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ABSTRACT Tigecycline is used in multidrug regimens for salvage therapy of Myco-
bacterium abscessus infections but is often poorly tolerated and has no oral formula-
tion. Here, we report similar in vitro activity of two newly approved tetracycline ana-
logs, omadacycline and eravacycline, against 28 drug-resistant clinical isolates of M.
abscessus complex. Since omadacycline and eravacycline appear to be better toler-
ated than tigecycline and since omadacycline is also formulated for oral dosing,
these tetracycline analogs may represent new treatment options for M. abscessus in-
fections.
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Mycobacterium abscessus complex, consisting of the subspecies abscessus, massil-
iense, and bolletii, is a group of rapidly growing, nontuberculous mycobacteria

(NTM) known for its extensive intrinsic and acquired drug resistance (1). It can cause
treatment-refractory lung infections (especially among cystic fibrosis patients), as well
as other serious infections (2). Increasing prevalence of pulmonary NTM infections over
the last several decades has been reported from several parts of the world, including
the United States and Europe (3–6). M. abscessus complex is now the most common
rapid-growing NTM causing lung infection and the second most common among all
NTM after Mycobacterium avium complex. It is also the most difficult-to-treat NTM lung
infection (3–6). A typical multidrug treatment regimen for cystic fibrosis patients with
M. abscessus infection consists of an oral macrolide, intravenous amikacin, along with
one or more additional intravenous antibiotics, such as cefoxitin, imipenem, or tigecy-
cline (7). Tigecycline (a glycylcycline of the tetracycline class) is active in vitro against
most clinical isolates of M. abscessus and has been used clinically for M. abscessus lung
infections with some success, but nausea and vomiting are frequent, often treatment-
limiting, adverse effects (8, 9). In addition, tigecycline’s intravenous mode of adminis-
tration is undesirable for a disease that is often treated for more than a year (7, 9).
Therefore, new antibiotics with similar or better efficacy, fewer adverse effects, prefer-
ably with oral bioavailability, are desperately needed to improve the treatment of M.
abscessus infections.

Omadacycline (an aminomethylcycline) is a new tetracycline analog, approved
for the treatment of acute bacterial skin and skin-structure infections (ABSSSI) and
community-acquired bacterial pneumonia (CABP). It is available in both intravenous
and oral formulations (10, 11). Eravacycline (a fluorocycline) is a new tetracycline
analog approved for the treatment of complicated intraabdominal infections in an
intravenous formulation (12). In the present study, we evaluated the activity
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of omadacycline and eravacycline against a panel of drug-resistant M. abscessus
complex organisms.

Omadacycline, eravacycline, and tigecycline were purchased from MedChem Ex-
press, Monmouth Junction, NJ (purity, �95%). All antimicrobials were received in
powdered form, stored at �20°C, and dissolved in dimethyl sulfoxide or deionized
water in accordance with the manufacturer’s recommendations. M. abscessus strain
ATCC 19977 was purchased from the American Type Culture Collection (Manassas, VA)
and used as a reference strain. Twenty-eight unique clinical isolates of M. abscessus
complex were obtained from the Johns Hopkins Hospital Clinical Microbiology Labo-
ratory from 2005 to 2015, as described previously (13, 14). Isolates were identifies to the
subspecies level based on the length of erm(41), which is truncated in M. abscessus
subsp. massiliense, and the rpoB sequence (15–17). Reference genomes for each sub-
species were as follows: abscessus strain ATCC 19977 (NCBI accession NC_010397),
massiliense strain GO 06 (NCBI accession NC_018150), and bolletii strain CIP 198541
(NCBI accession NZ_JRMF00000000). These isolates are resistant to nearly all drugs used
to treat M. abscessus infection (amikacin, clarithromycin, imipenem, sulfamethoxazole/
trimethoprim, linezolid, and moxifloxacin). The MICs were determined using the broth
microdilution method in cation-adjusted Mueller-Hinton broth (CAMHB) in accordance
with Clinical and Laboratory Standards Institute (CLSI) guidelines (18). In brief, CAMHB
(100 �l/well) was added in each well of 96-well, U-bottom, polystyrene plates (Corning,
Inc., Corning, NY). Serial 2-fold dilutions of compounds were prepared. M. abscessus
strains were grown to the mid-log phase. An inoculum adjusted to 1 � 104 to 5 � 104

CFU in a 0.1-ml volume was added in each well except the medium control. Plates were
sealed and incubated at 30°C for 3 days. Plates were incubated up to 5 days if the pellet
size in control wells without drug was small on days 3 and 4. MICs were determined on
the basis of presence or absence of pellet with unaided eyes (13). Drug susceptibility
assays were repeated to confirm the MICs.

Against M. abscessus strain ATCC 19977, the MIC of omadacycline was similar to that
of tigecycline (1 �g/ml), whereas the eravacycline MIC was 2-fold lower (Table 1).
Likewise, omadacycline and tigecycline had the same MIC50 and MIC90 against 28
drug-resistant clinical isolates (2 �g/ml), while the MIC50 and MIC90 of eravacycline were
2-fold lower. Interestingly, while the present study was under review, a newly published
study reported similar MICs for tigecycline and omadacycline against M. abscessus
complex clinical isolates (19).

