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Abstract

G-protein-coupled receptors (GPCRs) relay numerous extracellular signals by triggering 

intracellular signaling through coupling with G proteins and arrestins. Recent breakthroughs in the 

structural determination of GPCRs and GPCR-transducer complexes represent important steps 

toward deciphering GPCR signal transduction at a molecular level. A full understanding of the 

molecular basis of GPCR-mediated signaling requires elucidation of the dynamics of receptors 

and their transducer complexes as well as their energy landscapes and conformational transition 

rates. Here, we summarize current insights into the structural plasticity of GPCR-G-protein and 

GPCR-arrestin complexes that underlies the regulation of the receptor’s intracellular signaling 

profile.

GPCRs are versatile, seven-transmembrane-domain proteins that regulate a diverse array of 

intracellular signaling cascades in response to hormones, neurotransmitters, ions, photons, 

odorants and other stimuli. As such, they play an essential role in physiology and disease 

and represent attractive drug targets. Activation of GPCRs initiates signaling through 

heterotrimeric G proteins, as well as through G-protein-independent pathways by G-protein-

coupled receptor kinase (GRK)-mediated phosphorylation and arrestin coupling (Fig. 1). 

Many GPCRs show basal activity that can be modulated by ligands of different efficacy. Full 

agonists are able to induce the maximal signaling response, whereas partial agonists and 

inverse agonists promote submaximal signaling or decrease basal activity, respectively. 

Furthermore, some ligands are known as biased ligands because they selectively activate 

certain receptor-associated pathways at the expense of others1. A surge in crystal structures 

of active and inactive receptors in the last decade has provided a detailed molecular 

framework underlying ligand binding and receptor activation2–5. The most common feature 

of receptor activation entails a major reorganization of the cytoplasmic side, where a large 

outward movement of transmembrane helix 6 (TM6), combined with rearrangements of 

other helices, exposes an intracellular pocket that can effectively engage G proteins, GRKs 
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and arrestins to form functional signaling complexes. Biophysical characterization of 

GPCRs has extended this picture and shown that receptors cannot be described as simple 

bimodal ‘on–off ‘ switches, but should rather be viewed as highly dynamic systems that 

exist in a multitude of functionally distinct conformations (reviewed in refs. 6,7). Ligands 

can regulate the receptor activity through conformational selection of distinct states, thereby 

altering the degree of the overall signaling response8 or resulting in signaling bias9,10. As 

only weak allosteric coupling exists between the ligand-binding pocket and the G-protein- 

and arrestin-coupling interface, engagement of the transducer is required to fully stabilize 

the active receptor conformation11–13.

Recent breakthroughs in the structural determination of GPCRs in complex with G protein 

or arrestin have greatly advanced the deciphering of GPCR signal transduction at a 

molecular level14–19. A full understanding, however, requires an investigation of the 

conformational dynamics of receptor–transducer complexes that will elucidate factors 

affecting the energy landscapes and conformational transition rates of these complexes. In 

the sections below, we focus on recently gained insights on receptor–G-protein and 

receptor–arrestin complexes (for a recent review on receptor–GRK complexes, see ref. 20).

GPCR-mediated activation of G proteins

The G-protein activation cycle.

The classical signal transduction through GPCRs is dependent on receptor-mediated 

activation of heterotrimeric G proteins, which are composed of three subunits, Gα, Gβ and 

Gγ. In contrast to the large repertoire of different GPCR genes found in the human genome, 

only four major G-protein families (Gs, Gi/o, Gq/11 and G12/13) have been classified based on 

sequence homology between more than 21 identified human Gα isotypes encoded by 16 

individual genes21,22. The ability of this limited number of G proteins to couple to a diverse 

set of receptors suggests a conserved mechanism for receptor-catalyzed G-protein activation 

that involves changes in the nucleotide-bound state of the Gα subunit (Fig. 1). When bound 

to GDP, Gα associates with the Gβγ dimer to form the inactive heterotrimer. Receptor 

activation promotes the engagement of the GDP-bound heterotrimer that accelerates GDP 

dissociation from Gα, a process that represents the rate-limiting step in G-protein 

activation23. The resulting nucleotide-free receptor–G-protein complex exhibits a very short 

lifetime, owing to the high GTP concentration in cells that facilitates rapid GTP binding to 

the nucleotide-binding site of the G protein. Subsequently, the Gα subunit undergoes 

conformational changes that result in the dissociation of the Gα and Gβγ subunits. Both 

subunits have been shown to modulate the activity of different downstream effector proteins. 

