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Abstract

The Ca2+-sensing receptor (CaSR) is a dimeric family C G-protein-coupled receptor that is 

expressed in calcitropic tissues such as the parathyroid glands and kidneys, and signals via G-

proteins and beta-arrestin. The CaSR plays a pivotal role in bone and mineral metabolism by 

regulating parathyroid hormone secretion, urinary Ca2+ excretion, skeletal development and 

lactation. The importance of the CaSR for these calcitropic processes is highlighted by loss- and 

gain-of-function CaSR mutations, which cause familial hypocalciuric hypercalcaemia and 

autosomal dominant hypocalcaemia, respectively, and also by alterations in parathyroid CaSR 

expression, which contribute to the pathogenesis of primary and secondary hyperparathyroidism. 

Moreover, the CaSR is an established therapeutic target for hyperparathyroid disorders. The CaSR 

is also expressed in organs not involved in Ca2+ homeostasis, where it has non-calcitropic roles 

that include lung and neuronal development, vascular tone, gastro-intestinal nutrient sensing, 

secretion of insulin and entero-endocrine hormones, and wound healing. Furthermore, abnormal 

expression or function of the CaSR is implicated in cardiovascular and neurological diseases, as 

well as in asthma, and the CaSR is reported to protect against colorectal cancer and 
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neuroblastoma, but increase the malignant potential of prostate and breast cancers. This review 

will discuss these physiological and pathophysiological roles of the CaSR.

Introduction

The extracellular calcium (Ca2+)-sensing receptor (CaSR) is an ~120-160 kDa G-protein-

coupled receptor (GPCR) that is most highly expressed in the parathyroid glands and 

kidneys1,2, where it influences systemic Ca2+ homeostasis by detecting increases in the 

prevailing circulating Ca2+ concentration, which lead to intracellular signalling events that 

mediate a decrease in parathyroid hormone (PTH) secretion and reduction in renal tubular 

Ca2+ reabsorption (FIG. 1)3. The importance of the CaSR, which is a family C GPCR, for 

the regulation of circulating Ca2+ concentrations, i.e. its calcitropic actions, has been 

demonstrated by the identification of germline loss- and gain-of-function mutations affecting 

this GPCR and its intracellular partner proteins that result in inherited hypercalcaemic and 

hypocalcaemic disorders such as familial hypocalciuric hypercalcaemia (FHH) and 

autosomal dominant hypocalcaemia (ADH), respectively4. Furthermore, the CaSR, which is 

present as a dimer of ~240-310 kDa5 has been shown to represent a therapeutic target for 

such calcitropic disorders, and cinacalcet, a CaSR positive allosteric modulator (PAM), is 

used in clinical practice to treat hyperparathyroid disorders, and calcilytic drugs that are 

CaSR negative allosteric modulators (NAMs) are being investigated as a targeted therapy for 

symptomatic forms of ADH6. The CaSR is also expressed in other tissues, such as the 

intestine, pancreatic islets, lungs, brain, skin and vasculature, where it has been shown to be 

involved in non-calcitropic actions that include regulation of molecular and cellular 

processes such as gene expression, proliferation, differentiation and apoptosis, as well as 

influencing the physiological regulation of entero-endocrine hormone secretion, cardiac 

function, vascular tone, and also lung and neuronal development (TABLE 1)7–14. 

Furthermore, abnormal expression or function of the CaSR in these non-calcitropic tissues 

has been reported to contribute to the pathogenesis of cardiovascular diseases, asthma, 

Alzheimer’s disease, and breast and colon cancer9,14–16. This review focuses on the 

evolutionary origins, structure and signalling pathways of the CaSR, together with the roles 

of the CaSR in calcitropic and non-calcitropic diseases. Many of these aspects were 

discussed at the Third International Symposium on the Ca2+-Sensing Receptor (Florence, 

May 2017), which brought together researchers who are studying these basic, translational 

and clinical aspects of CaSR physiology and pathophysiology.

Structure of the CaSR

The CaSR belongs to the family C GPCRs, which play pivotal roles in neurotransmission, 

nutrient-sensing and Ca2+ homeostasis17. These receptors are functionally active as 

homodimers or heterodimers18–20, and are characterised by the presence of a large 

extracellular domain (ECD), which contains a bilobed venus flytrap (VFT) module (FIG. 2) 

that closes upon ligand binding, and has structural similarity to nutrient-scavenging bacterial 

periplasmic proteins21. The CaSR is considered to have arisen during vertebrate 

evolution22, and has been shown to be functionally active in vertebrates ranging from 

cartilaginous fishes to terrestrial mammals22. Recent X-ray crystallography studies have 
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demonstrated the human CaSR to have a glycosylated ECD, which binds Ca2+
o at three 

distinct sites within the VFT, and also at a site located between the VFT and cysteine-rich 

domain (CRD) (FIG. 2)23. The CaSR also binds amino acids within the cleft of the VFT 

(FIG. 2)23,24, and the binding of both Ca2+ and amino acids may be required to fully 

activate the CaSR23. The CaSR VFT is predicted to contain additional binding sites for 

anions such as phosphate and sulphate, and these anions likely stabilise the CaSR in an 

inactive conformation23. The CaSR is maintained as a dimer (FIG. 2) by covalent and non-

covalent interactions that involve the N-terminal VFT lobe of each monomer, and ligand-

binding has been shown to induce closure of the VFT, as well as extending the dimer 

interface to include the C-terminal VFT lobe and the CRD23. These agonist-induced 

conformational changes of the CaSR ECD may lead to rearrangements of the helices within 

the transmembrane domain (TMD) that facilitate G-protein binding and intracellular signal 

transduction3,25. The CaSR TMD consists of seven hydrophobic helical domains connected 

by three extracellular loops and three intracellular loops (FIG. 2). The TMD anchors the 

CaSR in the plasma membrane, and also plays a critical role in signal transduction. Indeed, 

mutational analysis has identified residues within intracellular loops 2 and 3, which are 

essential for the activation of downstream effector proteins26. The CaSR TMD has not yet 

been crystallised, however, homology modelling studies using the related metabotropic 

glutamate receptor crystal structure indicates the presence of a cavity located between the 

mid-portion and extracellular aspect of the CaSR TMD, which is the site of binding of 

allosteric modulators such as the phenylalkylamine calcimimetic drugs and amino-alcohol 

calcilytic drugs (FIG. 2)27. The intracellular domain (ICD) of the CaSR regulates 

downstream signalling events27, and also undergoes phosphorylation and ubiquitination, 

which facilitates desensitisation and degradation or recycling of the CaSR28,29. Moreover, 

the ICD is considered to be the site of binding for the intracellular adaptor-related protein 

complex 2 (AP2) (FIG. 2), which facilitates clathrin-mediated endocytosis of GPCRs such 

as the CaSR30.

CaSR signalling

The CaSR activates downstream signalling cascades by coupling to heterotrimeric guanine-

nucleotide binding proteins (G-proteins) such as the Gq/11, Gi/o and G12/13 family of 

proteins31,32. The Gq/11 proteins are critical for CaSR signal transduction, and germline 

mutations of G-protein subunit α11 (Gα11) have been shown to cause hypercalcaemic and 

hypocalcaemic disorders (TABLE 2)33. Through Gq/11, the CaSR activates phospholipase C 

(PLC) to convert phosphatidylinositol 4,5-bisphosphate (PIP2) into diacylglycerol (DAG) 

and inositol 1,4,5-trisphosphate (IP3), which in turn releases Ca2+ from intracellular stores 

by binding to IP3 receptors on endoplasmic reticulum and activates Ca2+ influx via store-

operated channels located in the plasma membrane (FIG. 2)31. The lipid derived second 

messenger, DAG, activates protein kinase C (PKC), which regulates protein phosphorylation 

cascades involved in cell survival, differentiation and proliferation such as the mitogen 

activated protein kinases (MAPKs) (FIG. 2)31,34. Key components of the MAPK cascade 

activated by the CaSR include the extracellular-signal regulated kinases 1/2 (ERK1/2), p38 

kinase (p38K) and c-Jun N-terminal kinase (JNK)35,36. By coupling to the pertussis toxin-

sensitive Gi/o proteins, the CaSR suppresses adenylyl cyclase activation and cyclic AMP 
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(cAMP) production (FIG. 2), and also stimulates MAPKs such as ERK1/231,34,35. The 

