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ABSTRACT: Atomistic or ab initio molecular dynamics
simulations are widely used to predict thermodynamics and
kinetics and relate them to molecular structure. A common
approach to go beyond the time- and length-scales accessible
with such computationally expensive simulations is the definition
of coarse-grained molecular models. Existing coarse-graining
approaches define an effective interaction potential to match
defined properties of high-resolution models or experimental
data. In this paper, we reformulate coarse-graining as a
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supervised machine learning problem. We use statistical learning theory to decompose the coarse-graining error and cross-
validation to select and compare the performance of different models. We introduce CGnets, a deep learning approach, that
learns coarse-grained free energy functions and can be trained by a force-matching scheme. CGnets maintain all physically
relevant invariances and allow one to incorporate prior physics knowledge to avoid sampling of unphysical structures. We show
that CGnets can capture all-atom explicit-solvent free energy surfaces with models using only a few coarse-grained beads and no
solvent, while classical coarse-graining methods fail to capture crucial features of the free energy surface. Thus, CGnets are able
to capture multibody terms that emerge from the dimensionality reduction.

B INTRODUCTION

Recent technological and methodological advances have made
possible to simulate macromolecular systems on biologically
relevant time-scales.' For instance, one can simulate binding,
folding, and conformation changes of small to intermediate
proteins on time-scales of milliseconds, seconds, or beyond.* ™"
However, the extensive sampling of large macromolecular
complexes on biological time-scales at atomistic resolution is
still out of reach. For this reason, the design of simplified, yet
predictive, models is of great interest,” ™! in particular, to
interpret the experimental data that are becoming increasingly
accessible in high throughput and resolution. Experimental
data provide a partial view of certain aspects of a macro-
molecular system but do not directly give a full dynamical
representation, and simulation can help obtain a more
comprehensive understanding,'*”'* As it is clear that not
every single atom is important in determining the relevant
collective features of biomolecular dynamics and function,
simplified models could provide more insights into the general
physicochemical principles regulating biophysical systems at
the molecular level. Here we use recent advances in machine
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learning to design optimal reduced models to reproduce the
equilibrium thermodynamics of a macromolecule.

Significant effort has been devoted in the past few years to
apply machine learning (e.g., deep neural network or kernel
methods) to learn effective models from detailed simula-
tions>~"” and specifically to learn potential energy surfaces
from quantum-mechanical calculations on small mole-
cules.”’*° In principle a similar philosophy could be used to
define models at lower resolutions, that is, to learn the effective
potential energy of coarse-grained (CG) models from fine-
grained (e.g., atomistic) molecular dynamics (MD) simulation
data.’’~*

There are however important differences. In the definition of
potential energy surfaces from quantum calculations, the
relevant quantity to reproduce is the energy, and it is relatively
straightforward to design a loss function for a neural network
to minimize the difference between the quantum-mechanical
and classical energy (and forces””’) over a sample of
configurations. In contrast, in the definition of a CG model,
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the potential energy can not be matched because of the
reduction in dimension, and it is important to define what are
the properties of the system that need to be preserved by the
coarse-graining. The approximation of free energy surfaces,
e.g., from enhanced sampling simulations, is therefore a related
problem.**~**

Several approaches have been proposed to design effective
CG energy functions for large molecular systems that either
reproduce structural features of atomistic models (bottom-
up)® ™% or reproduce macroscopic properties for one or a
range of systems.'””'**'~>* Popular bottom-up approaches
choose that the CG model reproduce the canonical
configuration distribution determined by the atomistic
model. For instance, one may want to be able to represent
the different metastable states populated by a protein
undergoing large conformational changes. One of the
difficulties in the practical application of these methods has
been that, in general, a CG potential optimally reproducing
selected properties of a macromolecular system includes many-
body terms that are not easily modeled in the energy functions.

Here, we formulate the well-known force-matching
procedure for coarse-graining as a supervised machine learning
problem. Previously, coarse-graining has been mostly discussed
as a fitting procedure, but the aim of machine learning is to
find a model that has minimal prediction error on data not
used for the training. We use classical statistical learning theory
to show that the force-matching error can be decomposed into
Bias, Variance, and Noise terms and explain their physical
meaning. We also show that the different CG models can be
ranked using their cross-validation score.

Second, we discuss a class of neural networks, which we refer
to as CGnets, for coarse-graining molecular force systems.
CGnets have a lot of similarities with neural networks used to
learn potential energy surfaces from quantum data, such as
enforcing the relevant invariances (e.g., rotational and
translational invariance of the predicted energy, equivariance
of the predicted force). In contrast to potential energy
networks, CGnets predict a free energy (potential of mean
force) and then use the gradient of this free energy with
respect to the input coordinates to compute a mean force on
the CG coordinates. As the CG free energy is not known
initially, only the force information can be used to train the
network.