Gα subunits target effectors including adenylyl cyclases, cGMP phosphodiesterase, 

phospholipase C and RhoGEFs24,25, while Gβγ can recruit GRKs to the membrane and 

regulate G-protein-coupled, inwardly rectifying potassium channels, voltage-dependent Ca2+ 

channels, adenylyl cyclases, phospholipase C, phosphoinosite 3 kinase and mitogen-

activated protein kinases26,27. The cellular response is terminated when the Gα subunit 

hydrolyzes GTP to GDP, owing to its intrinsic GTPase activity, and then reassociates with 

Gβγ, completing the G-protein activation circle. GTPase-activating proteins (GAPs), 

including regulators of G-protein signaling (RGS) proteins, can interact with activated Gα 
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subunits to increase their intrinsic GTP hydrolysis rate up to more than 2,000-fold and thus 

represent important modulators of the intensity and duration of GPCR-mediated signaling 

(see refs. 28,29 for reviews).

Structural insights into receptor-mediated nucleotide release.

One of the most fundamental questions in understanding GPCR signaling is how receptors 

catalyze nucleotide exchange in G proteins. Structural studies have revealed that the 

nucleotide-binding site in G proteins is located between the two domains of Gα: the α-

helical domain (AHD) and the Ras-like (Ras) GTPase domain (for reviews see refs. 30,31)

(Fig. 2a). The majority of contacts involved in the binding of GDP are provided by the Ras 

domain, which is structurally homologous to monomeric G proteins and elongation factors 

like p21ras and EF-Tu. It is composed of a six-stranded β-sheet (β1–β6) and five α-helices 

(α1–α5). Several loops within the Ras domain play important roles in nucleotide binding. In 

particular, the β1–α1 loop that links the β1 strand and the α1 helix—also known as the 

diphosphate-binding or P loop—coordinates the nucleotide phosphates together with the 

adjacent α1 helix, while the β5–α4 and the β6–α5 loops engage the guanine ring of GDP. 

Another part of the nucleotide-binding pocket is formed by the AHD, which is unique to 

heterotrimeric G proteins and contains six α-helices (αA–αF) that are inserted between α1 

and β2 of the Ras domain. By packing against the Ras domain, the AHD buries the bound 

nucleotide in the interface between the two domains.

The tight apposition of the AHD and the Ras domain first observed in the crystal structure of 

the Gα subunit of transducing (Gαt) led to the hypothesis that G-protein coupling to 

receptors may result in domain separation followed by GDP dissociation through the created 

exit pathway32. This was later confirmed in the crystal structure of the β2-adrenergic 

receptor (β2AR) in complex with the Gs heterotrimer that shows a large displacement of the 

AHD relative to the Ras domain upon nucleotide release14(Fig. 2a). Furthermore, double 

electron–electron resonance (DEER) spectroscopy33, hydrogen/deuterium exchange (HDX) 

measurements34, single-particle EM35, mutagenesis36–38 and molecular dynamics (MD) 

simulations39,40 on multiple G-protein isotypes have provided evidence that domain 

separation is of general importance for nucleotide release in all heterotrimeric G proteins. 

Although the AHD in the complex structure of β2AR–Gs is stabilized in one position, owing 

to its involvement in crystal-lattice contacts, single-particle EM analysis of β2AR–Gs as well 

as recent cryo-EM structures of the calcitonin and glucagon-like peptide 1 receptor in 

complex with Gs demonstrate that the delocalized AHD is highly dynamic and adopts 

variable conformations with respect to the Ras domain. Because the AHD is known to 

promote tight binding of the nucleotide to the Ras domain41, it is possible that modulation of 

the AHD dynamics might influence GTP loading to the nucleotide-free complex. Therefore, 

we speculate that interactions between the AHD and other signaling proteins could stabilize 

the open conformation of the AHD and might slow down GTP-mediated dissociation and 

activation of the G protein.

Although domain separation seems essential for rapid nucleotide release, outward movement 

of AHD alone appears to be insufficient to induce GDP dissociation from the Ras domain. 

