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ABSTRACT Nineteen Proteus mirabilis isolates producing the carbapenemase OXA-23
were recovered over a 2-year period in 19 French hospitalized patients, of whom 12 had
community onset infections. The isolates exhibited a slightly reduced susceptibility to
carbapenems. Whole-genome analysis revealed that all 19 isolates formed a cluster com-
pared to 149 other P. mirabilis isolates. Because of its susceptibility to carbapenems, this
clone may be misidentified as a penicillinase producer while it constitutes a reservoir of
the OXA-23-encoding gene in the community.

KEYWORDS carbapenemase, OXA-23, Proteus mirabilis, spread, clonality

The emergence of carbapenem resistance in the Enterobacteriaceae is mainly linked
to horizontal diffusion of carbapenemases belonging to Ambler classes A, B, and D

(1). While the OXA-48-like enzymes are the most prevalent carbapenemases in several
European countries, including France, carbapenem-hydrolyzing enzymes of OXA-23
and OXA-58 types are generally confined to Acinetobacter species (2). The blaOXA-23 and
blaOXA-58 genes have occasionally been reported in Enterobacteriaceae species, espe-
cially in Proteus mirabilis. The spread of an OXA-23-producing clone of P. mirabilis was
first revealed during a survey conducted between 1996 and 1999 in France (3). Later,
the blaOXA-23 gene was detected sporadically in Escherichia coli in Singapore and India
and, more recently, in P. mirabilis from Finland (4–6). Besides, P. mirabilis strains with a
chromosomally integrated or plasmid-borne blaOXA-58 gene were characterized in
Belgium and in Germany, respectively (7, 8).

Here, we report on the regional spread of a blaOXA-23-positive P. mirabilis clone.
Between November 2016 and May 2018, 19 isolates of P. mirabilis were found to exhibit
an unusual penicillinase-like resistance phenotype (see below). The isolates were
recovered from 19 patients hospitalized in ten different wards at the University Hospital
of Besançon, France (Table 1). None of these patients had travelled abroad, and three
had received amoxicillin or the amoxicillin-clavulanate combination within the 2
months before the isolation of P. mirabilis strain. Twelve patients were detected positive
within the first 2 days following their admission, among whom seven had no history of
hospitalization within the preceding 6 months (Table 1). An epidemiologic link between
the cases could not be found. Together, these elements strongly suggested an acqui-
sition of the P. mirabilis isolates within the community. Their antimicrobial susceptibility
was determined by the disk diffusion method on Mueller-Hinton agar (Bio-Rad, Marnes-
la-Coquette, France) and interpreted according to current EUCAST guidelines (http://
www.eucast.org). All of the isolates were resistant to amoxicillin and ticarcillin, with no
recovery of their susceptibility with the addition of clavulanate. They also displayed
decreased susceptibility to piperacillin-tazobactam but remained susceptible to
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expanded-spectrum cephalosporins (cefotaxime, ceftazidime, and cefepime). All
isolates appeared to be susceptible to ertapenem but with inhibition zone diam-
eters around the disk close to the breakpoint (i.e., 25 to 26 mm). This unusual
antibiotic resistance profile evoked production of a class D �-lactamase expressing
a poor carbapenem-hydrolyzing activity. All of the isolates were thus screened by
PCR for the Ambler class D carbapenemase-encoding genes blaOXA-48-like, blaOXA-

23-like, blaOXA-24-like, and blaOXA-58-like (9, 10), and finally turned out to harbor
blaOXA-23. We tested the ability of ChromID Carba Smart medium (bioMérieux, La
Balme-les-Grottes, France) to grow the P. mirabilis isolates carrying blaOXA-23 by
plating �107 CFU of five representative isolates (PmOXA23-1 to PmOXA23-5).
However, none of them could develop on that selective chromogenic medium. Of note,
enterobacteria that produce other class D carbapenemases, such as OXA-244, are also
not detected by this method (11). The transferability of blaOXA-23, using E. coli and
Acinetobacter baumannii as recipient strains, was tested as described previously (12). No
transconjugants were obtained despite several attempts under different conditions
(not shown), suggesting a chromosomal location for the resistance determinant. In
order to identify other antibiotic resistance genes, the total DNA of each P. mirabilis
strain was fully sequenced on an Illumina NextSeq platform. The DNA libraries for
whole-genome sequencing were prepared using the Nextera XT kit with a 2 � 150-bp
paired-end approach (BioProject accession number PRJNA490489). De novo assembly
of the contigs was performed with SPAdes v3.11 (13), while the resistance genes were
identified by using BLAT software with the ResFinder database (http://cge.cbs.dtu.dk/
services/ResFinder, accessed 22 November 2018) (14). The mean size of the P. mirabilis
genomes was 3.99 Mb, with a G�C content of 38.8%. We found that, in addition to
blaOXA-23, all isolates harbored genes conferring resistance to aminoglycosides [aadA1,
aph(3�)-Ib, and aph(6)-Id], sulfamides (sul2, except in isolate PmOXA23-9), trimethoprim
(drfA), chloramphenicol (cat), and tetracyclines [tet(J)] (Table 1). Most isolates also
possessed the phenicol resistance gene floR and the aminoglycoside resistance genes
aac(3)-IIa and aph(3=)-Ia. Finally, isolates PmOXA23-3 and PmOXA23-5 contained the
genes aac(3)-IVa and aph(4)-Ia and the lincosamide nucleotidyltransferase-encoding
gene lnu(G) (Table 1).

