

et
 a

l.,
 2

00
8)

A
FP

-L
3%

L
iq

ui
d-

ph
as

e 
bi

nd
in

g 
as

sa
y

(L
ee

ra
pu

n 
et

 a
l.,

 2
00

7)

hs
-A

FP
-L

3%
M

ic
ro

ch
ip

 c
ap

ill
ar

y 
el

ec
tr

op
ho

re
si

s;
 li

qu
id

-p
ha

se
 b

in
di

ng
 

as
sa

y
(O

da
 e

t a
l.,

 2
01

1)

A
FP

Fc
 g

ly
co

pe
pt

id
es

L
C

-M
S/

M
S-

PR
M

(K
im

 e
t a

l.,
 2

01
8)

A
G

P
m

ul
tif

uc
os

e 
in

de
x

A
A

L
 a

ff
in

ity
 c

hr
om

at
og

ra
ph

y+
L

C
-T

O
F-

M
S

(T
an

ab
e 

et
 a

l.,
 2

01
6)

A
po

-J
β-

1,
4 

tr
ia

nt
en

na
ry

 W
-g

ly
ca

ns
2D

E
+

L
C

-M
S/

M
S;

 L
ec

tin
-F

L
IS

A
(C

om
un

al
e 

et
 a

l.,
 2

01
1)

β2
-m

ic
ro

gl
ob

lin
 (

B
2M

)
pr

ot
ei

n 
le

ve
l

SE
L

D
I-

T
O

F-
M

S
(S

ai
to

 e
t a

l.,
 2

01
0)

C
ar

bo
xy

le
st

er
as

e 
1 

(h
C

E
1)

pr
ot

ei
n 

le
ve

l
L

C
-M

S/
M

S;
 A

nt
ib

od
y-

ba
se

d 
as

sa
y

(N
a 

et
 a

l.,
 2

00
9;

N
a 

et
 a

l.,
 2

01
3)

C
er

ul
op

la
sm

in
co

re
 F

c 
ra

tio
E

nd
o 

F3
+

L
C

-M
S/

M
S/

M
S

(Y
in

 e
t a

l.,
 2

01
4)

C
om

pl
em

en
t C

3a
C

3a
 f

ra
gm

en
t

Pr
ot

ei
nC

hi
p 

ar
ra

ys
+

SE
L

D
I-

M
S

(K
an

m
ur

a 
et

 a
l.,

 2
01

0)

C
om

pl
em

en
t f

ac
to

r 
H

 (
C

FH
)

si
te

-s
pe

ci
fi

c 
co

re
 F

c
L

C
-M

S/
M

S;
 L

C
-M

S-
M

R
M

(B
en

ic
ky

 e
t a

l.,
 2

01
4)

D
es

-g
am

m
a 

ca
rb

ox
yp

ro
th

ro
m

bi
n 

(D
C

P)
pr

ot
ei

n 
le

ve
l

E
L

IS
A

(D
ur

az
o 

et
 a

l.,
 2

00
8;

M
ar

re
ro

 e
t a

l.,
 2

00
9)

Fi
br

on
ec

tin
 (

FN
)

co
re

 F
c 

pe
pt

id
es

iT
R

A
Q

+
L

C
A

 a
ff

in
ity

 c
hr

om
at

og
ra

ph
y+

L
C

-M
S/

M
S

(Y
in

 e
t a

l.,
 2

01
5)

G
P7

3

pr
ot

ei
n 

le
ve

l
2D

E
; i

m
m

un
ob

lo
tti

ng
(B

lo
ck

 e
t a

l.,
 2

00
5)

pr
ot

ei
n 

le
ve

l
im

m
un

ob
lo

tti
ng

(M
ar

re
ro

 e
t a

l.,
 2

00
5;

