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ABSTRACT Using 894 phylogenetically diverse genomes of the Mycobacterium tu-
berculosis complex (MTBC), we simulated in silico the ability of the Hain Lifescience
GenoType MTBC assay to differentiate the causative agents of tuberculosis. Here, we
propose a revised interpretation of this assay to reflect its strengths (e.g., it can dis-
tinguish some strains of Mycobacterium canettii and variants of Mycobacterium bovis
that are not intrinsically resistant to pyrazinamide) and limitations (e.g., Mycobacte-
rium orygis cannot be differentiated from Mycobacterium africanum).
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The in vitro diagnostic (IVD) CE-marked Hain Lifescience GenoType MTBC assay is the
oldest, and likely the most widely used, commercial assay to differentiate the

causative agents of tuberculosis (TB) (1). Strictly speaking, these agents comprise
Mycobacterium canettii, which is almost exclusively limited to the Horn of Africa, on the
one hand and several species/ecotypes of the Mycobacterium tuberculosis complex
(MTBC) on the other, although most researchers and guidelines consider M. canettii to
be part of the MTBC (2, 3). Clinically, the early identification of the precise causative
agent of TB is important because it can serve as a marker for intrinsic resistance or may
inform the attribution of the source of infection (e.g., in cases of Mycobacterium bovis,
intrinsic resistance to pyrazinamide can usually be ruled in and a human source for the
infection is unlikely [4]).

Throughout the past decade, the interpretation of the GenoType MTBC, but not its
design, has been revised to reflect changes in our understanding of the causative
agents of TB (1, 3, 5). More recently, several new animal species/ecotypes have been
discovered, which prompted us to investigate to what extent these could be differen-
tiated with the Hain assay using a collection of 894 diverse genomes representing M.
canettii and major phylogenetic groups of MTBC (Fig. S1 and Table S1) (6). This was
possible because Hain Lifescience has filed a European patent (7) for its assay, which
relies on a 23 rRNA probe to identify M. canettii/MTBC as a whole, whereas mutations
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in gyrB and the RD1BCG deletion differentiate individual species/ecotypes (Figures S1
and S2 and Table S2) [8]. Specifically, we typed all 894 genomes in silico for the
single-nucleotide polymorphism (SNP) and deletion markers from the patent (see
Supplemental Methods S1).

The current package insert of the GenoType MTBC lists seven binding patterns for
M. canettii or MTBC isolates (patterns 2 to 8 in Fig. 1 and Table S1). In 2010, however,
Fabre et al. demonstrated experimentally that a minority of M. canettii strains yield a
novel pattern, which does not feature in the package insert (9). Our simulation
confirmed these results. Specifically, two of the M. canettii strains with the unusual
experimental pattern (i.e., Percy157 and Percy525) from Fabre et al., for which genomes
were available and which could therefore be included in our study, also yielded the
novel pattern in silico (pattern 1 in Fig. 1 and Table S1) (9). The remaining five M. canettii
genomes from Fabre et al. (i.e., Percy22, Percy32, Percy50, Percy79, and Percy301) could
not be differentiated from M. tuberculosis in silico, which was in agreement with the
experimental findings (pattern 2 in Fig. 1 and Table S1) (9). Given the highly recombi-
nogenic nature of M. canettii, it is not surprising that this species yields two different
patterns (10, 11). All representatives of this species, including the two strains that gave
the new binding pattern experimentally and in silico, have been found to be resistant
to pyrazinamide when tested with the Bactec MGIT 960 at 100 �g/ml, the only critical
concentration recognized by the Clinical and Laboratory Standards Institute and the
World Health Organization (WHO) (9, 12–17). Although it is unclear whether this
phenotype is due to a single mechanism shared by all strains (e.g., rpsA T5A) or whether
different mutations are responsible in different strains (e.g., panD M117T or a series of
pncA mutations [Table S3]), we recommend that the package insert is updated to
include this novel pattern as “M. canettii (intrinsically resistant to pyrazinamide)” (14,
18–20).