This has been shown by deletions of the AHD resulting in an isolated Ras domain that still 
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retained nucleotide-binding ability41. Furthermore, recent long-timescale MD simulations of 

GDP-bound G-protein heterotrimers, supported by intramolecular DEER distance 

measurements, have revealed that the nucleotide remains bound to the Ras domain upon 

separation of the two domains or even when the entire AHD has been deleted40. This 

suggests that nucleotide release needs to be triggered through other receptor-mediated 

conformational changes within the Ras domain that are transmitted to the nucleotide-binding 

site to promote GDP dissociation. Indeed, numerous studies have provided evidence for 

multiple allosteric connections between the receptor–G-protein interface and the GDP-

binding site that probably play important roles in the nucleotide release of the G protein. 

Below, we describe these allosteric connections and discuss their roles in receptor-mediated 

destabilization of the GDP-binding site.

One of the best-studied regions in G proteins is the C-terminal α5 helix of Gα, which plays 

an essential role for receptor coupling and G-protein activation42–47. In the currently 

available crystal and cryo-EM structures of receptors in complex with G-protein 

heterotrimers14,15,17 or an engineered Gα subunit16, the C-terminal α5 helix of Gα forms 

the most extensive interface between the G protein and mainly TM3, TM5, TM6, and 

intracellular loops ICL2 and ICL3 of the receptor. In these structures, G-protein coupling 

and the generation of the nucleotide-free state resulted in displacement of α5 by a rotational 

translation of the helix into the receptor core (Fig. 2b). The movement of α5 appears to be 

associated with changes in other regions of the Ras domain that are involved in the 

formation of the nucleotide-binding pocket. One of the regions that undergo α5-mediated 

structural rearrangements is the β6–α5 loop. This loop is located at the N terminus of the α5 

helix and contains the conserved TCAT motif, which is important for the coordination of the 

purine ring of the bound nucleotide. The displacement of α5 in the GPCR–G-protein 

complex has been shown to disrupt the nucleotide-bound conformation and increase the 

flexibility of the β6–α5 loop34,40. Furthermore, mutations within the β6–α5 loop were 

found to accelerate spontaneous GDP dissociation from Gα in the absence of a receptor, 

thus demonstrating the importance of this region for nucleotide binding48–50.

Another route for transmitting receptor-mediated conformational changes of α5 to the 

nucleotide-binding site has been proposed based on mutagenesis51–53 and computational 

studies39,54,55. In the GDP-bound state of the G protein, α5 interacts with α1 and the two β-

strands β2 and β3 through highly conserved hydrophobic contacts. Rotation and translation 

of α5 in the receptor-bound state disrupt these hydrophobic core interactions, resulting in the 

destabilization of α1, as shown by HDX measurements34 and the poor electron and EM 

density obtained for this helix in receptor–G-protein complex structures14,15,17 (Fig. 2b). 

The α1 helix is involved in binding of both the diphosphate of GDP via the Walker A motif 

(GXXXXGK(S/T)) and the αF helix of the AHD. Thus, structural perturbation of α1 has 

been proposed to accelerate GDP release and destabilize the AHD–Ras domain interface.

Aside from the α5 helix, the αN–β1 hinge region has been shown to be important for 

receptor-mediated nucleotide release56–58. In the available complex structures, the αN–β1 

junction interacts with ICL2 of the receptor and connects it with the P loop of the 

nucleotide-binding site through the adjacent β1 strand14–17 (Fig. 2b). HDX measurements 

revealed that this region becomes more dynamic upon coupling of the G protein to the 

Hilger et al. Page 4

Nat Struct Mol Biol. Author manuscript; available in PMC 2019 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



activated receptor34. Furthermore, mutations in ICL2 of rhodopsin have been reported to 

preserve coupling to the canonical G protein transducin but to impair the receptor’s ability to 

induce GDP release57. Together, these studies provide evidence for an allosteric connection 

between ICL2 and the P loop of the G protein. Coupling of the G protein to the receptor 

might induce ICL2-dependent conformational changes in the αN–β1 hinge region that will 

be transmitted through β1 to the P loop. Disruption of the P-loop conformation probably 

results in GDP release, owing to its role in the coordination of the β-phosphate of the 

nucleotide.