M
ao

 e
t a

l.,
 2

01
0)

pr
ot

ei
n 

le
ve

l
E

L
IS

A
(R

ie
ne

r 
et

 a
l.,

 2
00

9;
Y

am
am

ot
o 

et
 a

l.,
 2

01
0)

pr
ot

ei
n 

le
ve

l
w

es
te

rn
 b

lo
tti

ng
(H

u 
et

 a
l.,

 2
01

0)

G
P7

3,
 h

em
op

ex
in

, P
IV

K
A

-I
I

pr
ot

ei
n 

le
ve

l
E

L
IS

A
; l

ec
tin

-E
L

IS
A

; i
m

m
un

oa
ss

ay
s

(M
or

ot
a 

et
 a

l.,
 2

01
1)

H
ap

to
gl

ob
in

 (
H

p)

bi
fu

co
sy

la
te

d 
N

-g
ly

ca
ns

M
A

L
D

I-
Q

IT
-T

O
F 

M
S

(Z
hu

 e
t a

l.,
 2

01
4)

fu
co

sy
la

te
d 

N
-g

ly
ca

ns
E

SI
-L

C
-M

S
(Z

ha
ng

 e
t a

l.,
 2

01
5b

)

Is
om

er
ic

 N
-g

ly
ca

ns
PG

C
-L

C
-M

S/
M

S
(H

ua
ng

 e
t a

l.,
 2

01
7)

Fc
-H

p 
le

ve
l

L
ec

tin
-E

L
IS

A
; C

L
E

IA
(A

sa
za

w
a 

et
 a

l.,
 2

01
5)

M
ul

tip
ly

 f
uc

os
yl

at
ed

 g
ly

co
pe

pt
id

es
L

C
-M

S/
M

S;
 e

xo
gl

yc
os

id
as

e/
M

A
L

D
I-

M
S/

M
S

(P
om

pa
ch

 e
t a

l.,
 2

01
3)

M
ul

tip
ly

 f
uc

os
yl

at
ed

 g
ly

co
pe

pt
id

es
L

C
-M

S-
M

R
M

(S
an

da
 e

t a
l.,

 2
01

3)

Mass Spectrom Rev. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 45

B
io

m
ar

ke
r

T
yp

e
M

et
ho

do
lo

gy
R

ef
.

fu
co

sy
la

te
d 

N
-g

ly
ca

ns
M

A
L

D
I-

Q
IT

-T
O

F 
M

S
(Z

ha
ng

 e
t a

l.,
 2

01
1)

Fc
-H

p/
H

p 
ra

tio
m

ag
ne

tic
 b

ea
ds

-b
as

ed
 le

ct
in

 E
L

IS
A

(S
ha

ng
 e

t a
l.,

 2
01

7)

H
em

op
ex

in
 (

H
px

)

Fc
-H

px
L

ec
tin

-F
L

IS
A

; L
C

-M
S/

M
S

(C
om

un
al

e 
et

 a
l.,

 2
00

9)

Fc
-H

px
E

L
IS

A
; l

ec
tin

-E
L

IS
A

(K
ob

ay
as

hi
 e

t a
l.,

 2
01

2)

N
-g

ly
ca

ns
D

SA
-F

A
C

E
(D

eb
ru

yn
e 

et
 a

l.,
 2

01
0)

si
te

-s
pe

ci
fi

c 
co

re
 F

c
L

C
-M

S/
M

S;
 L

C
-M

S-
M

R
M

(B
en

ic
ky

 e
t a

l.,
 2

01
4)

H
p,

 H
px

, K
ng

-1
, C

FH
si

te
-s

pe
ci

fi
c 

co
re

 F
c

L
C

-M
S/

M
S;

 M
A

L
D

I-
T

O
F 

M
S

(P
om

pa
ch

 e
t a

l.,
 2

01
4)

H
SP

90
pr

ot
ei

n 
le

ve
l

2-
D

E
; M

A
L

D
I-

T
O

F 
M

S
(S

un
 e

t a
l.,

 2
01

0b
)

Ig
G

s
gl

yc
of

or
m

s
L

C
-M

S-
M

R
M

(Y
ua

n 
et

 a
l.,

 2
01

5)