To assess the clonal relationship between the 19 P. mirabilis isolates, we compared
their genomes with those of 149 P. mirabilis strains available in the NCBI database
(Table S1) by whole-genome multilocus sequence typing (wgMLST; https://github.com/
bvalot/pyMLST). Multilocus sequence typing (MLST) alleles were assigned with respect
to 3,686 genes present in the core genome of the reference strain P. mirabilis HI4320
(15). From the 2,660 genes identified in �95% of the genomes, we built a distance
matrix that showed the relative genomic divergence between the isolates. This re-
vealed that our 19 isolates formed a cluster (rectangle in Fig. 1). This cluster also
included the blaOXA-23-positive isolate ESBL4969, identified in Finland in 2014, and the
blaOXA-58-positive isolate 1091, collected in 2015 in Belgium (6, 7). Overall, the wgMLST-
based phylogeny revealed a notable diversity within the 149 P. mirabilis isolates.
Another cluster of 19 P. mirabilis isolates was evidenced (triangle in Fig. 1), correspond-
ing to CMY-2-positive isolates responsible for community-acquired infections in Ireland
(16). The phylogenetic network analysis also highlighted two other genomic branches
evolving from a common ancestor, which included 6 and 19 strains, respectively
(represented as circles in Fig. 1).

Examination of the blaOXA-23 genomic environment showed that the gene was
embedded in a transposon-like structure that was itself inserted in a truncated Tn5393
transposon (Fig. 2). The structure was identical in the 19 isolates and exhibited 100%
sequence identity with that of blaOXA-23-positive P. mirabilis ESBL4969 (GenBank acces-
sion number KU302354). Interestingly, only one ISAba1-like copy bounded by canonical
9-bp direct repeats (DRs) (CGCTTCATC) is inserted in Tn5393 in the clonally related
OXA-58-positive strain P. mirabilis 1091 (Fig. 2). In the PmOXA-23 isolates, a 6,766-bp
genetic element mapped at the same position and was bracketed by additional 13-bp
DRs (TGAGCCACCTCCG), which together with the aforementioned 9-bp DRs formed a
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22-bp duplication signature identical to that of isolate ESBL4969 (6). This genetic
element was composed of transposon Tn2008, two other insertion sequences (ISAba14
and an ISAba125-like sequence), and a gene encoding a truncated peptide related to
the RepB family of plasmid replication initiators. Despite the presence of the 22-bp
target site duplication suggesting a classical insertion of a Tn2008-containing
transposon-like structure, the hypothesis of a genetic recombination cannot be ruled
out. The identification of the same insertion site in the P. mirabilis 1091 genome and the
fact that the sequencing depth of the blaOXA-23-carrying contig was similar to that of

FIG 1 Phylogenetic network of the genomes of 168 P. mirabilis isolates. The genomic comparison included the 19 blaOXA-23 isolates collected at the University
Hospital of Besançon (France) and 149 P. mirabilis isolates available in the NCBI database (Table S1). The core genome was defined as genes shared by �95%
of the selected genomes (�160/168 genomes). It was composed of 2,660 genes of the 3,686 genes annotated in reference strain P. mirabilis HI4320. The network
was built using core genome multilocus sequence typing (cgMLST) distances with the neighborNet method in SplitTree4 (17). OXA-23- and CMY-2-positive P.
mirabilis clusters are surrounded by a rectangle and a triangle, respectively. Circles represent two additional genomic branches evolving from a common
ancestor.
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the whole genome strongly support the notion that the element is integrated in the
chromosome and not in a plasmid. Furthermore, as noted for isolate ESBL4969, the
vicinity of this element is a hot spot for integration of various insertion sequences
(ISAba1-like, ISAba14, ISAba125-like, ISVsa3, and IS3-like) and is subject to significant
rearrangements in antibiotic resistance genes. Hence, the gene sul2 associated or not
with the gene floR was absent in isolates PmOXA23-12 and PmOXA23-9, while aph(4),
aac(3)-IVa, and lnu(G) were present in PmOXA23-3 and PmOXA23-5. This high degree
of genetic polymorphism suggests a propensity of this region to collect genes by
horizontal transfer.

In summary, the present study highlights the diffusion of an OXA-23-positive P.
mirabilis clone among epidemiologically unrelated patients. Because of its very low
level of resistance to carbapenems, this clone is likely to be underrecognized by
medical laboratories analyzing samples from outpatients, especially if antibiotic sus-
ceptibility tests are performed with automated systems based on the broth microdi-
lution method, which uses breakpoint concentrations of drugs only. Prevalence of the
clone in the French community remains unknown and warrants more extensive inves-
tigations. The attention of microbiologists should be drawn by ertapenem-susceptible
strains of P. mirabilis having inhibition zones around the ertapenem disk close to the
EUCAST susceptibility breakpoint diameter (25 mm).

Accession number(s). The DNA libraries for whole-genome sequencing in this

study have been deposited in GenBank under the BioProject accession number
PRJNA490489. The whole-genome shotgun project for PmOXA23-13 has been depos-
ited in GenBank under the accession number SLUF00000000.

SUPPLEMENTAL MATERIAL
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FIG 2 Schematic representation of blaOXA-23 insertion in the PmOXA23 clone. Genes are represented by light gray arrows indicating the direction of
transcription. The predicted functions of genes are shown under the arrows. Gray boxes and black triangles represent insertion sequences and direct repeats,
respectively. The OXA-23-carrying transposon-like structure of strain PmOXA23-13 (GenBank accession number SLUF00000000) was compared to that of an
OXA-58-positive P. mirabilis 1091 isolate (accession number MCOR00000000).
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