Third, CGnets are extended to regularized CGnets. Using a
generic function approximator such as a neural network to fit
the CG force field from training data only may lead to force
predictions that are “catastrophically wrong” for configurations
not captured by the training data, i.e., predictions of forces in
the direction of increasingly unphysical states that lead to
diverging and unrealistic simulation results. We address this
problem by adding a prior energy to the free energy network
that does not compromise the model accuracy within the
training data region, but ensures that the free energy
approaches infinity for unphysical states, resulting in a
restoring force toward physically meaningful states.

Finally, we demonstrate that CGnets succeed in learning the
CG mean force and the CG free energy for a 2D toy model, as
well as for the coarse-graining of all-atom explicit-solvent
simulations of (i) alanine dipeptide to a CG model with §
particles and no solvent and (ii) the folding/unfolding of the
polypeptide Chignolin to a CG model consisting only of the
protein C, atoms and no solvent. We show explicitly that
CGnets achieve a systematically better performance than
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classical CG approaches which construct the CG free energy as
a sum of few-body terms. In the case of the Chignolin protein,
the classical few-body model can not reproduce the folding/
unfolding dynamics. On the contrary, the inherently multibody
CGnet energy function approximates the all-atom folding/
unfolding landscape well and captures all free energy minima.
This study highlights the importance of machine learning and
generic function approximators in the CG problem.

B THEORY AND METHODS

Here we introduce the main theoretical concepts and define
the machine learning problems involved in coarse-graining
using the force-matching principle and introduce CGnets and
regularized CGnets. The more practically inclined reader may
skip to the CGnets: Learning CG Force Fields with Neural
Networks section.

Coarse-Graining with Thermodynamic Consistency.
We first define what we mean by coarse-graining and which
physical properties shall be preserved in the coarse-grained
model.

The starting point in the design of a molecular model with
resolution coarser than atomistic is the definition of the
variables. The choice of the coarse coordinates is usually made
by replacing a group of atoms by one effective particle. Because
of the modularity of a protein backbone or a DNA molecule,
popular models coarse-grain a macromolecule to a few
interaction sites per residue or nucleotide, e.g., the C, and
Cy atoms for a protein.”**7>® Alternative schemes have also
been proposed for the EPartitioning of the atoms into coarse-
grained coordinates.””*® In general, given a high-dimensional
atomistic representation of the system r € R, a CG
representation is given by a coordinate transformation to a
lower-dimensional space:

x=&(r) € R” (1)
with n < N. Here we assume that ¢ is linear; i.e., there is some
coarse-graining matrix & € R¥N that clusters atoms to
coarse-grained beads: x = Er.

The aim is to learn a coarse-grained energy function U(x; 0)
that will be used in conjunction with a dynamical model, e.g,
Langevin dynamics, to simulate the CG molecule. @ is the
parameters of the coarse-grained model—in classical CG
approaches these are parameters of the potential energy
function, such as force constants and partial charges, while here
they denote the weights of the neural network.

A common objective in coarse-graining methods is to
preserve the equilibrium distribution; i.e. the equilibrium
distribution of the coarse-grained model shall be as close as
possible to the equilibrium distribution of the atomistic model
when mapped to the CG coordinates. We will be using a
simulation algorithm for the dynamics such that the system’s
equilibrium distribution is identical to the Boltzmann
distribution of the employed potential U; therefore this
objective can be achieved by enforcing the thermodynamic
consistency:

U(x; 8) = —kzTIn pCG (x) + const (2)
where kT is the thermal energy with Boltzmann constant kg
and temperature T, the probability distribution p“%(x) is the
equilibrium distribution of the atomistic model, mapped to the
CG coordinates
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J() 3(x = () dr
Ju(a) ar ©)

and u(r) = exp(—V(r)/kzT) is the Boltzmann weight
associated with the atomistic energy model V(r). Note that
the additive constant in eq 2 can be chosen arbitrarily.
Therefore, this constant will be omitted in the expressions
below, which means that it will absorb normalization constants
that are not affecting the CG procedure, such as the logarithm
of the partition function.

Several methods have been proposed for defining a coarse-
grained potential U(x) that variationally approximates the
consistency relation 3 at a particular thermodynamic state
(temperature, pressure etc.) Two popular approaches are the
multiscale coarse-grainin§ (force-matching)‘m’59 and the
relative entropy method® (the two approaches are con-
nected®).

CG Parameter Estimation as a Machine Learning
Problem. Here, we follow the force-matching scheme. It has
been shown that thermodynamic consistency (eq 2) is
achieved when the CG model predicts the instantaneous CG
forces with minimal mean square error.***” We call the
instantaneous atomistic forces F(r) and the instantaneous
force projected on the CG coordinates £(F(r)). At the same
time, the CG model predicts a force —VU(x; 8) for a CG
configuration x. The force-matching error is defined as

7*(0) = (IEE®) + VU(E(); O)I), )

The average (-), is over the equilibrium distribution of the
atomistic model, i.e., r ~ u(r).