K
in

in
og

en
 (

K
ng

)
fu

co
sy

la
tio

n 
le

ve
l

L
ec

tin
-F

L
IS

A
(W

an
g 

et
 a

l.,
 2

00
9;

W
an

g 
et

 a
l.,

 2
01

7)

O
st

eo
po

nt
in

 (
O

PN
)

pr
ot

ei
n 

le
ve

l
L

C
-M

S/
M

S;
 E

L
IS

A
(S

ha
ng

 e
t a

l.,
 2

01
2)

pr
ot

ei
n 

le
ve

l
E

L
IS

A
(E

l-
D

in
 B

es
sa

 e
t a

l.,
 2

01
0;

A
bu

 E
l M

ak
ar

em
 e

t a
l.,

 
20

11
)

Pa
ra

ox
on

as
e-

1 
(P

O
N

1)
fu

co
sy

la
tio

n
L

ec
tin

-E
L

IS
A

(Z
ha

ng
 e

t a
l.,

 2
01

5a
)

PI
V

K
A

-I
I

pr
ot

ei
n 

le
ve

l
L

C
-M

R
M

-M
S

(S
oh

n 
et

 a
l.,

 2
01

7)

V
im

en
tin

 (
V

IM
)

pr
ot

ei
n 

le
ve

l
M

A
L

D
I-

T
O

F/
T

O
F 

M
S;

 E
L

IS
A

(S
un

 e
t a

l.,
 2

01
0a

)

V
itr

on
ec

tin
 (

V
T

N
)

N
-g

ly
co

pe
pt

id
es

iT
R

A
Q

+
L

C
-M

S/
M

S
(L

ee
 e

t a
l.,

 2
01

0)

N
-g

ly
co

pe
pt

id
e 

ra
tio

s
T

M
T

+
L

C
-M

S/
M

S
(L

ee
 e

t a
l.,

 2
01

4)

W
FA

+
−

M
2B

P
G

al
N

A
c 

re
si

du
es

le
ct

in
-a

nt
ib

od
y 

sa
nd

w
ic

h 
im

m
un

oa
ss

ay
(Y

am
as

ak
i e

t a
l.,

 2
01

4)

gl
ob

al
 s

er
um

 p
ro

fi
lin

g

co
re

 F
c 

gl
yc

op
ep

tid
es

L
C

-M
S-

M
R

M
(M

a 
et

 a
l.,

 2
01

8)

co
re

 F
c 

gl
yc

op
ep

tid
es

L
C

-M
S/

M
S/

M
S;

 L
C

-M
R

M
-M

S
(Z

ha
o 

et
 a

l.,
 2

01
1)

S9
0K

, I
G

FB
P-

3,
 a

nd
 T

SP
-1

L
C

-M
S/

M
S;

 E
L

IS
A

(C
he

n 
et

 a
l.,

 2
01

1)

C
3,

 C
E

, H
R

G
, C

D
14

, a
nd

 H
G

F
le

ct
in

 a
ff

in
ity

 c
hr

om
at

og
ra

ph
y 

+
 L

C
-M

S/
M

S;
 le

ct
in

-A
b 

ar
ra

ys
(L

iu
 e

t a
l.,

 2
01

0)

C
P,

 A
C

T,
 a

nd
 M

M
R

N
1

2D
 L

C
-M

A
L

D
I-

M
S

(I
sh

ih
ar

a 
et

 a
l.,

 2
01

1)

A
1A

G
1,

 A
A

C
T,

 A
1A

T,
 a

nd
 C

E
R

U
A

A
L

 a
ff

in
ity

 c
hr

om
at

og
ra

ph
y 

+
 L

C
-M

R
M

-M
S

(A
hn

 e
t a

l.,
 2

01
2)

N
-g

ly
ca

ns
L

C
-E

SI
-M

S
(T

sa
i e

t a
l.,

 2
01

4)