In summary, the described allosteric connections between the receptor and the nucleotide-

binding site have been shown to play important roles in the activation of the G protein. Most 

likely, they represent cooperative pathways that allow simultaneous destabilization of both 

the purine- and phosphate-coordination site of the bound nucleotide upon receptor coupling, 

ensuring an efficient GDP release from the G protein. Furthermore, the allosteric 

interactions between the receptor and the nucleotide-binding site could also play an 

important role for GTP binding and destabilization of the receptor–G-protein complex, as 

discussed below.

Ligand effects on the dynamics of GPCR–G-protein complexes.

GPCR-mediated signaling through heterotrimeric G proteins can be modulated by agonists 

of different efficacies. At the most basic level, the molecular basis of ligand efficacy can be 

explained by the ligand’s ability to increase the population of active receptor conformations 

that are able to engage and activate G proteins. Therefore, differences in ligand efficacy are 

normally interpreted as changes in the efficiency and kinetics of G-protein coupling, owing 

to variations in the conformation and dynamics of the receptor. More recently, additional 

determinants of ligand efficacy have been described that include the effect of orthosteric 

ligands on the nucleotide-binding affinities of the receptor-engaged G protein. 

Measurements of the apparent GDP affinity of receptor–G-protein complexes bound to 

ligands of different efficacies demonstrated that full-agonist-stabilized complexes exhibit 

lower affinities for GDP in comparison to partial agonists59–63. Furthermore, GDP is known 

to increase the relative efficacy differences between full and partial agonists in classic 

GTPγS binding experiments, providing additional evidence that partial-agonist-occupied 

receptor–G-protein complexes are more sensitive to GDP binding than complexes bound to 

full agonists64. In the context of ligand efficacy, the observed tighter binding of GDP in the 

presence of partial agonists probably reduces the number of successful nucleotide-exchange 

events, which lowers the magnitude of the cellular response.

On a structural level, the influence of orthosteric ligands on the nucleotide-binding affinity 

of receptor-coupled G proteins can be explained by ligand-dependent modulations of the 

allosteric connections between the receptor and the nucleotide-binding site described above. 

Evidence for this has been recently provided by a single-molecule FRET study on the 

dynamics of the β2AR–Gs complex63. Here, examination of ligand-dependent TM6 

movements in the β2 adrenergic receptor in the presence of the Gs heterotrimer and different 

nucleotides revealed the existence of transient nucleotide-bound β2AR–Gs species that are in 

equilibrium with the nucleotide-free state reported in the crystal structure of the β2AR–Gs 
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complex14. In the presence of GDP, more efficacious agonists were shown to increase the 

probability of GDP release, thereby shifting the equilibrium toward the nucleotide-free state. 

Because of the observed ligand-dependent dynamics of TM6 in G-protein-bound complexes 

in the presence of nucleotides, it is possible that the efficacy of ligands bound to the 

orthosteric ligand-binding site determines how efficiently the C-terminal α5 helix of the G 

protein stably engages the intracellular cavity of the receptor. Thus, ligand-dependent 

dynamics of TM6 might be transmitted through α5 to the nucleotide-binding site, as 

described above, in order to modulate the nucleotide affinity. This notion is supported by 

NMR studies on G proteins, which show that G proteins can sample different nucleotide-

bound and nucleotide-free states65,66 and that receptor coupling is responsible for increases 

in the conformational dynamics of the G-protein heterotrimer67.

Interestingly, another study on the structure and dynamics of the calcitonin receptor–Gs 

complex provided evidence for a different mechanism in which ligands with distinct potency 

and efficacy induce distinct G-protein conformations68. Based on bioluminescent resonance 

energy transfer (BRET) and native-gel fluorescence resonance energy transfer (FRET) 

measurements between the α and γ subunits of the G protein, the authors suggested that the 

ligand-induced conformational changes are transmitted from the receptor to the coupled 

transducer. The resulting, distinct G-protein conformations showed differences in their 

sensitivity for GTP disruption that lead to changes in the G-protein turnover in cells.

Although these studies have provided important insights into the ligand-dependent 

regulation of nucleotide exchange in receptor-coupled G proteins, more work is required to 

fully understand the molecular details of receptor-catalyzed nucleotide exchange in G 

proteins and how it can be modulated by ligands of different efficacy.