We reiterate a result shown in ref 59 that has important
consequences for using eq 4 in machine learning. For this, we
introduce the mean force:

f(x) = (£(F(r)))ux ©)

where rlx indicates the equilibrium distribution of r con-
strained to the CG coordinates x, i.e., the ensemble of all
atomistic configurations that map to the same CG config-
uration. Then we can decompose expression 4 as follows (see
the SI for derivation):

pC(x) =

7%(8) = PMF error(6) + Noise (6)
with the terms
PMF error(0) = (|If(£(x)) + VU((x); 0) 1),
Noise = (||£(E(r)) — £((e))I1), )

This loss function differs from the force-matching loss function
used in the learning of force fields from quantum data by the
Noise term. The Noise term is purely a function of the CG
map ¢ (and when training with finite simulation data also of
the data set), and it cannot be changed by varying the
parameters €. As a result, the total force-matching error cannot
be made zero, but it is bounded from below by 4*(@) >
Noise.”” On the contrary, when matching force fields from
quantum data, the error y* approaches zero for a sufficiently
powerful model. Physically, the Noise term arises from the fact
that instantaneous forces on the CG coordinates vary in the
different atomistic configurations associated with the same CG
configuration. Here, we call this term Noise as it corresponds
to the noise term known in statistical estimator theory for
regression problems.®!
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The learning problem is now to find a CG model and its
parameters @ that minimizes the potential of mean force
(PMF) error term. To obtain a physical interpretation, we
apply eq 1 and write the average purely in CG coordinates:

PMF error(0) = (||f(x) + VU(x; 0| e

= (IEx) — (x5 O,

This error term is the matching error between the mean force
at the CG coordinates, f(x), and the CG forces predicted by
the CG potential

f(x; 0) = —VU(x; 0) (8)

Hence, the machine learning task is to find the free energy U
whose negative derivatives best approximate the mean forces in
eq 5, and U is thus called a potential of mean force (PMF).
Equation 8 implies that the mean force field f is conservative,
as it is generated by the free energy U(x).

Machine learning the CG model is complicated by two
aspects: (i) As the PMF error cannot be computed directly, its
minimization in practice is accomplished by minimizing the
variational bound eq 6. Thus, to learn f(x) accurately, we need
to collect enough data “close” to every CG configuration x
such that the learning problem is dominated by the variations
in the PMF error term and not by the variations in the Noise
term. As a result, machine learning CG models typically
require more data points than force-matching for potential
energy surfaces. (i) The free energy U(x) is not known a priori
but must be learned. In contrast to fitting potential energy
surfaces we can therefore not directly use energies as inputs.

For a finite data set R = (ry, .., 1)) with M samples, we
define the force-matching loss function by the direct estimator:

L0 R) = = D IEF®) + VUE; O)F ()
1 2
= o IE(F(R) + VU(E®); 0)IF (10)

where &(R) = [£(ry), .., &(ry)]" € R and &(F(R)) =
[E(E(r))), ..., E(F(ry))]T € RM™" are data matrices of coarse-
grained coordinates and coarse-grained instantaneous forces
that serve as an input to the learning method, and F denotes
the Frobenius norm.

CG Hyperparameter Estimation as a Machine
Learning Problem. While eq 9 defines the training method,
machine learning is not simply about fitting parameters for a
given data set but rather about minimizing the expected
prediction error (also called “risk”) for data not used for
training. This concept is important to be able to select an
optimal model, ie.,, to choose the hyperparameters of the
model, such as the type and number of neurons and layers in a
neural network, or even to distinguish between different
learning models such as a neural network and a spline model.

Statistical estimator theory is the field that studies optimal
prediction errors.”’ To compute the prediction error, we
perform the following thought experiment: We consider a fixed
set of CG configurations X = [x;, .., x,;]" at which we want to
fit the mean forces. We assume that these configurations have
been generated by MD or MCMC such that the full atomistic
configurations, R = (ry, .., ry), are Boltzmann distributions
conditioned on the CG configurations, i.e., r; ~ rlx, Now we
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ask if we repeat this experiment, ie., in every iteration we
produce a new set of all-atom configurations r; ~ rlx, and
thereby a new set of instantaneous forces on the CG
configurations, what is the expected prediction error, or risk
of the force-matching error, E[L(#; R)]? More formally, the
following is performed:

L. given CG coordinates X, generate training set R™" ~ R|
X and find @ = arg miny L(@; R™"); .
2. generate test set R® ~ RIX and compute L(6; R**)

where R"™" and R™' are two independent realizations.
Although we cannot execute this thought experiment in
practice, we can approximate it by cross-validation, and we can
obtain insightful expressions for the form of the expected
prediction error. As the loss function in force-matching is a
least-squares regression problem, the form of the expected
prediction error is well-known (see the SI for a short
derivation) and can be written as

E[L(0; R)] = Bias® + Var + Noise (11)

with the Noise term as given in eq 7 and the bias and variance
terms given by

Bias” = [|f(X) — T(X)|I% (12)

Var = E[|[f(X) + VUX)|[] (13)

where
f(X) = E[-VU(X)]

is the mean estimator, i.e,, the average force field learnt when
the training is repeated many times for different data
realizations. The terms in eqs 12 and 13 have the following
meaning: Equation 12 is the expected error between the mean
forces and the average predicted force field. It is therefore the
systematic bias of the machine learning model. The variance
(eq 13) is the fluctuation of the individual estimates from
single training procedures around the mean estimator and thus
represents the estimator’s fluctuation due to finite-sample
effects.