G
28

90
 a

nd
 G

35
60

 W
-g

ly
ca

ns
M

A
L

D
I-

T
O

F/
T

O
F

(K
am

iy
am

a 
et

 a
l.,

 2
01

3)

gl
yc

op
ro

te
in

s/
 N

-g
ly

ca
ns

L
C

-E
SI

-M
S/

M
S;

 M
A

L
D

I-
T

O
F/

T
O

F-
M

S
(Y

an
g 

et
 a

l.,
 2

01
3)

PH
A

-L
 r

ea
ct

iv
e 

gl
yc

op
ro

te
in

s
PH

A
-L

 a
ff

in
ity

 c
hr

om
at

og
ra

ph
y+

L
C

-M
S/

M
S

(L
iu

 e
t a

l.,
 2

01
7b

)

br
an

ch
 α

(1
,3

)-
fu

co
sy

la
te

d 
N

-g
ly

ca
ns

D
SA

-F
A

C
E

(L
iu

 e
t a

l.,
 2

00
7)

Mass Spectrom Rev. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 46

B
io

m
ar

ke
r

T
yp

e
M

et
ho

do
lo

gy
R

ef
.

N
-g

ly
ca

ns
M

A
L

D
I-

T
O

F-
M

S
(T

an
g 

et
 a

l.,
 2

01
0)

N
-g

ly
ca

ns
H

PL
C

; L
ec

tin
-F

L
IS

A
(C

om
un

al
e 

et
 a

l.,
 2

01
3)

N
-g

ly
ca

ns
M

A
L

D
I-

T
O

F/
T

O
F 

M
S

(G
ol

dm
an

 e
t a

l.,
 2

00
9)

is
om

er
ic

 N
-g

ly
ca

ns
IM

S-
M

S
(I

sa
ilo

vi
c 

et
 a

l.,
 2

00
8;

Is
ai

lo
vi

c 
et

 a
l.,

 2
01

2)

ou
te

r 
ar

m
 f

uc
os

yl
at

ed
 N

-g
ly

ca
ns

L
C

-M
S

(T
an

ab
e 

et
 a

l.,
 2

00
8)

pe
pt

id
e 

an
d 

gl
yc

an
 p

an
el

M
A

L
D

I-
T

O
F/

T
O

F 
M

S
(R

es
so

m
 e

t a
l.,

 2
00

8)

pe
pt

id
es

M
A

L
D

I-
T

O
F/

T
O

F 
M

S
(G

ol
dm

an
 e

t a
l.,

 2
00

7)

G
ly

co
pr

ot
ei

n 
pr

of
lie

le
ct

in
 c

ou
pl

ed
 I

G
O

T-
L

C
-M

S/
M

S
(K

aj
i e

t a
l.,

 2
01

3)

pr
ot

ei
n 

pr
of

ile
2D

E
+

L
C

-M
S/

M
S

(Y
an

g 
et

 a
l.,

 2
00

7)

pr
ot

ei
n 

pr
of

ile
SE

L
D

I-
T

O
F-

M
S

(C
ui

 e
t a

l.,
 2

00
7)

pr
ot

ei
n 

pr
of

ile
2D

E
+

M
A

L
D

I-
T

O
F-

M
S

(W
u 

et
 a

l.,
 2

01
2)

A
A

L
, A

le
ur

ia
 a

ur
an

tia
 le

ct
in

; C
L

E
IA

, c
he

m
ilu

m
in

es
ce

nt
 e

nz
ym

e 
im

m
un

oa
ss

ay
; C

or
e 

Fc
, c

or
e 

fu
co

sy
la

tio
n;

 D
SA

-F
A

C
E

, D
N

A
 s

eq
ue

nc
er

-a
ss

is
te

d 
fl

uo
ro

ph
or

e-
as

si
st

ed
 c

ar
bo

hy
dr

at
e 

el
ec

tr
op

ho
re

si
s;

