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ABSTRACT Antimicrobial resistance (AMR) varies regionally. This study longitudi-
nally maps Escherichia coli susceptibility leveraging Wisconsin antibiograms (n = 202)
collected from 2009, 2013, and 2015 to inform the development of a novel clinical
decision support tool. Spatial interpolation methods were tested with E. coli suscep-
tibilities to create geographic AMR visualizations and to estimate susceptibility in ar-
eas without AMR data. These visualizations and an interactive mapping tool, the
AMR Tracker, provide a proof of concept for empirical antibiotic treatment decisions.
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ntimicrobial resistance (AMR) is a serious global health threat with local implica-

tions. The Centers for Disease Control and Prevention considers antibiotic-resistant
infections to be one of the greatest health challenges of our time and advocates for
targeted antibiotic prescribing practices to help address the threat. Antimicrobial
stewardship guidelines also endorse this strategy, and stewardship program interven-
tions are associated with improved clinical and economic outcomes (1-3). One strategy
for ensuring antibiotic prescription practices that limit AMR development is to factor
local AMR trends in empirical treatment decisions (1). These trends are currently
captured in a tabulated antibiogram, which, while providing accurate data, is generally
limited to one institution or unit. In addition, the use and function of antibiogram data
have not changed in several decades, and many practitioners find them difficult to use
and thus may not use them at all.

We engaged clinician partners from local health systems to assess current AMR data
resources and to determine the desired format and content of an improved resource.
Our survey found that only 13% of antibiotic-prescribing physicians used an antibi-
ogram weekly. Fifty-seven percent of respondents indicated that visualization of re-
gional antibiotic resistance would improve the translation of AMR data into practice “a
great deal” (4). Although surveillance reports and geographic maps of AMR have been
produced across Europe and the United States, including Wisconsin, they have had
limited application to the clinical setting and can be refined for patient treatment
decisions (5-12).

The objective of this study was to map regional Escherichia coli antibiotic suscepti-
bility in Wisconsin and to create a useful tool for prescribing health care providers.
Based on Wisconsin antibiogram data from 2009, 2013, and 2015, we created novel
visualizations and an interactive mapping tool, AMR Tracker, as a proof-of-concept
functional aid for practitioners to use during empirical treatment decisions.

Antibiograms were collected from health systems, hospitals, and clinics in Wiscon-
sin, totaling 202 antibiograms (2009, n = 60; 2013, n = 74; 2015, n = 68), representing
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FIG 1 Interpolated 2015 Wisconsin E. coli antibiotic susceptibilities.

201,091 Gram-negative isolates. We excluded tertiary care facilities because patients
there are typically referred or transferred from distant locations. E. coli susceptibilities
to amoxicillin-clavulanate, ampicillin, ampicillin-sulbactam, ciprofloxacin, levofloxacin,
nitrofurantoin, and trimethoprim-sulfamethoxazole were included. If an antibiogram
reported extended-spectrum B-lactamase susceptibility results separately, the number
of isolates was used to calculate the average susceptibility, including all E. coli isolates
at the same location.

For geographic analysis, each antibiogram was assigned geographic coordinates to
a discrete location or geocoded. Specific addresses were used when identified, but
when only general information was available, the facility was placed at the centroid of
the county or city. This initial data preparation stage produced a series of spatial data
sets containing geographic point features, with one point per health care facility, for
each of the three sample years and E. coli susceptibility for each antibiotic of interest.

We explored various interpolation methods to estimate susceptibility values be-
tween geographic points. We tested the inverse distance-weighted and kriging meth-
ods (13-15). Ultimately, we found that a spline-with-barriers approach produced the
most rational and visually appealing estimates of statewide conditions (16). After
optimization, the mapping visualized regional differences in antibiotic susceptibilities
(Fig. 1). The mapping demonstrated wide variability in susceptibility statewide and
among antibiotics. Lower susceptibilities were observed near urban centers and valley
areas.