As the optimal model minimizes the PMF error, it must
balance bias and variance. These contributions are typically
counteracting: A too simple model (e.g, too small neural
network) typically leads to low variance but high bias, and it
corresponds to “underfitting” the data. A too complex model
(e.g, too large neural network) leads to low bias but large
variance, and it corresponds to “overfitting” the data. The
behavior of bias, variance, and estimator error for a fixed data
set size is illustrated in Figure 1.

The optimum at which bias and variance balance depends
on the amount of data used, and in the limit of an infinitely
large data set, the variance is zero, and the optimal model can
be made very complex to also make the bias zero. For small
data sets, it is often favorable to reduce the model complexity
and accept significant bias, to avoid large variance.

To implement model selection, we approximate the “ideal”
iteration above by the commonly used cross-validation
method®>®® and then choose the model or hyperparameter
set that has the minimal cross-validation score. In cross-
validation, the estimator error (eq 11) is estimated as the
validation error, averaged over different segmentations of all
available data into training and validation data.

CGnets: Learning CG Force Fields with Neural
Networks. It is well-known that the CG potential U(x; 6)
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Mean prediction error

Bias? Variance

Error

Model complexity

Figure 1. Typical bias—variance trade-off for fixed data set size,
indicating the balance between underfitting and overfitting. The noise
level is defined by the CG scheme (i.e., which particles are kept and
which are discarded) and is the lower bound for the mean prediction
error.

defined by thermodynamic consistency may be a complex
multibody potential even if the underlying atomistic potential
has only few-body interactions.”” To address this problem, we
use artificial neural networks (ANNGs) to represent U(x; ) as
ANN'Ss can approximate any smooth function on a bounded set
of inputs, including multibody functions.**

Therefore, we use ANNs to model U(x), train them by
minimizing the loss (eq 9), and select optimal models by
minimizing the cross-validation error. For the purpose of
training CG molecular models, we would like to have the
following physical constraints and invariances, which deter-
mine parts of the architecture of the neural network.

o Differentiable free energy function: To train U(x; @) and
simulate the associated dynamics by means of Langevin
simulations, it must be continuously differentiable. As
the present networks do not need to be very deep,
vanishing gradients are not an issue, and we select tanh
activation functions here. After D nonlinear layers we
always add one linear layer to map to one output neuron
representing the free energy.

o Invariances of the free energy: The energy of molecules
that are not subject to an external field only depends on
internal interactions and is invariant with respect to
translation or rotation of the entire molecule. The CG
free energy may also be invariant with respect to
permutation of certain groups of CG particles, e.g,
exchange of identical molecules, or certain symmetric
groups within molecules. Compared to quantum-
mechanical potential energies, permutation invariance
is less abundant in CG. For example, permutation
invariance does not apply to the a-carbons in a protein
backbone (not even for identical amino acids), as they
are ordered by the MD bonding topology. CGnets
include a transformation

y =g(x)
from CG Cartesian coordinates x to a set of features that

contain all desired invariances, and use the features y as
an input to the network that computes the free energy,
U(g(x); @). This transformation can be chosen in many
different ways, e.g., by using local coordinate systems,”*
two- or three-body correlation functions,”” permutation-
invariant distance metrics,*>~®" or by a learned
representation.”” In this work, only translation and
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rotation invariances are needed, and we hence choose
the following features: distances between all pairs of CG
atoms, the angles between three consecutive CG atoms,
and the cos and sin of torsion angles defined by the CG
atoms.

e Conservative PMF: The PMF is a conservative force
field generated by the free energy (eq 8). As in quantum
potential energy learning,”>*’ we enforce this require-

ment by computing the free energy U with a neural

network and then adding a gradient layer to compute the

derivatives with respect to the input coordinates:
f(x; ) = —-V,U(g(x); 0)

Figure 2a shows the neural network architecture resulting from
these choices. The free energy network is D layers deep, and
each layer is W neurons wide. Additionally, we use L2
Lipschitz regularization® in the network, with a tunable
parameter A that regulates the strength of the regularization.

a)
5
B Free 5
£ ||y || Energy e [|f(x)
> b
= Net
£
b) -
Prior energy
c <)
=) © || f(x)
= o0
=l
>
©
dZ
) Prior energy
c <)
2 S || f(x)
® - to
= || y || Spline Unit 1
> N
© :
&
|| Spline Unit n
Singl Net £
- — ingle o nergy
= Unit
Spline Unit i Feature, y; niti Term, U,

Figure 2. Neural network schemes. (a) CGnet. (b) Regularized
CGnet with prior energy. (c) Spline model representing a standard
CG approach, for comparison. Each energy term is a function of only
one feature, and the features are defined as all the bonds, angles,
dihedrals, and nonbonded pairs of atoms.
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Thus, (D, W, A) are the remaining hyperparameters to be
selected (as discussed in the Results section).