While no formal susceptibility breakpoint has been established for tigecycline
against M. abscessus, breakpoints ranging from 0.5 to 4 �g/ml have been proposed (8,
20). Clinical isolates of rapidly growing mycobacteria are susceptible to tigecycline
concentrations of �2 �g/ml (21–24), which is the approved susceptibility breakpoint
against Enterobacteriaceae (25). The MIC50 and MIC90 of omadacycline reported here are
4- and 2-fold lower, respectively, than the susceptibility breakpoint for Enterobacteria-
ceae (26). The MIC50 of eravacycline reported here matches its susceptibility breakpoint
for Enterobacteriaceae and anaerobes (27). It is noteworthy that steady-state plasma
concentrations equivalent to our observed MIC90 for drug-resistant M. abscessus clinical
isolates are achievable with intravenous dosing of omadacycline and eravacycline
(28–30). At an intravenous omadacycline dose of 100 mg/day (approved marketed dose
for CABP and ABSSSI), the steady-state plasma Cmax and AUC0 –24 are 2.12 �g/ml and
12.14 �g · h/ml, respectively, compared to 0.87 �g/ml and 4.7 �g · h/ml for tigecycline
at 50 mg twice daily (29, 31, 32). Oral omadacycline doses of 300 to 450 mg produced
Cmax values of 9.52 to 10.8 �g/ml and AUC0 –24 values of 11.2 to 13.4 �g · h/ml,
respectively (29). Eravacycline after intravenous dosing 1.0 mg/kg every 12 h produced
a plasma Cmax of 1.83 �g/ml and an AUC0 –24 of at least 12.6 �g · h/ml (25). Although
there is no marketed oral formulation of eravacycline, a single oral dose of 100 mg
produced a Cmax of 0.17 �g/ml and an AUC0 –∞ of 2.25 �g · h/ml (33). In addition,
omadacycline has a low protein binding (21%) compared to eravacycline (79 to 87%)
and tigecycline (69 to 87%) (28).

The free drug AUC/MIC ratio was the pharmacokinetic/pharmacodynamic pa-
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rameter most closely correlated with tigecycline activity in an in vitro hollow fiber
model of M. abscessus infection (8). Considering the steady-state AUC and protein
binding data described above and the MICs obtained in our study against M.
abscessus, the free drug AUC/MIC ratios for omadacycline and eravacycline given
intravenously are expected to be approximately 8 to 10 times higher and 2 times
higher, respectively, compared to tigecycline. This preliminary comparison suggests
that eravacycline and, especially, omadacycline could be more efficacious clinically
than tigecycline. These hypotheses should be evaluated further in nonclinical
models of M. abscessus infection.

Despite tigecycline’s appreciable activity as a component of multidrug regimen
for M. abscessus infections, its clinical utility is limited by significant nausea and
vomiting (7, 9), especially at the 200-mg daily dose identified as the optimal dose
in the hollow fiber infection model (8). Omadacycline and eravacycline appear
better tolerated. Omadacycline was associated with significantly less nausea and
fewer treatment-emergent adverse events (TEAEs) compared to tigecycline in one
study (31). Omadacycline also demonstrated similar safety and side effect profiles to
linezolid (for treatment of ABSSI) and moxifloxacin (for CABP) in pivotal trials
(10, 11). In IGNITE1 and IGNITE4 trials, eravacycline-treated patients experienced

TABLE 1 MICs of tigecycline, omadacycline, and eravacycline against Mycobacterium
abscessus ATCC 19977 and 28 drug-resistant M. abscessus complex clinical isolates in
CAMHB

Isolate or MIC M. abscessus subspecies

MIC (�g/ml)

Tigecycline Omadacycline Eravacycline

Isolates
Strain ATCC 19977a abscessus 1 1 0.5
1N abscessus 1 1 0.5
2N massiliense-bolletiib 1 1 0.25
3N abscessus 2 2 1
4N massiliense 1 1 0.25
5N massiliense 1 0.5 0.25
6N abscessus 2 4 1
11N abscessus 1 2 2
12N abscessus 1 0.5 0.25
13N massiliense-bolletii 1 2 0.5
14N massiliense-bolletii 2 2 1
19N abscessus 1 0.5 0.25
201 abscessus 1 0.5 0.25
202 abscessus 1 2 0.5
203 massiliense-bolletii 1 2 0.5
204 massiliense 1 1 0.5
206 massiliense 0.5 0.5 0.125
208 massiliense 2 2 0.5
210 abscessus 2 2 0.5
211 abscessus 2 2 0.5
212 massiliense-bolletii 1 1 0.25
214 massiliense 1 1 0.5
215 abscessus 1 1 0.25
216 massiliense 1 1 0.25
218 abscessus 4 4 2
JHH2 abscessus 1 1 0.25
JHH4 abscessus 1 1 0.25
JHH9 abscessus 2 2 0.5
JHHKB abscessus 2 2 0.5

MIC data
MIC range 0.5–4 0.5–4 0.125–2
MIC50 1 1 0.5
MIC90 2 2 1

aM. abscessus strain ATCC 19977 is included as a reference strain, and the MIC values for this strain were not
included when determining the MIC range, MIC50, and MIC90.

bFive isolates had truncated erm(41) genes, indicating subsp. massiliense, but had rpoB sequences matching
subsp. bolletii.
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only slightly more TEAEs compared to ertapenem- and meropenem-treated patients
(12, 34).

In conclusion, omadacycline and eravacycline may represent new options for
treatment of M. abscessus complex infections. The results presented here support
further investigation of their efficacy and exposure-response profiles in animal
models and clinical trials to better understand their potential clinical utility.
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