 E
L

IS
A

, 
en

zy
m

e 
lin

ke
d 

im
m

un
os

or
be

nt
 a

ss
ay

; F
c-

H
p,

 f
uc

os
yl

at
ed

 h
ap

to
gl

ob
in

; F
c-

H
px

, f
uc

os
yl

at
ed

 h
em

op
ex

in
; I

G
O

T,
 is

ot
op

e-
co

de
d 

gl
yc

os
yl

at
io

n 
si

te
-s

pe
ci

fi
c 

ta
gg

in
g;

 I
M

S-
M

S,
 io

n 
m

ob
ili

ty
 s

pe
ct

ro
m

et
ry

-m
as

s 
sp

ec
tr

om
et

ry
; i

T
R

A
Q

, i
so

ba
ri

c 
ta

gs
 f

or
 r

el
at

iv
e 

an
d 

ab
so

lu
te

 q
ua

nt
ita

tio
n;

 L
C

A
, L

en
s 

cu
lin

ar
is

 a
gg

lu
tin

in
; l

ec
tin

-F
L

IS
A

, L
ec

tin
 f

lu
or

op
or

e-
lin

ke
d 

im
m

un
os

or
be

nt
 a

ss
ay

; M
R

M
, m

ul
tip

le
 r

ea
ct

io
n 

m
on

ito
ri

ng
; P

H
A

-L
, P

ha
se

ol
us

 v
ul

ga
ri

s 
L

eu
co

ag
gl

ut
in

in
; S

E
L

D
I-

T
O

F-
M

S,
 s

ur
fa

ce
-e

nh
an

ce
d 

la
se

r 
de

so
rp

tio
n-

io
ni

za
tio

n 
tim

e-
of

-f
lig

ht
 m

as
s 

sp
ec

tr
om

et
ry

; T
M

T,
 ta

nd
em

 m
as

s 
ta

gs
; W

FA
+

-M
2B

P,
 W

is
te

ri
a 

fl
or

ib
un

da
 a

gg
lu

tin
in

-p
os

iti
ve

 h
um

an
 M

ac
-2

 b
in

di
ng

 p
ro

te
in

.

Mass Spectrom Rev. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 47

TA
B

L
E

 4
.

N
on

-m
as

s 
sp

ec
tr

om
et

ry
 m

et
ho

ds
 f

or
 g

ly
co

pr
ot

ei
n 

m
ar

ke
r 

di
sc

ov
er

y.

Im
m

un
oa

ss
ay

s 
(E

L
IS

A
)

V
er

y 
se

ns
iti

ve
 a

nd
 s

pe
ci

fi
c,

 b
ut

 m
ea

su
re

s 
pr

ot
ei

n 
le

ve
l b

ut
 n

ot
 s

en
si

tiv
e 

to
 g

ly
ca

n 
st

ru
ct

ur
e

C
E

-b
as

ed
 a

ss
ay

s
Sp

ec
if

ic
 f

or
 s

ep
ar

at
io

n 
an

d 
pr

of
ili

ng
 o

f 
gl

yc
an

s

L
ec

tin
-F

L
IS

A
Sp

ec
if

ic
 f

or
 ta

rg
et

 g
ly

co
pr

ot
ei

ns
 a

nd
 c

an
 d

et
ec

t c
ha

ng
es

 in
 g

ly
ca

n 
st

ru
ct

ur
es

2-
D

 g
el

s/
le

ct
in

 a
na

ly
si

s
C

an
 m

on
ito

r 
gl

ob
al

 c
ha

ng
es

 in
 th

e 
pr

ot
eo

m
e 

fo
r 

la
rg

e 
nu

m
be

r 
of

 p
ro

te
in

s

Mass Spectrom Rev. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 48

TA
B

L
E

 5
.

A
dv

an
ta

ge
s 

of
 m

as
s 

sp
ec

tr
om

et
ry

 f
or

 g
ly

ca
n 

an
al

ys
is

 a
nd

 r
el

at
ed

 a
ss

ay
s.