FIG 1 Proposed interpretation of binding patterns of Hain Lifescience GenoType MTBC. Eight
binding patterns are possible for samples that contain a single strain of MTBC or M. canettii. The first
binding pattern is not currently included in the package insert of the GenoType MTBC (5, 9). With
the exception of pattern 4 for Mycobacterium microti, the interpretations of the remaining patterns
were updated to include information about intrinsic resistance to antibiotics and/or to reflect the
improved understanding of the phylogenetic diversity among the causative agents of TB. More
information about clade A1 can be found elsewhere (6). Additional binding patterns are possible for
samples that are negative, contain other bacteria, or when the assay was not carried out correctly
(in these cases, one or more of the conjugate control [CC], universal control [UC], or MTBC bands
would be negative [5]).
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Moreover, our findings suggest the following changes for the remaining seven
binding patterns (Fig. 1, Fig. S1, and Table S1). First, pattern 3, currently used to
differentiate Mycobacterium africanum from the rest of the MTBC and from M. canettii,
has to be revised, since our analysis showed this pattern cannot distinguish M.
africanum from Mycobacterium orygis, Mycobacterium pinnipedii, or the clade A1
ecotypes (i.e., Mycobacterium mungi, Mycobacterium suricattae, the chimpanzee bacil-
lus, and the dassie bacillus) (6, 21, 22). Second, for the sake of clarity, we would separate
M. bovis and Mycobacterium caprae, as they belong to two independent phylogenetic
groups and are usually recognized as separate species/ecotypes (3). In contrast, the
bacillus Calmette-Guérin (BCG) was derived from a M. bovis strain and is best described
as M. bovis BCG to emphasize its intrinsic resistance to pyrazinamide (4). Finally, the
current package insert features two binding patterns for “M. bovis subsp. caprae,” of
which one is described to occur in only 5% of cases of M. caprae (5). Our collection
featured seven genomes consistent with this rarer pattern. However, the seven ge-
nomes did not group together phylogenetically (Fig. S1). Three of the strains were
isolated in 2009 from primates that were placed in quarantine upon entering the
United States (23, 24). Their genomes grouped together with the M. caprae genomes
on the phylogeny and shared the lepA V424V marker for this species (25). In contrast,
the other four genomes were more closely related to that of M. bovis but lacked the
pncA H57D mutation that is responsible for intrinsic pyrazinamide resistance in this
species (8, 14). Three of these isolates were isolated from humans in Malawi and the
fourth from a Nilgau antelope from a German zoo. For the latter sample, we knew the
spoligotyping pattern, which we used to query the M. bovis spoligotype database (26).
The spoligotype for the antelope isolate from 1996 (SB1898) appears to be very rare, as
only one identical representative was found, which was submitted from Spain in 2009.
Thus, it is unclear whether these four strains represent a novel ecotype or species, but
because they are phylogenetically closer to M. bovis than to M. caprae, we recommend
that pattern 6 should be reported as “M. caprae/M. bovis (not intrinsically resistant to
pyrazinamide).”

M. orygis has been isolated from many different animals, and there is a growing
recognition that it is a zoonotic source of human TB (27). Our in silico typing approach
confirmed that M. orygis could be specifically identified by a mutation at codon 329 of
gyrB (8). Since this marker is contained within the gyrB amplicon, we suggest that it
could be added to the Hain assay, as this would avoid misclassifications such as that in
Rahim et al., in which cattle from Bangladesh were erroneously reported to have been
infected with M. africanum instead of with M. orygis (28).

The findings in this study are important for two reasons. First, most of our proposed
changes can be implemented easily by updating the package insert of the Hain
Lifescience GenoType MTBC (5). More broadly, given that whole-genome sequencing is
now increasingly being used as a routine diagnostic tool, it would be possible to
implement our in silico surveillance approach in real time to automatically flag unusual
isolates for experimental follow-up. In fact, if clinical sequencing providers, such as
Public Health England in the United Kingdom, were to offer this as a professional
service, it could generate much-needed revenue to reduce the cost of sequencing to
public health systems and, therefore, to the tax payer, while enabling commercial
companies to conduct postmarketing surveillance for genotypic assays comprehen-
sively and cost effectively—a win-win situation for all parties.
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