Arrestin activation and dynamics

Since their discovery in the 1970s and 1980s, arrestins have evolved from terminators of G-

protein signaling by mere steric hindrance at the receptor-coupling interface to 

multifunctional adaptor proteins that form a central node in multiple G-protein-independent 

signaling pathways. While their functional roles and their numerous protein-interaction 

partners constitute an exciting and expanding field of research69–72, much remains to be 

learned about how receptor activation triggers conformational changes in arrestin and about 

the ligand-dependent function of a receptor-coupled arrestin. This section aims to focus on 

the role of arrestin’s structural features and conformational dynamics, especially when 

coupled to receptors.

Structural features of arrestins.

In contrast with the known diversity of G proteins, only four arrestin isoforms exist. 

Arrestin-1 and arrestin-4, also known as rod and cone arrestin, respectively, are mainly 

found in the eye, whereas arrestin-2 and arrestin-3, also known as β-arrestin1 and β-

arrestin2, are distributed ubiquitously. Only the double knockout of arrestin-2 and arrestin-3 

is embryonically lethal in mice73, which suggests some functional redundancy between β-

arrestin isoforms. However, differences in expression level74,75, cellular localization76 and 

binding affinity for receptors77 suggest partially distinct roles for both nonvisual 
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isoforms73,78. Structures of all four isoforms have been solved in the inactive state79–82, as 

reviewed in ref. 83. For arrestin-1, the pre-active R175E mutant was crystallized in what is 

probably an intermediate activation state84, whereas active-state structures have been 

obtained individually for the constitutively active splice variant p44 (ref. 85) and for a 

preactivated mutant fused to phosphorylated, constitutively active rhodopsin19. Active 

arrestin-2 has been crystallized bound to the phosphorylated C tail of the vasopressin 

receptor, stabilized by an active-state-specific antibody fragment86, and its coupling to a 

chimeric β2V2R receptor has been visualized by single-particle negative-stain EM87. Most 

recently, the structure of inositol hexakisphosphate (IP6)-activated arrestin-3 was solved88. 

From these structures and the biophysical studies detailed below, global arrestin features, 

basal-state interactions and activation hallmarks appear conserved across isoforms.

Arrestins are ~45-kDa proteins organized in an N and C lobe, each forming a β-stranded 

sandwich structure connected by a hinge region (Fig. 3a). At this N- and C-domain interface, 

the C loop, finger loop and middle loop form the central crest, flanked by the lariat or 17–18 

loop, part of which is often referred to as the gate loop. Two loops on the outer side of the C-

terminal lobe compose the C edge, which interacts with the membrane bilayer upon arrestin 

activation89,90. Two major interaction networks maintain arrestin in its basal, inactive 

conformation. First, the three-element interaction, is mediated by hydrophobic interactions 

between the proximal part of the C tail and the N-terminal β-strand I and α-helix I (Fig. 3b). 

Second, the polar core, is a hydrogen-bond network between five buried solvent-excluded 

charged residues on the N-terminal β-strands III and X, the gate loop and the distal part of 

the C tail (Fig. 3c). Together, these interactions keep the central crest regions closely packed 

and form an intramolecular N–C lock, preventing access to a positively charged groove on 

the N lobe.

Upon activation by receptor binding, arrestin undergoes several major conformational 

changes, namely disruption of the three-element interaction, breakage of the polar core, a 

~20° interdomain rotation, release of the C tail and substantial rearrangements of the finger, 

middle and gate loops, recently reviewed in ref. 91 (Fig. 3). These changes expose the 

concave surface of the arrestin N lobe and its positively charged phosphointeraction sites, 

such as lysines and arginines that engage GRK-phosphorylated serines and threonines of the 

receptor C tail. At present, it is unclear which aspects of receptor binding induce each 

change and what sequence of events leads to arrestin activation, and it is unknown which 

exact changes are required for different downstream signaling responses. However, much 

has recently been learned on the GPCR–arrestin binding interface from the recent 

rhodopsin–arrestin-1 complex structure19 (Fig. 4). The interactions are essentially mediated 

by two interfaces: the receptor C tail with the arrestin N-lobe groove and the receptor core 

with the arrestin central crest. The core engagement of the receptor with arrestin’s central 

crest is mainly mediated by three interactions: (i) the arrestin finger loop with the receptor 

intracellular binding pocket, (ii) the C-terminal base of the finger loop and the back loop in 

arrestin with the intracellular ends of TM5 and TM6, connected by ICL3 in rhodopsin and 

(iii) the cleft formed between the middle, lariat and C loops in arrestin, with the intracellular 

end of TM3 and ICL2 in rhodopsin. Earlier mutational and functional mapping studies of 

arrestin have provided additional validation of these interaction interfaces89 and identified 

residues involved in receptor coupling specificity92–94.
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Arrestin conformational dynamics.