Simulating the CGnet Model. Once the neural network
has been trained to produce a free energy U(x), it can be used
to simulate dynamical trajectories of the CG model. Here we
use overdamped Langevin dynamics to advance the
coordinates of the CG model from x, at time t to x,,, after a
time-step 7:

X, =X, — TEVU(xt) + J2tD§&
kgT (14)

where x, is the CG configuration at time t (e.g, the «x
coordinate in the toy model, a 15-dimensional vector in the
alanine dipeptide, and a 30-dimensional vector in the
Chignolin applications presented below), € is Gaussian random
noise with zero mean and identity as covariance matrix, 7 is the
integration time-step, and D is the diffusion constant of the
system. In the following, we use reduced energy units; i.e., all
energies are in multiples of kyT.

Since the implementation of CGnet is vectorized, it is more
efficient to compute free energies and mean forces for an entire
batch of configurations rather than a single configuration at a
time. Therefore, we run simulations in parallel for the examples
shown below. This is done by sampling 100 starting points
randomly from atomistic simulations, coarse-graining them,
and then integrating eq 14 stepwise.

Regularizing the Free Energy with a Baseline Energy
Model. Training the free energy with a network as shown in
Figure 2a and subsequently using it to simulate the dynamics
with eq 14 produces trajectories of new CG coordinates x,.
When parts of the coordinate space are reached that are very
different from any point in the training set, it is possible that
the network makes unphysical predictions.

In particular, the atomistic force field used to produce the
training data has terms that ensure the energy will go toward
infinity when departing from physical states, e.g, when
stretching bonds or when moving atoms too close to each
other. These regions will not be sampled in the underlying MD
simulations, and therefore result in “empty” parts of
configuration space that contain no training data. Simulating
a network trained only on physically valid training data via eq
14 may still produce points x; that enter this “forbidden
regime” where bonds are overstretched or atoms start to
overlap. At this point the simulation can become unstable if
there is no regularizing effect ensuring that the predicted free
energy U(x; @) will increase toward infinity when going deeper
into the forbidden regime.

Methods to modify a learning problem to reduce prediction
errors are collectively known as “regularization” methods.” To
avoid the catastrophically wrong prediction problem described
above, we introduce regularized CGnets (Figure 2b). In a
regularized CGnet, we define the energy function as

U(x; 0) = Uy(x) + U, (x; 0) (15)
where U,.(x; @) is a neural network free energy as before, and
Uy(x) is a baseline energy that contains constraint terms that
ensure basic physical behavior. Such baseline energies to
regularize a more complex multibody energy function have also
been used in the machine learning of QM potential energy
functions.”””"* Note that eq 15 can still be used to represent
any smooth free energy because U,.(x; @) is a universal
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approximator. The role of Uy(x) is to enforce U — oo for
unphysical states x that are outside the training data.

As for many other regularizers, the baseline energy Uy(x) in
eq 15 takes the role of a prior distribution in a probabilistic
interpretation: The equilibrium distribution generated by eq
1S becomes

P () o exp(=pUy(x)) exp(—pUu(x; 6))

prior

Here, Uy(x) is simply a sum of harmonic and excluded volume
terms. For the 2D toy model, a harmonic term in the form

Uy(x) = %k(x — x,)* is used, and the parameters k and x, are

determined by the force-matching scheme restricted to the
scarcely populated regions defined by the 100 sampled points
with highest and the 100 with lowest x-value (see Figure 3).

For alanine dipeptide, we use harmonic terms for the
distance between atoms that are adjacent (connected by
covalent bonds) and for angles between three consecutive

atoms. For each bond i, we use
bond 1 2 . .
Usyi (1 1100 ky) = Ekh,i(”i — 1r,)", where r; is the instanta-

neous distance between the two consecutive atoms defining
the bond, r,y is the equilibrium bond length, and k;; is a
constant. Analogously, for each angle j, we use

I 1 2 . .
U&';.g e(t9j; 9]‘0) ka,j) = Eka,j(‘% - 9]‘0) , where 0, is the instanta-

neous value of the angle, 0 is the equilibrium value for the
angle, and k,; is a constant. When statistically independent,
each such term would give rise to a Gaussian equilibrium
distribution:

" ky, (1, = o)’
p(r) o exp T
k, (6, — 0,)
p(8)  exp _w Y

2k, T

with mean y = ;g (or st = 0)y), and variance ¢* = kyT/k;,; (or 6
= kgT/ ku,j). The prior energy is obtained by assuming
independence between these energy terms and estimating
these means and variances from the atomistic simulations.

For the application of CGnet to the protein Chignolin, an
additional term is added to the baseline energy to enforce
excluded volume and penalize clashes between nonbonded CG
particles. In particular, we add a term Urep(r) for each pairwise
distances between CG particles that are more distant than two
covalent bonds, in the form

o 4
) = 7] (16)

where the exponent ¢ and effective excluded volume radius ¢
are two additional hyperparameters that are optimized by
cross-validation.