CaSR may also stimulate the MAPK pathway via a G-protein independent mechanism, 

which involves the beta-arrestin proteins37. The CaSR additionally has been reported to 

couple to the G12/13 proteins to activate RhoA, which is a small GTPase protein that plays a 

role in the Wnt3a-beta-catenin signalling cascade38 and also facilitates cadherin-mediated 

intercellular adhesion11. CaSR signal transduction also determines the level of cell-surface 

expression of this GPCR via a process known as agonist-driven insertional signalling 

(ADIS), which increases anterograde trafficking of newly synthesised CaSRs to the plasma 

membrane (FIG. 2), and likely prevents the CaSR from undergoing functional 

desensitization in response to continual exposure to Ca2+
o39,40. CaSR signalling is 

additionally mediated by the σ-subunit of the heterotetrameric AP2 complex, and germline 

loss-of-function AP2σ mutations have been shown to impair intracellular Ca2+ and MAPK 

signalling responses in CaSR-expressing cells, and to cause hypercalcaemia (TABLE 

2)30,41–43. These CaSR-mediated signalling cascades modulate diverse physiological 

functions in calcitropic and non-calcitropic tissues, including hormone secretion, growth, 

survival, migration, adhesion, and differentiation (see sections below). In calcitropic tissues, 

loss- and gain of CaSR expression and/or signalling lead to hypercalcaemic and 

hypocalcaemic disorders, respectively. However, in non-calcitropic tissues reduced CaSR 

activity/signalling has been associated with disorders ranging from impaired wound healing 

to vascular calcification and colorectal carcinoma11,16,44, and upregulation of CaSR 

expression in cells and tissues with a low basal level of CaSR expression and activity, such 

as neurons and airway smooth muscle cells, has been reported to occur in brain injury or 

asthma14,45, with the resulting increase in CaSR activity and signalling further contributing 

to disease progression.

CaSR ligands and biased signalling

The CaSR binds to an array of physiological ligands such as cations (e.g. H+, Na+, Ca2+, 

Mg2+), L-amino acids and polyamines, and crystal structures indicate that the CaSR may 

also bind anions such as PO4
3- and SO4

2- 23,31. Low molecular weight molecules which 

allosterically enhance or suppress CaSR activity and are referred to as calcimimetic or 

calcilytic compounds, respectively, have also been identified6. Such calcimimetic and 

calcilytic compounds are either in clinical use or under investigation for the management of 

calcitropic and non-calcitropic disorders, which are associated with activating or inactivating 

mutations, aberrant expression of the CaSR, or its downstream signaling 

molecules3,14,42,46–48.

Several CaSR ligands, including L-amino acids, polyamines, Mg2+, calcimimetics, and 

calcilytics, have been shown to induce biased signalling (also referred to as functional 

selectivity), thereby leading to preferential activation of distinct intracellular signalling 

responses37,49. CaSR-mediated biased signalling may provide an explanation for the 

CaSR’s ability to have differing responsiveness to extracellular Ca2+ and mediating diverse 

physiological functions in different cell systems in response to locally available allosteric 

factors. This biased signalling may also explain the differences in the efficacies of 

calcimimetics or calcilytics in different target tissues. For example, it has been shown that 
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the calcimimetic compound R-568 is 40-fold more potent in suppressing PTH secretion in 

parathyroid cells than in stimulating calcitonin secretion from thyroid C-cells50.

The mechanisms underlying CaSR-mediated biased signalling remain to be elucidated, and 

the recent characterization of a novel ADH-causing mutation, Arg680Gly, has led to the 

identification of a transmembrane salt-bridge (Arg680-Glu767) (FIG. 3), which regulates 

signalling via a G-protein independent mechanism51. Indeed, mutations disrupting this salt 

bridge, which is located at the entrance to the TMD allosteric modulator binding pocket, 

were shown to upregulate beta-arrestin-mediated signalling without altering G-protein-

dependent signalling (FIG. 3)51. The Arg680Gly CaSR mutation also abrogated the effect of 

NPS 2143 (FIG. 3)51, which is an amino-alcohol calcilytic compound52, most likely by 

disrupting a hydrogen bond interaction between the wild-type Arg680 residue and NPS 

214327. These findings indicate that a structurally distinct class of CaSR NAMs, such as the 

quinazolinone calcilytic compounds52, may be required to treat patients with symptomatic 

hypocalcemia caused by the gain-of-function Arg680Gly CaSR mutation51.

Role of the CaSR in Ca2+ homeostasis

Extracellular Ca2+ (Ca2+
o) is critical for a diverse range of biological functions that include 

mineralisation of bone matrix, neuronal and neuromuscular function, blood coagulation, and 

provision of a constant supply of Ca2+ for intracellular processes that range from signal 

transduction to the synthesis and secretion of hormones53. The concentration of Ca2+
o is 

tightly regulated by a homeostatic system consisting of the following components: 1) the 

parathyroid glands, which sense Ca2+
o and secrete PTH; 2) the kidneys and small intestine, 

which shift Ca2+ between the extracellular fluid and external environment; 3) the skeleton, 

which is the main Ca2+ reservoir and buffers acute fluxes in Ca2+
o concentrations; and 4) 

calcitropic hormones such as PTH and 1,25-dihydroxyvitamin D3, which mediate 

interactions between the parathyroid glands and target calcitropic organs such as the bone, 

kidney and intestine (FIG. 1)3. Moreover, during lactation the mammary glands act as a 

calcitropic endocrine organ, which secretes PTH-related peptide (PTHrP) to mobilise Ca2+ 

from bone. The CaSR is expressed in the parathyroid glands, kidneys, bone and breast, and 

its calcitropic actions in these tissues are outlined below.

Parathyroid gland

The CaSR is most highly expressed in the parathyroid glands2, where it regulates PTH 

synthesis and secretion in an inverse manner54. Thus, increases in Ca2+
o lead to CaSR-

mediated suppression of PTH release, whereas a decrease in Ca2+
o releases this suppression 

to promote tonic PTH release54. In keeping with this, mice with a parathyroid-specific 

CaSR ablation have been shown to develop severe hyperparathyroidism and 

hypercalcemia55. In the parathyroid glands, the CaSR has been shown to interact with 

Klotho, which is a transmembrane protein, to regulate PTH secretion56. Moreover, 

expression of the parathyroid CaSR is upregulated by 1,25-dihydroxyvitamin D 

(1,25(OH)2D), which acts on vitamin D response elements within the CASR gene 

promoter57. CaSR-mediated PTH secretion leads to activation of the PTH1 receptor 

(PTH1R) in bone and the kidneys to increase: osteoclast-mediated bone resorption; Ca2+ 
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reabsorption by the renal thick ascending limb (TAL) of the loop of Henle and distal renal 

tubule; phosphate excretion by the proximal renal tubule; and synthesis of 1,25(OH)2D by 

the proximal renal tubule, which increases intestinal Ca2+ absorption (FIG. 1)3,58,59. These 

calcitropic effects lead to an increase in Ca2+
o concentrations, which in combination with 

1,25(OH)2D, causes feedback inhibition of PTH release (FIG. 1)3.

Kidney

The CaSR is highly expressed in the basolateral membrane of the renal TAL (FIG. 1), where 

it regulates Ca2+ reabsorption independently of the actions of PTH60,61. The effect of the 

TAL CaSR on renal Ca2+ excretion is likely mediated by the claudin-14 tight junction 

protein, which regulates the paracellular reabsorption of divalent cations59,62,63. The CaSR 

is also expressed at a lower level in the proximal renal tubule64 where it regulates 

expression of the 1-α-hydroxylase enzyme, thereby influencing 1,25(OH)2D synthesis62. 

The proximal renal tubular CaSR has also been shown to inhibit PTH-mediated phosphate 

excretion65. The kidney CaSR is considered to play a key physiological role in the defense 

against hypercalcaemia, by promoting renal Ca2 excretion independently of the actions of 

PTH60,66, and also by potentially inhibiting 1,25(OH)2D synthesis62,67. The CaSR is also 

expressed in the distal convoluted tubule64, where it may promote Ca2+ reabsorption via the 

transient receptor potential vanilloid member 5 (TRPV5) channel68. Furthermore, the CaSR 

is expressed in the renal collecting ducts64, where it prevents the development of 

hypercalciuria-mediated nephrocalcinosis by enhancing urinary acidification and water 

excretion69. Finally, the CaSR has been reported to be expressed in the juxtaglomerular 

apparatus, where it inhibits renin secretion70, although the physiological consequence of 

this finding remains to be established.