Several studies have investigated how receptors, ligands and phosphorylation patterns 

modulate the conformational states and dynamics of engaged arrestin, increasing our 

understanding of the molecular underpinnings behind distinct functional outcomes. In the 

following sections, we consider the experimental evidence for multiple arrestin 

conformations and the high conformational flexibility and heterogeneity of arrestin.

The effect of receptor coupling was first investigated in the rhodopsin–arrestin-1 complex by 

electron paramagnetic resonance (EPR), providing early biophysical evidence that the 

arrestin C tail becomes disordered upon receptor coupling, indicative of its release95. 

Similarly for nonvisual arrestins, BRET measurements between an N-terminal Renilla 
luciferase and a C-terminal yellow fluorescent protein fused to arrestin-3 provided initial 

low-resolution measurements of receptor- and ligand-specific arrestin conformational 

changes probably affecting C-tail release96,97. More recent BRET- and FRET-based 

investigations of arrestin-3 have indicated that regions both on the periphery and within the 

N and C domains of arrestin also show receptor- and ligand-specific conformational 

signatures98,99.

The ability of arrestin to specifically trigger multiple signaling pathways suggests that it is 

capable of adopting multiple conformations to effectively engage different downstream 

effectors, even when bound to a receptor. The plasticity of its surface probably plays an 

important role in this process. EPR studies have shown that binding to inactive dark 

phosphorylated rhodopsin (P-Rh) decreases the mobility of the arrestin-1 finger, middle and 

C loops, whereas binding to light-activated phosphorylated rhodopsin (P-Rh*) further 

decreases finger-loop mobility but restores middle-loop mobility95,100. A highly flexible 

middle loop, although located in the central crest, which interacts with the receptor, was also 

observed for arrestin-2 and arrestin-3 bound to rhodopsin101. Interestingly however, when 

coupled to β2AR, both the finger and middle loops of arrestin-2 showed decreased 

hydrogen–deuterium exchange87. At least two sequential conformational changes were 

observed in fluorescently labeled arrestin-1 upon interaction with P-Rh* (ref. 102), and it was 

found that the finger loop only engages the receptor upon agonist binding, whereas one of 

the C-edge loops can engage unliganded receptor103. Engagement of distinct arrestin-1 

elements to unphosphorylated light-activated and dark-phosphorylated rhodopsin, inducing 

conformational changes distinct to those triggered by binding of P-Rh*, was further 

evidenced by solution NMR of labeled arrestin-1 (ref. 104).

Another layer of signaling complexity, and hence, potential conformational variability, is 

added by GRK-mediated phosphorylation of the receptor C terminus and/or intracellular 

loops. Distinct GRKs imprint specific phosphoserine–phosphothreonine patterns, so-called 

‘phosphorylation (bar)codes’, first suggested in ref. 105, onto the receptor106–108, which are 

then differentially ‘read out’ by arrestin, thereby modulating interaction affinity and 

triggering specific signaling outcomes107,109–111. A recently solved crystal structure of the 

rhodopsin–visual arrestin complex together with receptor–arrestin proximity assays19 as 

well as earlier rhodopsin studies112,113 suggest that the presence of three distinctly spaced 

patches of receptor-attached phosphates or negative charges is critical for high-affinity 

binding between receptor and arrestin, which may explain why some receptors interact 
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weakly or transiently with arrestin and others bind strongly77. Using the same biosensor that 

evidenced receptor- and ligand-specific conformational signatures in arrestin-3, it has been 

shown that distinct phosphorylation patterns on β2AR also induce distinct BRET 

signatures107. An elegant 19F-NMR study combining unnatural amino acid incorporation in 

arrestin-2 with phosphopeptides mimicking distinct receptor C-terminal phosphorylation 

patterns evidenced that not only the direct phosphosensing sites but also remote sites in the 

C loop, lariat loop and one of the C-edge loops showed peptide-specific chemical-shift 

signatures114. Moreover, the same study showed two types of conformastional states, either 

slow- or fast-exchanging for arrestin-2 bound to the phosphorylated C tail of the vasopressin 

receptor.