We note that in general one could use classical CG
approaches with predefined energy functions to first define the
prior CG energy U, and then use an ANN to correct it with
multibody terms.

B RESULTS

Two-Dimensional Toy Model. As a simple illustration, we
first present the results on the coarse-graining of a two-
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Figure 3. Machine-learned coarse-graining of dynamics in a rugged
2D potential. (a) Two-dimensional potential used as a toy system. (b)
Exact free energy along x. (c) Instantaneous forces and the learned
mean forces using feature regression and CGnet models (regularized
and unregularized) compared to the exact forces. The unit of the force
is kzT, with the unit of length equal to 1. (d) Free energy (PMF)
along x predicted using feature regression, and CGnet models
compared to the exact free energy. Free energies are also computed
from histogramming simulation data directly, using the underlying 2D
trajectory, or simulations run with the feature regression and CGnet

models (dashed lines).

dimensional toy model. The potential energy is shown in
Figure 3 and given by the expression

V(x; )’) _ L

1 5
6T (x =4 —-2)(x+2)(x+3)+ Ey

1 .
+ 5B +5)0 - 6)). (17)
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The potential corresponds to a double well along the x-axis
and a harmonic confinement along the y-axis. The last term in
eq 17 adds small-scale fluctuations, appearing as small ripples
in Figure 3a.

The coarse-graining mapping is given by the projection of
the 2-dimensional model onto the x-axis. In this simple toy
model, the coarse-grained free energy (potential of mean
force) can be computed exactly (Figure 3b):

—lnI[ ” exp[—ivl(cx’Ty)] dy

We generate a long (one million time-steps) simulation
trajectory of the 2-dimensional model and use the x
component of the forces computed along the trajectories in
the loss function (eq 9). We report below the resulting CG
potential obtained by (1) using a feature regression, i.e., least-
squares regression with a set of feature functions defined in the
SI, Section B, and (2) a CGnet (regularized and unregular-
ized).

Cross-validation is used to select the best hyperparameters
for the least-squares regression and the CGnet architectures.
For the feature regression, the same cross-validation procedure
as introduced in ref 73 was used and returned a linear
combination of four basis functions among the selected set
(see Figure Sla and the Supporting Information for details).
For the regularized CGnet, a two-stage cross-validation is
conducted, first choosing the depth D with a fixed width of W
= 50, and then choosing the width W (Figure Slb,c). The
minimal prediction error is obtained with D = 1 (one hidden
layer) and W = 50. For the unregularized CGnet, a similar
procedure is performed, and the best hyperparameters are
selected as D = 1, W = 120. Note that the prediction error
cannot become zero, but is bounded from below by the chosen
CG scheme (Figure 1, eq 11)—in this case by neglecting the y
variable.

Figure 3c,d shows the results of the predicted mean forces
and free energies (potentials of mean force) in the x-direction.
The instantaneous force fluctuates around the mean but serves
to accurately fit the exact mean force in the x range where
sampling is abundant using both feature regression and CGnet
(Figure 3c). At the boundary where few samples are in the
training data, the predictors start to diverge from the exact
mean force and free energy (Figure 3c,d). This effect is more
dramatic for the unregularized CGnet; in particular, at large x
values, the CGnet makes an arbitrary prediction: here the force
tends to zero. In the present example, reaching these states is
highly improbable. However, a CGnet simulation reaching this
region can fail dramatically, as the simulation may continue to
diffuse away from the low energy regime. As discussed above,
this behavior can be avoided by adding a suitable prior energy
that ensures that the free energy keeps increasing outside the
training data, while not affecting the accuracy of the learned
free energy within the training data (Figure 3c,d). Note that
the quantitative mismatch in the low-probability regimes is not
important for equilibrium simulations.

The matching mean forces translate into matching free
energies (potentials of mean force, Figure 3d). Finally, we
conduct simulations with the learned models and generate
trajectories {x,} using eq 14. From these trajectories, free
energies can be computed by

U@ _
ks T

U(x) = —kyT In py (x) (18)

761

where py(x) is a histogram estimate of the probability density
of x in the simulation trajectories. As shown in Figure 3d, free
energies agree well in the x range that has significant
equilibrium probability.

Coarse-Graining of Alanine Dipeptide in Water. We
now demonstrate CGnets on the coarse-graining of an all-atom
MD simulation of alanine dipeptide in explicit solvent at T =
300 K to a simple model with 5 CG particles located at the five
central backbone atoms of the molecule (Figure 4). One

Figure 4. Mapping of alanine dipeptide from an all-atom solvated
model (top) to a CG model consisting of the five central backbone
atoms (bottom).

trajectory of length 1 ys was generated using the simulation
setup described in ref 74; coordinates and forces were saved
every picosecond, giving rise to one million data points. The
CG model has no solvent; therefore, the CG procedure must
learn the solvation free energy for all CG configurations.