Skeleton

The CaSR is expressed within bone and the growth plate, and its roles in these tissues have 

been characterized by using mice with osteoblast- and chondrocyte-specific ablations of the 

CaSR55,71,72. These studies have demonstrated that the chondrocyte CaSR has a critical 

role in growth plate chondrogenesis, longitudinal bone growth and skeletal mineralization, 

by counteracting PTH-related protein (PTHrP)/PTH1R signalling73. Indeed, mice with 

chondrocyte-specific ablation of the CaSR have shortened long bones, and also 

undermineralisation of the ribs, long bones and calvariae55. Mice with an osteoblast-specific 

CaSR ablation also showed reductions in bone mineralisation and long bone size, as well as 

developing spontaneous long bone fractures55,71. These findings occurred in association 

with impaired osteoblast differentiation and increased osteoclast activation, and highlight a 

role for the osteoblast CaSR in skeletal development, mineralisation and remodelling71.

Breast

The CaSR has been shown to be expressed in human and mouse breast epithelial cells, and 

its expression is increased during lactation74,75. The CaSR promotes lactation by increasing 

the supply of Ca2+ for milk production through effects on the plasma membrane Ca2+-

ATPase 2 (PMCA2), which transports Ca2+ from the mammary cell into milk76. Studies in 

mice have shown that during lactation, the breast CaSR also influences Ca2+
o homeostasis in 

order to regulate the mobilisation of skeletal Ca2+ for milk production9,75. Thus, in low 
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Ca2+
o states, reduced activation of the breast CaSR leads to increased PTHrP production 

from breast epithelial cells, which in turn stimulates osteoclastic resorption of Ca2+ from 

bone (FIG. 1)9. These systemic effects of the breast CaSR ensure a steady supply of Ca2+ 

for milk production, and also protect against maternal hypocalcaemia during lactation9.

Role of CaSR signalling pathways in inherited calcitropic diseases

Loss-of-function of the CaSR or the downstream Gα11 and AP2σ signalling proteins gives 

rise to hypercalcaemic disorders, such as FHH types 1-3 (FHH1, FHH2 and FHH3), 

respectively, as well as primary hyperparathyroidism (PHPT) and neonatal severe 

hyperparathyroidism (NSHPT); whereas gain-of-function mutations of the CaSR or Gα11 

cause ADH types 1 (ADH1) and 2 (ADH2), respectively (TABLE 2).

Hypercalcaemic disorders

FHH is considered to be a rare disorder, with one study involving FHH patients in the west 

of Scotland reporting an estimated minimum prevalence of 1:78,00077. FHH is 

characterised by mild-to-moderate elevations of serum Ca2+ concentrations, mild 

hypermagnesaemia, and normal or elevated circulating PTH concentrations4. FHH has a 

similar serum biochemical phenotype to PHPT, and these conditions are distinguished in 

clinical practice by assessment of urinary calcium excretion, as ~80% of FHH patients are 

hypocalciuric with a calcium-to-creatinine clearance ratio (CCCR) <0.0178,79. However, a 

low CCCR is also observed in ~10% of PHPT patients, and thus mutational analysis of the 

known FHH-causing genes may be required to differentiate FHH from PHPT80. FHH 

comprises a genetically heterogeneous group of autosomal dominant disorders, designated 

as FHH types 1-3 (TABLE 2)3, and these will be briefly discussed.

FHH1—FHH1 (OMIM #145980) occurs most commonly and accounts for ~65% of all 

FHH cases4. This condition is usually benign and non-progressive, however, a higher 

prevalence of chondrocalcinosis with increasing age has been noted81, and some patients 

may develop recurrent pancreatitis82. FHH1 is caused by germline heterozygous loss-of-

function mutations of the CASR gene, which is located on chromosome 3q21.1 (TABLE 

2)83,84, and to-date >150 different CASR mutations have been reported in FHH patients 

(http://www.casrdb.mcgill.ca)85, and the majority (>85%) of these are missense 

substitutions and the remaining (<15%) are nonsense, deletion, insertion and splice-site 

mutations that result in truncated CaSR proteins4,83. The offspring of FHH1 parents may 

harbour homozygous or compound heterozygous CASR mutations that lead to NSHPT 

(OMIM #239200), which is a potentially life-threatening disorder characterized by severe 

hypercalcaemia (serum calcium concentrations typically 3.5-5.0 mmol/L (normal range 

2.10-2.55 mmol/L)), bone demineralization leading to fractures, and respiratory distress 

(TABLE 2)4. Hypercalcaemia in some patients with NSHPT may respond to treatment with 

cinacalcet, a calcimimetic (see below), but for long-term treatment parathyroidectomy is 

usually required86. Some patients who have the clinical features of FHH, but do not harbour 

CASR mutations, may have autoimmune hypocalciuric hypercalcaemia (AHH), which is 

associated with the presence of autoantibodies against the CaSR and also lymphocytic 
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infiltrates within the parathyroid gland87,88. The hypercalcaemia caused by AHH may be 

responsive to glucocorticoid therapy87,88.

Loss-of-function mutations affect all regions of the CaSR protein, however, mutations 

commonly occur within the first 350 amino acid residues of the ECD, which contains the 

four Ca2+ binding sites and the VFT cleft amino acid binding site23,24. Indeed, this region 

is a hotspot for recurrently occurring FHH1 mutations, and some amino acid residues are 

also affected by multiple different loss-of-function mutations3,83. Approximately 50% of 

the FHH1 mutations are predicted to impair the biosynthesis and post-translational 

processing of CaSR proteins within the endoplasmic reticulum or Golgi apparatus, thus 

leading to enhanced proteasomal degradation of these nascent receptors, with reduced 

anterograde trafficking and cell-surface expression89,90. Some other FHH1 mutations, 

which are located in the ECD and TMD, have instead been demonstrated to induce biased 

signalling responses by switching the wild-type CaSR from preferentially coupling with 

intracellular Ca2+ (Ca2+
i) signalling to a mutant receptor that signals equally via the Ca2+

i 

and MAPK pathways, or which acts mainly through MAPK91,92. Biased signalling has also 

been observed with an AHH-causing autoantibody, which enhanced CaSR-mediated 

accumulation of inositol phosphates but impaired ERK1/2 phosphorylation93.

FHH2—FHH2 (OMIM#145981) is caused by germline heterozygous loss-of-function 

mutations of the GNA11 gene on chromosome 19p13.3, which encodes the Gα11 protein 

(TABLE 2)33. To date, FHH2-causing mutations have been reported in four probands, and 

these affected individuals exhibit mild hypercalcaemia (serum adjusted-calcium 

concentrations <2.80 mmol/L (normal range 2.10-2.55 mmol/L)), normal serum PTH 

concentrations, and normal or low urinary Ca2+ excretion33,47,94. The GNA11 mutations 

identified in FHH2 patients comprise three missense substitutions, Thr54Met, Leu135Gln, 

Phe220Ser, and an in-frame isoleucine deletion at residue 200 (Ile200del)33,47,94. All of 

these mutations have been demonstrated to impair CaSR-mediated signalling responses, and 

are predicted to affect key domains of the Gα11 subunit33,47,94. Thus, the Ile200del and 

Phe220Ser mutations are located within the Gα11 GTPase domain and predicted to impair 

the coupling of Gα11 with the upstream GPCR (i.e. CaSR) or downstream effector protein 

(i.e. PLC), respectively33,47. However, the Leu135Gln mutation is located within the 

portion of the Gα11 helical domain that interacts with downstream effectors, and the 

Thr54Met mutation is situated at the interface between GTPase and helical domains, and 

predicted to impair guanine-nucleotide binding at this interface33,94. These studies of 

FHH2 mutations have highlighted residues critical for Gα11 function.