The AMR Tracker allows users to view estimated antibiotic resistance at a specific
location for each antibiotic included (Fig. 2). When the user specifies an address by
typing or clicking on the map, the tool displays a list of the included antibiotics ordered
by predicted susceptibility for the geographic point specified. The colors of the
antibiotics on the list indicate their predicted susceptibility, as do the colors used for
the map layers. The map initially displays the regional pattern for the antibiotic with
highest susceptibility. The user can then select any antibiotic from the list, loading that
antibiotic’s resistance pattern into the map as a new visualization layer.

Although we focused exclusively on E. coli data in this report, AMR Tracker was
designed to include additional pathogens. Similarly, the application can support blood,
urine, lung, and skin infection sites on data collection. We developed a highly interac-
tive visual tool for making antibiotic treatment decisions that considers local antibiotic
susceptibilities. The antibiogram data reveal geographic variations and suggestions of
higher resistance near urban settings, similar to those in a U.S. hospital study (17).

Higher-precision data are needed for more accurate predictions before the tool can
be broadly applied in the clinical practice setting. As data quality is expected to
improve integration of health informatics, the application was designed with the
capacity to display higher-precision maps when available. Thus, it may display suscep-
tibility trends in real time in the future. The application can also accept and be updated
with data from revised interpolation methods and data sources. Furthermore, mathe-
matical predicative susceptibility modeling derived from each antibiotic and pathogen
pair is likely to increase accuracy. Modeling can also identify clinically and statistically
significant differences in susceptibility, as shown by Tlachac and colleagues (18, 19).

June 2019 Volume 63 Issue 6 €00048-19 aac.asm.org 2


https://aac.asm.org

Geographic Mapping of Escherichia coli Susceptibility

Antimicrobial Agents and Chemotherapy

UNIVERSITY of WISCONSIN-MADISON

SCHOOL OF PHARMACY

University of Wisconsin Madison

Patient History: ®

Has the patient been hospitalized in the last 30 days? Yes
Has the patient received antibiotic(s) in the past 30 days? Yes
Address: ©

777 Highland Ave Madison Wi 53705
Suspected Pathogen: ®
[l S. aureus

K. pneumoniae | P. aeruginosa

Site of Infection: ®

Lung | |Skin

Treatment Options: ®
Click an antibiotic below to show susceptibility on the map

Sulfamethoxazole/Trimethoprim (80 - 84%) &

Blood ' ' Urine

Levofloxacin (80 - 84%) & Ampicillin/Sulbactam (60 - 69%) @

Ampicillin (60 - 69%) &

. [l 20-94%

T 7 ecoli Susceptibility to Nitrofurantoin
NP7, A
Minnes 0[%

<

Minneapolis*

°Rochester

W >95%

85-89%
80-84%
70-79%
60-69%
B 50-5%

W 0%

Waterloo®

@

lowa

FIG 2 AMR Tracker: prototype development of antimicrobial resistance visualization and clinical decision support tool.

For community-onset infections, the assumption of the current interpolation
method is that patients visit health care facilities nearest their homes. Data are
anchored at one point without acknowledging the true geographic imprint of their
origination, but rather they are approximated by the health system, county, or city as
available. Patient-level data will allow for geographic distribution within the model. The
current method creates susceptibility predictions by interpolating the space around
each antibiogram by incorporating its values and those of surrounding antibiograms to
create a three-dimensional surface. This interpolation method does not include the
number of isolates. Therefore, areas with fewer antibiograms are at greater risk of
distortion from outliers. Advances in the tool will consider data from overlapping health
systems with higher-resolution geographic mapping and the number of isolates.

Ongoing research is investigating the associations among available geographic
variables, such as socioeconomic measures, demographics, and population density.
Additional types of interpolations and geospatial analyses, including spatial regression,
will be used to test the relationship of these variables and AMR patterns. Future
research includes validation of the predictions and engagement and refinement of the
tool with health systems, followed by widespread dissemination, implementation, and
evaluation. The maps and tool created will be utilized in continued efforts to improve
the functionality of AMR data in clinical practice to optimize antimicrobial selection.
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