1.
N

o 
an

tib
od

ie
s 

or
 le

ct
in

s 
re

qu
ir

ed

2.
M

ul
tip

le
x 

ca
pa

bi
lit

ie
s 

w
ith

 q
ua

nt
ita

tiv
e 

an
al

ys
is

3.
A

bi
lit

y 
to

 o
bt

ai
n 

de
ta

ile
d 

gl
yc

an
 s

tr
uc

tu
re

s 
fo

r 
bi

om
ar

ke
r 

st
ud

ie
s

Mass Spectrom Rev. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 49

TA
B

L
E

 6
.

M
et

ho
ds

 f
or

 e
nr

ic
hm

en
t o

f 
gl

yc
an

s/
gl

yc
op

ep
tid

es
/g

ly
co

pr
ot

ei
ns

.

M
et

ho
d

A
dv

an
ta

ge
s

L
ec

tin
s

Se
le

ct
iv

e 
m

et
ho

d 
fo

r 
en

ri
ch

m
en

t o
f 

sp
ec

if
ic

 g
ly

ca
n 

st
ru

ct
ur

es
 o

n 
gl

yc
op

ro
te

in
s 

an
d 

gl
yc

op
ep

tid
es

H
yd

ra
zi

de
A

 g
en

er
al

 u
nb

ia
se

d 
m

et
ho

d 
fo

r 
gl

yc
op

ep
tid

e 
en

ri
ch

m
en

t b
ut

 w
ith

 lo
ss

 o
f 

so
m

e 
gl

yc
an

 in
fo

rm
at

io
n

G
ra

ph
iti

ze
d 

ca
rb

on
 C

hr
om

at
og

ra
ph

y 
(P

G
C

)
PG

C
 ti

ps
 c

an
 b

e 
us

ed
 to

 e
nr

ic
h 

gl
yc

an
s 

fr
om

 s
m

al
l a

m
ou

nt
 o

f 
sa

m
pl

e

H
IL

IC
 c

hr
om

at
og

ra
ph

y
A

 g
en

er
al

 m
et

ho
d 

th
at

 c
an

 e
ff

ec
tiv

el
y 

en
ri

ch
 g

ly
ca

ns
/g

ly
co

pe
pt

id
es

 b
as

ed
 o

n 
hy

dr
op

hi
lic

ity

M
W

 c
ut

of
f 

fi
lte

r
C

an
 e

ff
ec

tiv
el

y 
se

pa
ra

te
 la

rg
e 

gl
yc

an
s/

gl
yc

op
ep

tid
es

 f
ro

m
 s

m
al

le
r 

pe
pt

id
es

Si
ze

 E
xc

lu
si

on
 C

hr
om

at
og

ra
ph

y
R

ap
id

 m
et

ho
d 

to
 e

nh
an

ce
 d

et
ec

tio
n 

of
 N

-l
in

ke
d 

gl
yc

os
yl

at
io

n 
si

te
s

Mass Spectrom Rev. Author manuscript; available in PMC 2020 May 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhu et al. Page 50

TA
B

L
E

 7
.

M
S/

M
S 

m
et

ho
ds

 f
or

 M
S 

an
al

ys
is

 o
f 

in
ta

ct
 g

ly
co

pe
pt

id
es

.