FHH3—FHH3 (OMIM#600740) represents a more severe form of FHH, and is 

characterized by significantly higher serum calcium and magnesium concentrations and a 

significantly reduced FECa, when compared to FHH141,95. Moreover, symptomatic 

hypercalcaemia, reduced bone mineral density, recurrent pancreatitis and cognitive 

dysfunction have been reported in some FHH3 patients41,96. This disorder is caused by 

germline heterozygous loss-of-function mutations of the AP2S1 gene on chromosome 

19q13.3, which encodes the AP2σ protein (TABLE 2)30. AP2S1 mutations have been 

reported in >60 FHH probands to date, and >99% of affected individuals harbour a mutation 
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affecting the AP2σ Arg15 residue, which may give rise to an Arg15Cys, Arg15His or 

Arg15Leu missense substitution30,41,42,95,97–99. To date, only one FHH patient has a 

mutation not involving the Arg15 residue, but the Met117 residue100. The prevalence of 

FHH3 has been reported to be ~7.8 per 100:000100. Patients harbouring the Arg15Leu 

AP2σ mutation have been shown to be more hypercalcaemic with an earlier age of 

presentation compared to probands with Arg15Cys or Arg15His AP2σ mutations41,99. 

Crystal structure analyses have demonstrated the AP2σ Arg15 residue to bind to cell-surface 

cargo proteins101, and it is predicted that these FHH3-causing Arg15 mutations disrupt an 

interaction between the AP2 complex and the CaSR ICD, thereby diminishing endocytosis 

of this GPCR30. Indeed, in vitro studies have shown FHH3-causing AP2σ mutations to alter 

CaSR cell-surface expression and impair signal transduction in a dominant-negative 

manner30,41. Thus, these studies highlight a role for the AP2 complex in Ca2+
o 

homeostasis.

Hypocalcaemic disorders including ADH

ADH is caused by increased sensitivity of the CaSR signalling pathway to Ca2+
o 

concentrations 33,102 and has the opposite biochemical phenotype to FHH. Thus, ADH 

patients have low serum calcium concentrations, mild hypomagnesaemia, normal or low 

PTH concentrations, and a relative or absolute hypercalciuria3. Approximately 50% of ADH 

patients have symptomatic hypocalcaemia and >30% of patients have renal and/or 

intracerebral calcifications (TABLE 2)3. Some ADH patients with marked CaSR activation 

may additionally have Bartter syndrome type V, which is characterised by hypokalaemic 

alkalosis, renal salt wasting and hyperreninaemic hyperaldosteronism (TABLE 2)103,104. 

Active vitamin D metabolites, combined with adequate dietary calcium intake and/or use of 

calcium supplements, are currently used to treat symptomatic ADH patients, although their 

use may predispose patients to the development of marked hypercalciuria, nephrocalcinosis, 

nephrolithiasis and renal impairment102,105.

ADH is a genetically heterogeneous disorder with two types (ADH type 1 (ADH1; OMIM 

#601198) and ADH type 2 (ADH2; OMIM #615361) described3. ADH1 and ADH2 are 

caused by germline heterozygous gain-of-function CASR and GNA11 mutations, 

respectively (TABLE 2)83,102 33,106–108. To date, >70 different ADH1-causing CaSR 

mutations have been identified (http://www.casrdb.mcgill.ca)85, and ~95% of these are 

missense substitutions, whereas ~5% are inframe or frameshift insertion/deletion 

mutations83. Structure-function analyses have shown ADH1 mutations to cluster within the 

second peptide loop of the CaSR ECD (residues 116-136)109, which contributes to the 

CaSR dimer interface23,24,110, and also within the distal portion of the TMD (residues 

819-837)111, which is involved in G-protein binding112. Moreover, the Leu173 and Pro221 

ECD residues have been shown to be the site of both ADH and FHH mutations, and 

structure-function analysis indicates that these residues may act as intra-molecular switches 

to regulate ligand binding or potentially influence the receptor conformational changes that 

occur upon agonist binding83,113. Some patients with hypoparathyroidism, which may be 

isolated or due to autoimmune polyglandular syndrome type 1 (APS1) have been found to 

harbour activating autoantibodies to the CaSR114–116. These patients may have mild and 
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asymptomatic hypocalcemia, or develop hypocalcaemic seizures that require treatment with 

calcium and vitamin D preparations115.

Six different gain-of-function missense GNA11 mutations (Arg60Cys, Arg60Leu, 

Arg181Gln, Ser211Trp, Val340Met and Phe341Leu) have been reported to cause 

ADH233,106–108, and affected individuals have a similar phenotype to ADH1 patients. 

However, ADH2 patients may have milder alterations in urinary Ca2+ excretion compared to 

ADH1106, and short stature has also been reported in two ADH2 kindreds106,117. 

Structural modelling studies have shown ADH2 mutations to cluster at the interface between 

the helical and GTPase domains of the Gα11 protein, which mediates GDP/GTP exchange; 

and also to be located at the Gα11 C-terminus, which is involved in GPCR-G-protein 

coupling3,33,108.

Role of the CaSR in common calcitropic diseases

Altered CaSR expression is implicated in the pathogenesis of common parathyroid disorders 

such as primary and secondary hyperparathyroidism. Moreover, CASR SNPs have been 

reported to be associated with hypercalciuria and nephrolithiasis.

Primary hyperparathyroidism

PHPT is associated with an increased set-point for Ca2+
o-mediated PTH release, which 

indicates a role for altered CaSR function in the pathogenesis of this disorder. In support of 

this, germline heterozygous or homozygous loss-of-function CASR mutations have 

occasionally been reported in patients with adult-onset PHPT118. However, somatic CASR 
mutations have not been identified in parathyroid tumours from patients with sporadic 

PHPT119–121. Instead, the parathyroid set-point abnormalities associated with PHPT may 

be partly attributed to alterations in CaSR expression, which is reduced in the majority of 

hyperplastic and adenomatous parathyroid tumours122,123. In keeping with this, ex-vivo 
studies have shown the set-point for Ca2+

o-mediated PTH release to be inversely related to 

the amount of CaSR expression in parathyroid adenomas124. This reported decreased 

expression of CaSR in some parathyroid tumors may be associated with downregulation of 

filamin A125, which is scaffolding protein that interacts with the CaSR in parathyroid 

cells126, and it is reported that there are no alterations in CASR gene promoter 

methylation127. The mechanisms causing this reduced CaSR expression in parathyroid 

tumours remain to be fully elucidated. Common CASR polymorphisms have been reported 

to influence the clinical severity of PHPT. In particular, the Arg990Gly SNP, which is 

located in the CaSR cytoplasmic domain, has been reported to be associated with lower 

serum PTH concentrations, increased urinary excretion, and also increased occurrence of 

nephrocalcinosis in PHPT patients128,129.

Chronic kidney disease and secondary hyperparathyroidism

Secondary hyperparathyroidism (SHPT) is a common complication of chronic kidney 

disease (CKD), and may arise early in the pathogenesis of this disorder130. Altered CaSR 

function is involved in the progression of SHPT in CKD patients130,131. Thus, 

hypocalcaemia, which occurs as a consequence of hyperphosphataemia and reduced 
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1,25(OH)2D synthesis in CKD, inactivates the parathyroid CaSR, thereby increasing PTH 

secretion130,131. Prolonged PTH secretion in CKD is associated with increased parathyroid 

cell proliferation and gland hyperplasia, and studies in uraemic rats have shown that this is 

accompanied by reduced CaSR expression, which can be upregulated following 

calcimimetic treatment132,133. The reduction in CaSR expression is most marked in 

nodular parathyroid gland hyperplasia caused by advanced SHPT130,134. Furthermore, ex-
vivo studies involving freshly excised parathyroid glands from haemodialysis patients with 

SHPT, have shown CaSR expression to inversely correlate with parathyroid gland weight 

and to be associated with an increase in the set-point for Ca2+
o-mediated PTH release135. 

Studies in rats have shown that renal CaSR expression is also reduced in CKD and may 

contribute to the hypocalciuria associated with this disorder136.

Idiopathic hypercalciuria and nephrolithiasis

Idiopathic hypercalciuria (IH) is associated with nephrolithiasis, and may be familial137, 

although germline CASR mutations have not been identified in families with autosomal 

dominant inheritance of IH138. However, common SNPs located within the coding and 

regulatory regions of the CASR gene have been implicated in nephrolithiasis in patient-

based studies. Thus, the common Arg990Gly CASR SNP has been reported in association 

with an increased risk of hypercalciuric nephrolithiasis139, and a common CASR promoter-

region SNP (rs6776158 (G>A)), which has been shown to impair CASR transcriptional 

activity in vitro and decrease CaSR expression within the renal medulla, is reported to be 

associated with an increased risk of Ca2+-containing renal calculi140. The mechanisms 

underlying the development of nephrolithiasis in patients harbouring the rs6776158 CASR 
promoter-region SNP remain to be established as these patients did not have alterations in 

the urinary concentrations of calcium or phosphate140.