Although arrestin binding and activation is often described as a two-step process in which 

phosphorylated receptor C-tail engagement necessarily precedes its core engagement, the 

picture is probably more complex. Early115 as well as more recent studies116–118 (Latorraca 

N. R., personal communication) indicate that receptor-core and C-tail engagement can each 

independently mediate arrestin activation and signaling events. As such, multiple types of 

receptor–arrestin complexes probably exist, with distinct or complementary functional 

outcomes. Moreover, binding of arrestin to both unphosphorylated and phosphorylated 

receptor, but with distinct binding modes and functional outcomes, as observed for the M1 

muscarinic acetylcholine receptor119, rhodopsin120 and other receptors121,122, further 

expands the spectrum of arrestin-mediated GPCR signaling.

Taken together, these biophysical studies have revealed multiple interaction modes between 

arrestin and receptor, as well as substantial conformational variability within arrestin while 

coupled to a GPCR. Most likely, phospho-barcoding of the receptor C tail can act 

independently or in concert with ligand-dependent core conformations to achieve specific 

arrestin conformations. The receptor–arrestin binding interface appears very dynamic, with 

the high conformational flexibility of arrestin probably intimately linked to its multiple 

signaling functions. Arrestins thus show a high degree of conformational plasticity and loose 

allosteric coupling between regions that can be stabilized by specific receptor-interaction 

surfaces. This plasticity is illustrated by the fact that a C-tail truncation of arrestin-2 induces 

a pre-activated, phosphorylation-independent phenotype in cellular assays, but still 

crystallizes in the inactive form80. Similarly, the constitutively active splice variant p44 

crystallizes in different forms85,123. On the other hand, transient interactions with receptors 

seem sufficient to elicit activation responses after receptor dissociation, suggesting that some 

active conformational states can be maintained in the absence of a receptor98,119,124.

Conclusion and outlook

GPCRs are very versatile proteins that exist in multiple conformations, in which loose 

allosteric coupling between the orthosteric ligand-binding site and the intracellular 

transducer-binding site is probably responsible for the ability of activated receptors to 

regulate multiple intracellular signaling pathways. Currently available functional, structural, 

spectroscopic and computational studies suggest that receptor–transducer complexes are also 

highly dynamic and that the coupled transducers can undergo conformational transitions 

(independently or in response to receptor binding, or both). Moreover, they indicate that the 
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conformational dynamics of G proteins and arrestins can be modulated by the ligand- and/or 

phosphorylation-dependent states of the receptor, providing evidence for an allosteric 

regulation that can influence transducer activation and downstream signaling events. 

However, more studies will be required to fully understand how the interplay of receptor and 

effector conformational states and dynamics tune the functional outcomes in the cell and 

how this is regulated by different ligands. The multitude of conformational states of GPCRs 

and their signaling complexes have been proven difficult to capture crystallographically. As 

such, investigations by spectroscopic methods like fluorescence, EPR and NMR 

spectroscopy and structural approaches using cryo-EM are required to fully understand 

GPCR signaling at the molecular level. Furthermore, time-resolved measurements such as 

HDX measurements and radiolytic footprinting are needed to delineate the sequence of 

events that are important for the association and dissociation of GPCR–transducer 

complexes. Together, these studies will also help us to identify the factors that determine the 

coupling selectivity of receptors for different G proteins and arrestins.
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Fig. 1. G-protein-coupled receptor signal transduction.
Receptors regulate multiple intracellular signaling cascades including G-protein-dependent 

and G-protein-independent pathways. Agonist binding activates the receptor by inducing 

conformational changes that involve an outward shift of the transmembrane domain (TM6, 

blue). The activated receptor can bind to a diverse set of intracellular signaling proteins 

including G proteins (orange), GRKs (red) and arrestins (green, inactive arrestin; blue-green, 