C
ID

/E
T

D
C

ID
 p

ro
vi

de
s 

in
fo

rm
at

io
n 

re
la

te
d 

to
 g

ly
ca

n 
st

ru
ct

ur
e/

E
T

D
 p

ro
vi

de
s 

se
qu

en
ce

 in
fo

rm
at

io
n 

of
 p

ep
tid

es

C
ID

/H
C

D
B

ot
h 

C
ID

 a
nd

 H
C

D
 r

es
ul

t i
n 

gl
yc

an
 f

ra
gm

en
ta

tio
n/

H
C

D
 a

ls
o 

pr
ov

id
es

 p
ep

tid
e 

ba
ck

bo
ne

 b
-y

 io
n 

fr
ag

m
en

ta
tio

n

H
C

D
/E

T
D

H
C

D
 p

ro
vi

de
s 

di
ag

no
st

ic
 g

ly
co

-o
xo

ni
um

 io
ns

 w
hi

ch
 c

an
 b

e 
us

ed
 to

 tr
ig

ge
r 

th
e 

su
cc

ee
di

ng
 E

T
D

 d
is

so
ci

at
io

n 
an

d 
ad

di
tio

na
l b

 a
nd

 y
 io

ns
 o

f 
pe

pt
id

e 
ba

ck
bo

ne
s

St
ep

pe
d 

H
C

D
C

an
 g

en
er

at
e 

hi
gh

ly
 in

fo
rm

at
iv

e 
fr

ag
m

en
ta

tio
ns

 f
or

 p
ep

tid
e 

an
d 

gl
yc

an
 o

f 
a 

gl
yc

op
ep

tid
e

E
T

hc
D

C
om

bi
ne

s 
E

T
D

 a
nd

 H
C

D
 w

he
re

 a
 s

up
pl

em
en

ta
l e

ne
rg

y 
is

 a
pp

lie
d 

to
 io

ns
 f

or
m

ed
 b

y 
E

T
D

 to
 g

en
er

at
e 

bo
th

 p
ep

tid
e 

an
d 

gl
yc

an
 s

tr
uc

tu
ra

l i
nf

or
m

at
io

n

Mass Spectrom Rev. Author manuscript; available in PMC 2020 May 01.


	Abstract
	INTRODUCTION
	GLYCOSYLATION
	Rationale for Glycosylation as a Marker of Cancer
	Different Types of Glycosylation

	CURRENT MARKERS
	NON-MASS SPECTROMETRY BASED METHODS
	Immunoassays
	CE-Based Assays for HCC Markers
	Lectin Fluorophore-Linked Immunoabsorbent Assays
	Method
	Lectin-FLISA Targeting Fucosylation

	2-D Gels and Lectin Analysis

	DISCOVERY—MASS SPECTROMETRY-BASED ASSAYS
	Mass Spectrometry Versus Non-Mass Spectrometry Methods
	Methods to Enrich Glycoproteins and Their Glycans/Glycopeptides
	MALDI-MS Profiling of Glycans
	Method
	Targeted MALDI Profiling for Haptoglobin (Hp) and Alpha-1-Acid Glycoprotein (AGP)
	Global MALDI Screening to Profile HCC Markers in Serum
	MALDI-Imaging of Tissues in HCC

	ESI-MS Profiling of Glycans
	Method
	Global Profiling of Glycans With LC-ESI-MS for Biomarkers of HCC
	Profiling of Glycans for Specific Proteins with LC-ESI-MS for Biomarkers of HCC

	ESI-MS of Glycoproteins/Glycopeptides to Profile Proteins Related to HCC
	Method
	Lectin Extraction of Proteins
	Lectin Extraction of Glycopeptides
	Integrated analysis of lectin-extracted glycopeptides.
	Lectin extraction with truncation of glycan structure.


	Analysis of Target Glycoproteins From Patient Serum With an Intact Glycopeptide Approach
	Method
	EThcD Analysis of Glycopeptides


	VERIFICATION LC-MRM ANALYSIS OF GLYCOSYLATION
	Method
	LC-MRM of IgGs in Plasma
	LC-PRM of AFP in Serum
	Lectin-FLISA Based MRM
	Other Lectin-Based MRM Assays for HCC

	CONCLUSION
	References
	FIGURE 1.
	FIGURE 2.
	FIGURE 3.
	FIGURE 4.
	FIGURE 5.
	FIGURE 6.
	FIGURE 7.
	TABLE 1.
	TABLE 2.
	TABLE 3.
	TABLE 4.
	TABLE 5.
	TABLE 6.
	TABLE 7.