Drugs for calcitropic diseases

CaSR allosteric modulators, which comprise calcimimetic and calcilytic compounds, are 

being used as a targeted therapy for parathyroid disorders and also for symptomatic 

hypercalcaemia and hypocalcaemia caused by germline loss- and gain-of-function CaSR 

mutations, respectively52,141.

Calcimimetics

Calcimimetics are ligands that mimic the effects of Ca2+
o at the CaSR, and are divided into 

two types: type I calcimimetics are agonists, and include naturally occurring ligands; and 

type II calcimimetics are PAMs that increase the sensitivity of the CaSR to Ca2+
o3,142. 

Calcimimetic compounds, which decrease PTH secretion and parathyroid gland 

proliferation, are used for the treatment of hyperparathyroid disorders143,144. Cinacalcet, 

which is a phenylalkylamine compound that binds to the CaSR TMD, was the first 

calcimimetic to be licensed as a therapy for hyperparathyroid conditions such as secondary 

hyperparathyroidism due to end-stage renal failure; inoperable forms of primary 

hyperparathyroidism; and parathyroid carcinoma6. More recently, etelcalcetide, which is an 

intravenously administered synthetic polycationic peptide that acts as a type II calcimimetic 

and agonist of the CaSR145, has been approved for the management of secondary 
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hyperparathyroidism in adult patients on haemodialysis146. Etelecalcetide has been shown 

to bind to the Cys482 residue within the CaSR VFT147.

Calcimimetics also represent a targeted therapy for symptomatic forms of FHH52, and have 

been shown to improve the signalling responses of cells expressing loss-of-function CaSR, 

Gα11 or AP2σ mutant proteins in vitro42,46,47,92,148, and to significantly lower serum 

calcium concentrations in patients with symptomatic hypercalcaemia caused by FHH types 

1-342,48,149,150. Cinacalcet has also been successfully used to manage life-threatening 

hypercalcaemia in NSHPT patients harbouring a heterozygous CaSR mutation, 

Arg185Gln151, but is ineffective for NSHPT caused by biallelic deletional CaSR 

mutations152.

Calcilytics

Calcilytics are synthetic NAMs that bind to the CaSR TMD27, and comprise two main 

classes of compounds, which are the amino alcohols (e.g. NPS-2143, ronacaleret, NPSP795 

and JTT-305/MK-5442) and quinazolinones (e.g. ATF936 and AXT914)6. These 

compounds were originally investigated as potential therapies for osteoporosis, as they 

induced a transient rise in PTH secretion, which had the potential to induce anabolic effects 

on bone mass153. However, clinical trials have shown that calcilytics such as ronacaleret 

and JTT-305/MK-5442 are not effective for treating postmenopausal osteoporosis154,155, 

and these compounds have instead been investigated as a potential targeted therapy for 

ADH52. In vitro studies have shown the NPS-2143 calcilytic to rectify the increased 

signalling responses associated with gain-of-function CaSR and Gα11 mutations, which 

cause ADH1 and ADH2, respectively46,92,156,157. However, NPS-2143 has limited 

efficacy for severe gain-of-function mutations, which cause Bartter syndrome type V157; 

whereas the quinazolinone-derived calcilytic drugs have successfully rectified constitutive 

activation caused by Bartter syndrome-associated CaSR mutations158. Calcilytics have also 

been assessed in vivo, and single dose studies have shown NPS-2143 to significantly 

increase plasma calcium and PTH concentrations in mouse models for ADH1 and 

ADH248,156,159. Moreover, longer-term studies involving ADH1 mouse models have 

shown the JTT-305/MK-5442 calcilytic to prevent the development of nephrocalcinosis, 

which was observed in mice treated with the drug vehicle or recombinant PTH159. 

Intravenous administration of the NPSP795 calcilytic compound in a phase IIa clinical trial 

involving five ADH1 patients, significantly increased plasma PTH concentrations and 

reduced urinary calcium excretion160.

Non-calcitropic roles of the CaSR

The CaSR is widely expressed in tissues not involved in Ca2+
o homeostasis, thereby 

indicating that it likely has non-calcitropic roles. These non-calcitropic roles of the CaSR 

involve regulation of physiological and pathophysiological processes in a tissue-dependent 

manner, and these include: proliferation, differentiation and apoptosis; vascular tone; renal 

and intestinal water transport; inflammation; maintenance of the integrity of epithelial layers 

in the intestine and skin; neuronal development and function; and entero-endocrine hormone 

secretion (TABLE 1)7,9–11,13,14,161,162. Thus, abnormal CaSR function or expression in 
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non-calcitropic organs may be associated with cancer, cardiovascular diseases, asthma, 

gastro-intestinal disorders, Alzheimer’s disease, pancreatic insulin secretion and poor wound 

healing (FIG. 4)163,164. Some of these physiological and pathophysiological non-

calcitropic roles of the CaSR are reviewed briefly, below.

Tumourigenesis

The CaSR regulates cell fate and its expression has been reported to be increased or 

decreased in different cancers, thereby suggesting that the CaSR may have possible roles as 

an oncogene or tumour suppressor in different organs. For example, increased CaSR 

expression is found in metastatic breast and prostate cancers16,165,166, whereas loss of 

CaSR expression is found in colorectal cancer and some neuroblastic tumours16,167. In 

breast cancer cells, the CaSR has been reported to act as an oncogene and increase 

proliferation and inhibit apoptosis168 by likely switching G-protein coupling from Gαi, to 

Gαs, which leads to an upregulation of PTHrP expression169. This increase in PTHrP 

results in the inhibition of the apoptosis inducing factor (AIF) and cell cycle inhibitor 

p27kip1, thereby reducing apoptosis and promoting cell proliferation, respectively168. 

Moreover, in vitro studies involving the stimulation of malignant breast carcinoma cells with 

Ca2+
o or the R-568 calcimimetic have shown the CaSR to increase the migratory potential of 

these tumour cells, and also promote the secretion of pro-angiogenic and chemotactic factors 

that are implicated in breast cancer metastases170,171. Furthermore, metastatic breast 

cancer cells in bone that express the CaSR may exacerbate PTHrP-mediated osteolysis by 

sensing high concentrations of Ca2+ released during bone remodelling172, and thereby 

promoting further PTHrP secretion. Thus, the CaSR has been hypothesised to drive a vicious 

cycle of skeletal metastasis173. In support of this, PTHrP secretion from breast cancer cells 

has been shown to be stimulated by high (7.5-10 mM) Ca2+
o concentrations173, which are 

present in the bone microenvironment during remodelling172, and breast cancer cells 

overexpressing the CaSR have been demonstrated to cause an increase in osteolytic lesions 

when injected intratibially into Balb/c-Nude mice174. Thus, these findings indicate that the 

CaSR plays a role in the pathogenesis of breast cancer skeletal metastases.

The CaSR is involved in the differentiation of neural progenitor cells and has a tumour 

suppressor role in malignancies affecting the developing nervous system. Thus, the CaSR is 

expressed in neuroblastic tumours, which comprise neuroblastomas, ganlioneuroblastomas 

and ganglioneuromas, and its expression in these tumours is associated with favourable 

prognostic outcomes such as low clinical stage and age at diagnosis <1 year175. In contrast, 

in highly malignant and undifferentiated neuroblastomas, the CaSR has been shown to be 

epigenetically silenced, and overexpression of the CaSR or treatment with cinacalcet in 

neuroblastoma cell lines reduces tumourigenicity by decreasing proliferation and increasing 

apoptosis167,176.