We compare two different CG models. The first model,
called “spline model”, uses the state-of the art approach
established in MD coarse-graining:'"*”* to express the CG
potential as a sum of few-body interaction terms, similar as in
classical MD force fields. The most flexible among these
approaches is to fit one-dimensional splines for each of the
pairwise distance, angle, and dihedral terms to parametrize
two-, three-, and four-body interactions.”” To ensure a
consistent comparison, we represent 1D splines with neural
networks that map from a single input feature (pairwise
distance, angle, or dihedral) to a single free energy term,
resulting in the spline model network shown in Figure 2¢c. We
use the same regularization and baseline energy for spline
model networks and CGnets.

The second model uses a regularized multibody CGnet, i.e.,
a fully connected neural network shown in Figure 2b, to
approximate the CG free energy. The comparison of the results
from the two models allows us to evaluate the importance of
multibody interactions that are captured by the CGnet but are
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generally absent in CG models that use interaction terms
involving a few atoms only.

The hyperparameters for both models consist of the number
of layers (depth, D), the number of neurons per layer (width,
W) of the network, and the Lipschitz regularization strength
(4)*® and are optimized by a three-stage cross-validation. In
the first stage, we find the optimal D at fixed W = 30 and 4 =
oo (no Lipschitz regularization); subsequently, we choose W at
the optimal D, and A at the optimal W, D. This results in D = §,

W = 160, and 1 = 4.0 for CGnet and D = 4, W = 30 (for each
feature), and 4 = 10.0 for the spline model (Figure S). The
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Figure S. (a—c) Cross-validated force-matching error in [kecal/(mol
A)]* for the selection of the optimum structure of the network. (d—f)
Difference between the two-dimensional free energy surfaces obtained
from the CG models and from the reference all-atom simulations (see
Figure 6) for the regularized CGnet and the spline model of alanine
dipeptide. (a) Selection of the number of layers, D. (b) Selection of
the number of neurons per layer, W. (c) Selection of the Lipschitz
regularization strength, 1. The selected hyperparameters, correspond-
ing to the smallest cross-validation error, are highlighted by orange
boxes. Blue dashed lines represent the regularized CGnet, red dashed
lines the spline model, and vertical bars the standard error of the
mean. (d—f) Difference between the reference all-atom free energy
surface and the free energy surfaces corresponding to the choices of
hyperparameters indicated in panels a—c as (C1, C2, C3, C4, CS) for
CGnet and as (S1, S2, S3, S4) for the spline model.

cross-validation error of CGnet is significantly lower than the
cross-validation error of the spline model (Figure Sa—c). We
point out that the cross-validation error cannot become zero
but is bounded from below by the chosen CG scheme (Figure
1, eq 11)—in this case by coarse-graining all solvent molecules
and all solute atoms except the five central backbone atoms
away. Hence, the absolute values of the cross-validation error
in Figure Sa—c are not meaningful and only differences matter.

CG MD simulations are generated for the selected models
by iterating eq 14. For each model, one hundred independent
simulations starting from structures sampled randomly from
the atomistic simulation are performed for 1 million steps each,
and the aggregated data are used to produce the free energy as
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a function of the dihedral coordinates. Figure 6 compares the
free energy computed via eq 18 from the underlying atomistic

All-atom model

°)

2 1 0 1 2
A Unregularized CGnet model

Figure 6. Free energy profiles and simulated structures of alanine
dipeptide using all-atom and machine-learned coarse-grained models.
(a) Reference free energy as a function of the dihedral angles, as
obtained from direct histogram estimation from all-atom simulation.
(b) Standard coarse-grained model using a sum of splines of
individual internal coordinates. (c) Regularized CGnet as proposed
here. (d) Unregularized CGnet. (e) Representative structures in the
six free energy minima, from atomistic simulation (ball-and-stick
representation) and regularized CGnet simulation (licorice represen-
tation).

MD simulations and the free energy resulting from the selected
CG models. Only the regularized CGnet model can correctly
reproduce the position of the all main free energy minima
(Figure 6a,c). On the contrary, the spline model is not able to
capture the shallow minima corresponding to positive values of
the dihedral angle ¢, and introduces several spurious minima
(Figure 6b). This comparison confirms that selecting CG
models by minimal mean force prediction error achieves
models that are better from a physical viewpoint.

As an a posteriori analysis of the results, we have performed
MD simulation for the CG models corresponding to different
choices of hyperparameters, both for the spline model and
CGnet. For each choice of hyperparameters, we have
computed the difference between the free energy as a function
of the dihedral angles resulting from the CG simulations and
the one from the all-atom models. Differences in free energy
were estimated by discretizing the space spanned by the two
dihedral angles and computing the mean square difference on
all bins. The difference between a given model and CGnet was
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computed by shifting the free energy of CGnet by a constant
value that minimizes the overall mean square difference. The
free energy difference for the spline models is always
significantly larger than for the CGnet models (Figure Sd—
f). Interestingly, the minima in the difference in free energy
correspond to the minima in the cross-validation curves
reported in Figure Sa—c, and the optimal values of hyper-
parameters selected by cross-validation yield the absolute
minimum in the free energy difference (indicated in Figure Sf
as CS for CGnet and S4 for the spline model). This point is
illustrated more explicitly in the SI (Section E, Figures S4 and
S5), and demonstrates that the cross-validation error of
different models is correlated with errors in approximating
the two-dimensional free energy surface of alanine dipeptide.