active arrestin). Coupling of heterotrimeric G proteins to the receptor triggers nucleotide 

exchange followed by dissociation of the G protein into the Gα and Gβγ subunits. Both 

subunits can regulate different downstream effector proteins. GTP-bound Gα subunits can 

modulate the activity of adenylyl cyclase (AC, yellow), while Gβγ can interact with G-

protein-coupled inwardly rectifying potassium channels (GIRK, cylindrical TM 

representation, gray). G-protein-mediated signaling is terminated by hydrolysis of GTP and 

reassociation of Gα with Gβγ to form the inactive heterotrimer. Activation of the receptor 

can also lead to phosphorylation by GRKs and subsequent coupling to arrestin. Arrestin 

coupling to the receptor leads to desensitization and arrestin-mediated activation of 

downstream effector proteins like mitogen-activated protein kinases (MAPKs) or SRC 

kinases. Arrestin activation also promotes the internalization of the receptor into endosomes 

followed by degradation or recycling of the receptor to the plasma membrane. NL, N lobe of 

arrestin; CL, C lobe of arrestin.
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Fig. 2. Receptor-mediated conformational changes in Gα.
a, Structural comparison of nucleotide-free Gαs (red) coupled to β2AR (gray, PDB 3SN6) 

and GTPγS-bound Gαs (orange, PDB 1AZT). GTPγS is shown as spheres. Receptor 

coupling of Gs induces an outward movement of the α-helical domain of Gαs (GαsAHD) 

relative to its position in the GTPγS-bound state. Gβ (cyan) and Gγ (magenta) have been 

made transparent for clarity. b, The α5 helix undergoes a rotational translation into an 

intracellular cavity of the receptor that is formed by outward movement of transmembrane 

helices TM5 and TM6 upon receptor activation. Displacement of α5 leads to perturbation of 

the β6–α5 loop and the hydrophobic core interaction between α5, β2 and β3 and α1, which 

results in a rearrangement of the β6–α5 loop and destabilization of α1, which are important 

for the binding of the purine ring and the phosphates of the nucleotide, respectively. 

Interaction between the intracellular loop 2 (ICL2) of the receptor and the αN–β1 hinge 

region of Gαs may also lead to conformational changes in β1 and the adjacent P loop that 

forms part of the phosphate-binding site in the GTPγS-bound Gαs structure.
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Fig. 3. Conformational changes in arrestin-2 upon activation.
a, Overlay of arrestin-2 in its inactive (wheat, PDB 1G4M) and active (green, PDB 4JQI) 

states. In the inactive conformation, the arrestin C tail (dashed lines represent unresolved 

residues) docks onto the arrestin N lobe. The active state was obtained by crystallizing 

arrestin in the presence of a peptide corresponding to the fully phosphorylated vasopressin 

receptor 2 C terminus (V2Rpp, dark blue) and an active-state-stabilizing antibody fragment 

(not shown). Activation induces major conformational changes (indicated by purple arrows): 

rearrangements of the loops at the N–C-domain interface, displacement of the arrestin C tail 

and an ∼20° interdomain rotation. Two major interaction networks maintain arrestin in its 

basal, inactive conformation. b, The three-element interaction is mediated by bulky 

hydrophobic residues (shown in stick representation) between the C tail, the β-strand I and 

the α-helix I. c, The polar core is a conserved network of charged residues (shown in stick 

representation) forming ionic interactions (dashed gray lines) between the N-terminal β-

strands III and X, the gate loop and the C tail.
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Fig. 4. Structure and interaction interface of the rhodopsin–arrestin-1 complex.
a, Overview of the rhodopsin–arrestin-1 structure (PDB 5W0P), obtained by fusing a 

preactivated arrestin mutant (shown in green, a triple alanine mutation disrupting the three-

element interaction) to a constitutively active rhodopsin mutant (gray). Two of the three 

known phosphorylation sites (red) on the rhodopsin C tail (orange) are resolved in the 

structure. b,c, Front view (b) and side view (c) of the rhodopsin–arrestin interface, with the 

structural elements of arrestin that interact with the receptor highlighted in dark green and 

the interacting receptor residues colored according to the arrestin loops that they are 

interacting with (blue, finger loop (FL); magenta, middle loop (ML); yellow, C loop (CL); 

orange, back loop (BL)).
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