The CaSR may also mediate the effects of dietary Ca2+ on the development of prostate and 

colorectal cancer. Thus, a high dietary intake of Ca2+ is reported to enhance prostate 

tumourigenesis by potentially acting on the CaSR and the TRPC6 channel, which is a Ca2+-

permeable channel177. In contrast, dietary calcium is reported to be protective against 

colorectal cancer, and this effect is likely mediated by the CaSR as it was observed only in 
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patients with CaSR-expressing tumours178. In the colon, the CaSR has tumour suppressor 

roles and been shown to: inhibit proliferation, induce apoptosis and differentiation; prevent 

epithelial-to-mesenchymal transition179–182; and suppress canonical Wnt signalling whilst 

activating the non-canonical Wnt pathway183. Furthermore, CaSR expression has been 

demonstrated to be lost during colorectal tumourigenesis, mainly through epigenetic 

mechanisms184–186.

Nervous system

The CaSR is widely expressed in the central and peripheral nervous system including in: 

nerve terminals and fibre tracts; myelin-producing oligodendrocytes; astrocytes and 

microglial cells187,188. Moreover, the CaSR is considered to play a role in the development 

of the hippocampus, granule cell layer of the cerebellum, sympathetic nervous system, and 

also in GnRH neuronal migration188–191. The CaSR has been shown to modulate the 

growth of sympathetic axons as well as promoting dendritic growth within the 

hippocampus191. The CaSR may also regulate neuronal excitability within the hippocampus 

by regulating neuronal potassium (K+) channels and the sodium (Na+) leak channel non-

selective protein (NALCN)12. Furthermore, the CaSR may facilitate neuronal migration by 

sensing alterations in Ca2+
o or polycations such as spermine, which are present within the 

brain, and also by enhancing the production of chemokines such as monocyte 

chemoattractant protein-1189,190. The CaSR is also expressed in the sub-fornical organ 

(SFO), which is involved in Na+ sensing and water intake192, and the SFO-expressed CaSR 

may potentially influence body fluid composition12.

Abnormal CaSR function has been implicated in central nervous system disorders such as 

Alzheimer’s disease (AD), ischaemic brain injury and epilepsy. Indeed, a patient-based 

study showed the presence of a polymorphic dinucleotide repeat within intron 4 of the 

CASR to be significantly associated with the occurrence of AD193. Moreover, in-vitro 
studies have shown that: CaSR function can be upregulated by proteins such as the amyloid-

β 1-42 peptide fragment (Aβ(1-42)) and apolipoprotein E, which are involved in the 

pathogenesis of AD193; and that the calcilytic drug NPS 2143 inhibits the secretion of 

Aβ(1-42) from human astrocytes and cortical neurons in vitro194. The neuronal CaSR forms 

heteromeric complexes with the GABAB receptor 1 (GBR1), and mouse model studies have 

demonstrated in ischaemic brain injury that the stoichiometry of these complexes is altered 

with upregulation of CaSR expression and down regulation of GBR1, which potentiates 

ischaemic neuronal death195. These studies also revealed that calcilytic treatment in mice 

with brain injury was neuroprotective and improved learning and memory retention45. CaSR 

mutations have been reported in patients with epilepsy196, and in vitro studies of a CaSR 

Arg898Gln mutation, which co-segregated with epilepsy in one family, in which the proband 

was normocalcaemic196, revealed that this is a gain-of-function mutation that increased 

CaSR expression197.

Cardiovascular

The CaSR is expressed in arterial vessels and influences cardiovascular function through 

direct effects within the vasculature. Thus, the CaSR is expressed in human vascular smooth 

muscle cells (VSMCs) and endothelial cells198,199, and it has been reported to likely play a 
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role in VSMC proliferation200, and also in the regulation of blood pressure and blood vessel 

tone13. Indeed, ablation of the VSMC CaSR in mice has been shown to cause endothelium-

independent decreases in the contractility of the aorta and mesenteric arteries, and also to 

decreases in diastolic and mean arterial blood pressures13. Furthermore, in rabbit mesenteric 

arteries, CaSR stimulation induced endothelium-dependent vasorelaxation through two 

different pathways; one involving the production of nitric oxide (NO), and the other 

involving activation of the intermediate Ca2+-activated potassium (IKCa) channels201. The 

VSMC CaSR also protects against the development of vascular calcification, and 

histological studies of lower-limb arteries from CKD patients have demonstrated reduced 

expression of the CaSR within the calcified medial arterial layer44. These findings are 

supported by studies of primary VSMCs, in which loss of CaSR expression or 

overexpression of a loss-of-function mutant CaSR in these cells leads to increased 

mineralisation44. Furthermore, the CaSR represents a potential therapeutic target in patients 

with vascular calcification, and a randomised controlled trial involving CKD patients on 

haemodialysis showed that cinacalcet treatment resulted in beneficial effects on arterial 

calcification, and particularly for calcification involving the cardiac valves202.

The CaSR is also expressed in the heart and has been shown to be functionally active in 

rodent ventricular cardiomyocytes, where it promotes apoptosis203 and may also protect 

against myocardial ischaemic injury204. Moreover, patient-based studies have demonstrated 

that a common CaSR SNP, Ala986Ser, is associated with an increased risk of cardiovascular 

diseases such as myocardial infarction15,205, and it remains to be established whether this 

is a direct consequence of abnormal CaSR function within the heart or vasculature, or due to 

an indirect effect of the polymorphic CaSR on Ca2+
o homeostasis15.

Pulmonary development and function

The CaSR has been reported to be to be expressed in human fetal lungs, where it promotes 

fluid secretion into the pulmonary lumen, which mediates lung growth and development206, 

and studies in mice have also indicated a role for the CaSR in regulating lung branching 

morphogenesis207. The CaSR is also expressed in adult human and mouse airway smooth 

muscle and bronchial epithelium14, and CaSR expression has been demonstrated to be 

increased in the airways of asthmatic patients and mice14. Moreover, over-expression of 

CaSR is considered to be activated by polycations in the asthmatic airway mucosa, thereby 

leading to bronchoconstriction14. Calcilytic treatment was shown to diminish signalling 

responses that caused airway contractility, and nebulised calcilytic administration 

significantly suppressed airway hyper-reactivity and inflammation in a mouse model of 

allergic asthma14. Thus, these observations highlight the potential of inhaled calcilytics as a 

treatment for asthma14. Pathological upregulation of CaSR expression has also been 

implicated in idiopathic pulmonary artery hypertension, and calcilytic treatment in rodents 

has been demonstrated to prevent the development of this disorder and ameliorate the 

secondary occurrence of right ventricular hypertrophy208.

Gastro-intestinal tract

The CaSR, which is expressed in the gastro-intestinal (GI) tract of amphibia, birds, fish and 

mammals209, has been reported to act as a nutrient sensor that influences gastric acid and 
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entero-endocrine hormone secretion, as well as regulating intestinal fluid homeostasis, and 

intestinal barrier function and inflammation (TABLE 1)10,209–211.

Nutrient sensing and entero-endocrine hormone secretion—The CaSR senses 

nutrients such as Ca2+ and aromatic amino acids within the GI lumen and responds to 

alterations in these nutrients by regulating hormone secretion from entero-endocrine cells, 

which are located throughout the GI tract and include: gastrin-secreting G-cells; ghrelin-

secreting gastric cells; cholecystokinin (CCK)-secreting I-cells; and glucagon-like peptide-1 

(GLP-1) and peptide YY (PYY)-secreting L-cells212–214. The CaSR is expressed in gastric 

G-cells, and studies involving CaSR null mice have shown the CaSR to mediate Ca2+- and 

aromatic amino acid-induced gastrin secretion215. Gastrin promotes histamine release from 

gastric body enterochromaffin-like (ECL) cells, which in turn enhances acid secretion from 

gastric parietal cells215. The CaSR is also expressed in gastric parietal cells and human 

studies have shown this GPCR to increase gastric acid secretion by influencing H+K
+ATPase activity216,217.

Activation of the CaSR in the small intestine has also been found to improve post-prandial 

glucose tolerance in wild-type rats218. This effect of the GI-expressed CaSR on glucose 

tolerance may be mediated by a reduction in gastric emptying rate218, as well as through 

effects on GLP-1, which plays a key role in enhancing glucose-dependent insulin 

release219. Indeed, ex-vivo studies involving mouse intestine have shown that the CaSR is 

expressed in GLP-1-secreting L-cells and also that oligopeptides enhance GLP-1 secretion 

by activation of the CaSR219.

The GI-expressed CaSR also reduces food intake by modulating the secretion of entero-

endocrine hormones210. Thus, the CaSR has been shown to inhibit the release of ghrelin 

and increase the secretion of PYY, which are neuropeptides involved in the hypothalamic 

regulation of appetite210. The CaSR may also exert these anorectic effects by increasing the 

secretion of GLP-1210, which in turn suppresses appetite following food ingestion, as well 

as by increasing CCK secretion from I-cells220, that leads to a delay in gastric emptying. 

CaSR activation may also cause emesis and studies involving mice have demonstrated that 

deoxynivalenol, which is an emesis-inducing toxin, acts by increasing CaSR-mediated 

secretion of CCK and PYY221. These findings may potentially explain the GI adverse 

effects such as nausea and vomiting, which are experienced by >30% of patients being 

treated with cinacalcet, which is used for pharmacological activation of the CaSR 146. 

Moreover, cinacalcet has been shown to impair gastric emptying in rats222, whereas, 

evocalcet, which is a recently reported orally active pyrrolidine-derived calcimimetic 

compound, does not alter gastric emptying in rats, and has also been shown to cause reduced 

emesis compared to cinacalcet in studies involving marmosets222.

Intestinal fluid secretion—Activation of the CaSR within colon epithelial cells has been 

shown in rodent studies to inhibit fluid secretion induced by secretagogues such as cholera 

toxin223. Cholera toxin causes secretory diarrhoea by increasing cyclic nucleotide 

generation within the colonic epithelium and also by stimulating the enteric nervous system 

(ENS) to release secretagogues such as vasoactive peptide224.
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The colonic CaSR has been shown to counteract these effects by activating 

phosphodiesterases, which degrade the cyclic nucleotides generated by cholera toxin, and 

also by inhibiting the ENS223,224. These findings reveal the CaSR to be a potential 

therapeutic target for secretory diarrhoea caused by bacterial toxins223.

Intestinal barrier function and inflammation—Alterations in intestinal epithelial 

barrier function are implicated in the pathogenesis of inflammatory bowel disorders such as 

Crohn’s disease225. The CaSR is expressed in colonic epithelial cells as well as in colonic 

myofibroblasts, which are located at the basal surface of the epithelium and regulate 

epithelial barrier function226,227. Cellular studies involving colonic myofibroblasts have 

shown the CaSR to increase secretion of bone morphogenetic protein-2 (BMP-2), which 

promotes colonic epithelial barrier maturation227. The CaSR also inhibits tumour necrosis 

factor alpha (TNFα) secretion from colonic myofibroblasts228, and thus this GPCR may 

protect against intestinal inflammation. The epithelial CaSR also plays a key role in 

intestinal barrier function, and studies of intestinal epithelium-specific CaSR null mice have 

shown reduced transepithelial resistance in association with reduced colonic expression of 

tight junction proteins such as claudin-2229. This defect in epithelial barrier function was 

associated with an altered composition of the intestinal microbiome229 that comprised a 

decrease in the amount of beneficial lactobacilli, but an increase in Deferribacteraceae 

bacteria, which are linked to colitis229. This dysbiosis of the intestinal microbiota has been 

associated with pro-inflammatory responses in intestinal epithelium-specific CaSR null 

mice230. Indeed, in response to chemically induced colitis, these mice had more severe 

colitis with delayed recovery, when compared with the CaSR-expressing littermate 

controls229.

Pancreatic islets and glucose homeostasis

The CaSR is highly expressed in pancreatic islet α- and β-cells 2,231, and studies of isolated 

human islets and insulin-secreting cell lines have shown that CaSR activation leads to the 

upregulation of PLC and MAPK-mediated signalling responses in association with a 

transient rise in insulin and glucagon secretion231–233. Furthermore, studies involving an 

ADH1 mouse model, known as Nuclear flecks (Nuf), have shown that CaSR activation in 

heterozygous (Casr+/Nuf) and homozygous (CasrNuf/Nuf) mice is associated with impaired 

glucose tolerance, when compared to wild-type (Casr+/+) mice. This impaired glucose 

tolerance was ameliorated by calcilytic treatment7. Casr+/Nuf and CasrNuf/Nuf mice also had 

hypoinsulinaemia and reduced pancreatic islet mass, which was associated with reduced β-

cell proliferation7. In addition, CasrNuf/Nuf mice had a lack of glucose-mediated suppression 

of glucagon secretion, which was associated with altered α-cell membrane depolarization7. 

These in vivo and ex vivo studies have highlighted roles for the CaSR in the regulation of 

pancreatic islet mass, and in α- and β-cell function.

Skin

Extracellular Ca2+ is required for the maintenance of an intact epidermal barrier, and in vitro 
studies have shown that Ca2+

o plays a key role in keratinocyte differentiation234. 

Furthermore, Ca2+
o mediates wound healing and skin re-epithelialisation following 

injury235. This effect is triggered by the epidermal CaSR, which upon activation promotes 
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keratinocyte differentiation, survival, and adhesion236. In keeping with this, the barrier 

function of the skin in epidermis-specific CaSR null mice has been shown to be defective 

with impaired keratinocyte differentiation237. Moreover, mice with combined ablation of 

the CaSR and vitamin D receptor in keratinocytes were demonstrated to have delayed wound 

re-epithelialisation as a consequence of impaired keratinocyte adhesion and migration11. 

These findings reveal the importance of Ca2+ and vitamin D signalling for epidermal 

regeneration after injury11, analogous to the interactions between Ca2+ and vitamin D that 

have been reported for intestine function and colorectal tumourigenesis238.

Conclusions and future directions

The CaSR is a dimeric family C GPCR that signals via the G-proteins and beta-arrestin, and 

plays a pivotal role in bone and mineral metabolism by influencing parathyroid hormone 

secretion, urinary Ca2+ excretion, skeletal development, and lactation. Germline loss- and 

gain-of-function mutations of the CaSR or its intracellular partner proteins lead to inherited 

calcitropic disorders such as FHH types 1-3 and ADH types 1-2. Loss of parathyroid CaSR 

expression contributes to the development of primary and secondary hyperparathyroidism. 

The CaSR is also widely expressed in non-calcitropic tissues where it influence 

physiological processes such as nutrient sensing and the secretion of insulin and entero-

endocrine hormones, neuronal and pulmonary development, vascular tone and wound 

healing. Moreover, pathophysiological alterations in CaSR expression or function are 

associated with cancers of the breast, prostate and colon, as well as with ischaemic brain 

injury, cardiovascular disease and asthma. The CaSR represents a pharmacological target for 

calcitropic disorders, and calcimimetic drugs are established as a medical therapy for 

hyperparathyroid disorders, and shown to be effective for symptomatic forms of FHH. 

Calcilytic drugs may represent a targeted therapy for ADH and have potential for other 

hypoparathyroid disorders. CaSR-targeted drugs are also being evaluated for non-calcitropic 

disorders, and novel strategies such as the use of inhaled calcilytics for asthma to minimize 

off-target effects, are being evaluated in pre-clinical models. However, a key challenge for 

the pharmaceutical industry is to develop compounds that can selectively influence biased 

signalling responses by the CaSR, thereby providing an approach for modulating CaSR 

function in a tissue- and disease-specific manner. The emergence of such therapies will aid 

the clinical management of non-calcitropic disorders without leading to off-target effects in 

calcitropic tissues.
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Key points

• The CaSR is a family C G-protein coupled receptor that is expressed on the 

cell surface as a dimer, and signals via G-proteins and beta-arrestin

• The CaSR regulates bone and mineral metabolism by influencing parathyroid 

hormone secretion, urinary Ca2+ excretion, skeletal development, and 

lactation

• Germline CASR, GNA11 and AP2S1 mutations cause calcitropic disorders 

such as familial hypocalciuric hypercalcaemia (FHH) and/or autosomal 

dominant hypocalcaemia (ADH)

• In non-calcitropic tissues, the CaSR influences biological processes that 

include: gastrointestinal nutrient sensing; secretion of insulin and entero-

endocrine hormones; vascular tone; and wound healing

• Abnormal expression or function of the CaSR is associated with: primary and 

secondary hyperparathyroidism; ischaemic brain injury; cardiovascular 

disease; asthma; and cancers of the breast, prostate and colon

• CaSR-targeted calcimimetic and calcilytic drugs have therapeutic potential for 

calcitropic and non-calcitropic diseases
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Figure 1. Role of the CaSR in Ca2+
o homeostasis.

A. The CaSR is highly expressed in the parathyroid glands (grey), which are located 

adjacent and posterior to the thyroid gland (pink). The parathyroid CaSR detects reductions 

in Ca2+
o, which leads to the release of PTH. PTH acts on the PTH1 receptor (PTH1R) to 

increase resorption of Ca2+ from bone, promote urinary Ca2+ reabsorption, and enhance 

expression of the renal 1-α-hydroxylase (1αOHase) enzyme, which converts the 25-

hydroxyvitamin D (25D) precursor metabolite to biologically active 1,25-dihydroxyvitamin 

D (1,25D). The elevated 1,25D increases absorption of dietary calcium by acting on the 
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intestinal vitamin D receptor (VDR)3. The kidney CaSR acts independently of PTH to 

regulate urinary Ca2+ reabsorption60,61. Increases in Ca2+
o and 1,25D concentrations lead 

to negative feedback on the parathyroid glands, thereby inhibiting further PTH release. B. 

Nephron segment-specific roles of the CaSR. The CaSR is expressed in the: apical 

membrane of the proximal tubule (PT), where it regulates 1,25D synthesis and phosphate 

(Pi) excretion; basolateral membrane of the cortical thick ascending limb (TAL) of the Loop 

of Henle, and apical and basolateral membranes of the distal convoluted tubule (DCT), 

where it regulates Ca2+ reabsorption; apical and basolateral membranes of the collecting 

duct (CD), where it regulates H+ and water excretion; and juxtaglomerular apparatus (JGA), 

where it regulates renin secretion58,64. (+), stimulatory action of CaSR; (-), inhibitory 

action of CaSR. C. During lactation, the mammary gland CaSR detects reductions in Ca2+
o, 

which leads to increased PTHrP secretion from mammary epithelial cells into the 

circulation9. PTHrP acts on the PTH1R to increase bone resorption, which in turn releases 

Ca2+
o for milk production9. Stimulatory and inhibitory actions are indicated by solid lines 

and dashed lines, respectively.
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Figure 2. CaSR signalling and trafficking.
The CaSR is functionally active as a constitutive homodimer, and may also form 

heterodimers with other family C GPCRs such as the metabotropic glutamate receptors and 

gamma-amino butryric acid (GABA) type B receptors in growth plate chondrocytes and the 

central nervous system18–20. The CaSR ECD binds calcium (Ca2+) at multiple sites within 

the lobes of the venus flytrap (VFT) and cysteine-rich domain (CRD). The CaSR also binds 

amino acids within the VFT cleft. Synthetic positive allosteric modulators (PAMs) and 

negative allosteric modulators (NAMs) bind to the CaSR transmembrane domain (TMD). 

The binding of Ca2+ leads to Gq/11-dependent activation of phospholipase C (PLC) and the 
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production of diacylglycerol (DAG) and inositol 1,4,5-trisphosphate (IP3) from membrane 

bound phosphatidylinositol 4,5-bisphosphate (PIP2). The increase in intracellular IP3 levels 

facilitates the release of Ca2+ from intracellular stores such as the endoplasmic reticulum 

(ER). DAG activates protein kinase C (PKC) and the mitogen-activated protein kinase 

(MAPK) pathway. The CaSR also activates the Gi/o protein, which leads to inhibition of 

adenylate cyclase (AC)-mediated production of cAMP. These signalling events cause a 

decrease in parathyroid hormone (PTH) secretion and reduction in renal tubular Ca2+ 

reabsorption. CaSR cell-surface expression is regulated by agonist-driven insertional 

signalling (ADIS), which mediates anterograde receptor trafficking39; and also by an 

endocytic complex comprising clathrin, β-arrestin and the heterotetrameric adaptor-related 

protein complex 2 (AP2) complex, which mediates retrograde receptor trafficking40. Loss- 

and gain-of function mutations of the CaSR lead to FHH1 and ADH1, respectively; loss- 

and gain-of function mutations of the Gα11 subunit are associated with FHH2 and ADH2, 

respectively; and loss-of-function mutations of the AP2σ subunit are associated with FHH3.
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Figure 3. Disruption of a salt-bridge within the CaSR TMD causes biased signalling.
The salt-bridge is formed by the Arg680 residue located in the proximal portion of 

transmembrane helix 3 (TM3, shaded blue) and the Glu767 residue located in extracellular 

loop 2 (ECL2). The Arg680-Glu767 salt-bridge is situated at the entrance of the allosteric 

modulator binding pocket, which is formed by residues from TM3 and TM5-TM727. The 

Arg680 residue mediates the binding of the NPS 2143 calcilytic compound27. The Arg680-

Glu767 salt-bridge is associated with G-protein-mediated signalling, whereas disruption of 

the salt-bridge by the ADH-causing CaSR mutation, Arg680Gly, selectively increases β-

arrestin-mediated signalling, as well as abrogating the inhibitory effect of the NPS 2143 

compound51.
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Figure 4. Physiological roles and disease associations of the CaSR.
The CaSR has key physiological roles in calcitropic tissues (e.g. parathyroid glands, kidneys 

and bone) and in non-calcitropic tissues (e.g. brain, cardiovascular system, lungs, breast, 

intestine and pancreas, and skin). Altered CaSR activity in calcitropic tissues causes 

inherited and sporadic diseases of Ca2+ homeostasis3, whereas alterations in CaSR function 

or expression in non-calcitropic tissues is associated with cardiovascular disease, asthma and 

malignancy. ADH, autosomal dominant hypocalcaemia; FHH, familial hypocalciuric 

hypercalcaemia; PHPT, primary hyperparathyroidism; SHPT, secondary 

hyperparathyroidism.
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Table 1
Major calcitropic and non-calcitropic cellular roles of the CaSR.

Process Cell type Role Reference

Calcitropic

Parathyroid PTH secretion (-) 1,56

Proliferation (-) 1,133

Kidney

    Proximal tubule Phosphate excretion (-) 65

1,25(OH)2D synthesis (-) 62

   TAL Ca2+ reabsorption (-) 60,61

   Distal convoluted tubule Ca2+ reabsorption (+) 68

    Collecting duct H+ excretion (+) 69

Water excretion (+) 69

   Juxtaglomerular apparatus Renin secretion (-) 70

Bone

   Osteoblast Differentiation and mineralization (+) 55,71

   Growth plate chondrocyte Differentiation (+) 55

Breast epithelium Ca2+ transport into milk (+) 9,76

PTHrP production (-) 9,75

Non-calcitropic

Cardiovascular

   Vascular smooth muscle cell Proliferation (+) 200

Arterial contractility (+) 13

   Endothelial cell Nitric oxide production (+) 201

Ventricular cardiomyocyte Apoptosis (+) 203

Foetal lung epithelium Fluid secretion (+) 206,207

Proliferation and lung branching morphogenesis (-) 207

Gastrointestinal

   Gastric parietal cell H+ excretion (+) 216,217

   Gastric mucosal cell Ghrelin secretion (-) 210,212

   Gastric G cell Gastrin secretion (+) 215

   Duodenal I cell Cholecystokinin secretion (+) 220

   Intestinal L cell Glucagon-like peptide-1 (+) 210

Peptide YY (+) 210,221

   Colon Barrier function (+) 229

Enteric nervous system (-) 224

Fluid secretion (-) 223,224

Proliferation (-) 10

Pancreatic islet

   α-cell Glucagon secretion (+) 7,232

   β-cell Insulin secretion (+) 232,233

Adipocyte Proliferation (+) 162
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Process Cell type Role Reference

Differentiation (+) 162

Inflammatory cytokine expression (+) 162

Skin keratinocyte Proliferation (-) 236

Differentiation (+) 236

Apoptosis (-) 236

Central nervous system

   Cerebellar granule cell Differentiation and migration (+) 190

   Oligodendrocyte Differentiation and myelinogenesis (+) 8

   GNRH neuron Chemotaxis (+) 12

   Sub-fornical organ Neuronal excitability and blood pressure regulation (+) 12

GNRH, gonadotrophin-releasing hormone; PTH, parathyroid hormone: PTHrP, parathyroid hormone related protein; TAL, thick ascending limb of 
Loop of Henle; (+), stimulatory action of CaSR; (-), inhibitory action of CaSR.
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