For the CGnet, regularization is extremely important:
without regularization, the free energy only matches near the
most pronounced minima, and unphysical structures are
sampled outside (Figure 6d and the SI, Section D). With
regularization, these unphysical regimes are avoided; all
sampled structures appear chemically valid (Figure 6e), and
the distributions of bonds and angles follow those in the
atomistic simulations (SI, Section D and Figure S3).

Coarse-Graining of Chignolin Folding/Unfolding in
Water. Finally, we test the CGnet on a much more challenging
problem: the folding/unfolding dynamics of the polypeptide
Chignolin in water. Chignolin consists of 10 amino acids plus
termini and exhibits a clear folding/unfolding transition. The
all-atom model contains 1881 water molecules, salt ions, and
the Chignolin molecule, resulting in nearly 6000 atoms. To
focus on the folding/unfolding transition, data were generated
at the melting temperature 350 K, mimicking the setup used
for the Anton supercomputer simulation in ref 76. To obtain a
well-converged ground truth, we generated 3742 short MD
simulations with an aggregate length of 187.2 s on GPUgrid77
using the ACEMD program.”® The free energy landscape is
computed on the two collective variables describing the
slowest processes, computed by the TICA method.”” Since the
individual MD simulations are too short to reach equilibrium,
the equilibrium distribution was recovered by reweighting all
data using a Markov state model.*” See the SI for details on the
MD simulation and Markov model analysis.

Figure 7a shows the free energy as a function of the first two
TICA coordinates. Three minima are clearly identifiable on
this free energy landscape: states a (folded), b (unfolded), and
c (partially misfolded), ordered alphabetically from most to
least populated. Representative configurations in these minima
are as shown in Figure 7e. As a result, the first TICA mode is a
folding/unfolding coordinate, while the second is a misfolding
coordinate.

Using a regularized CGnet, we coarse-grain the 6000-atom
system to 10 CG beads representing the a-carbons of
Chignolin. Thus, not only is the polypeptide coarse-grained,
but also the solvation free energy is implicitly included in the
CG model. Similar to what was done for alanine dipeptide,
roto-translational invariance of the energy was implemented by
using a CGnet featurization layer that maps the C, Cartesian
coordinates to all pairwise distances between CG beads, all
angles defined by three adjacent CG beads, and the cos and sin
of all the dihedral angles defined by four CG adjacent beads.
The regularizing baseline energy includes a harmonic term for
each bond and angle and an excluded volume term for each
pairwise distance between CG particles that are separated by
more than two bonds.
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Figure 7. Free energy landscape of Chignolin for the different models.
(a) Free energy as obtained from all-atom simulation, as a function of
the first two TICA coordinates. (b) Free energy as obtained from the
spline model, as a function of the same two coordinates used in the
all-atom model. (c) Free energy as obtained from CGnet, as a
function of the same two coordinates. (d) Comparison of the one-
dimensional free energy as a function of the first TICA coordinate
(corresponding to the folding/unfolding transition) for the three
models: all-atom (blue), spline (green), and CGnet (red). (e)
Representative Chignolin configurations in the three minima from
(a—c) all-atom simulation and (a’—c’) CGnet.

Similar to the case of alanine dipeptide, a classical few-body
spline model was defined for comparison whose CG potential
is a sum of bonded and nonbonded terms, where each term is a
nonlinear function of a single feature (pairwise distances,
angles, dihedrals).

Both the CGnet and spline model are optimized through a
five-stage cross-validation search for the hyperparameters in
the following order: depth D, width W, exponent of the
excluded volume term ¢, radius of the excluded volume term o,
and Lipschitz regularization strength A. The results of the
cross-validation are shown in Figure S8. This optimization
resulted in the hyperparameter values D =5, W =250,c =6, ¢
= 5.5, and A = 4.0. For the spline model, the optimal values of
the hyperparameters are D = 3, W = 12 (for each feature), ¢ =
10, 6 = 4.0, and A = 5.0 (Figure S8). The potential resulting
from CGnet and the spline model is then used to run long
simulations with eq 14. One hundred simulations of 1 million
steps each were generated using randomly sampled config-
urations from the training data as starting points. For
comparison, the aggregated data are projected onto the
TICA coordinates obtained from all-atom simulations, and
free energy landscapes are computed directly using eq 18
(Figure 7b,c). For a more quantitative comparison, the free
energies are also reported along the first TICA coordinate that
indicates folding/unfolding (Figure 7d).
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These figures clearly show that the spline model cannot
reproduce the folding/unfolding dynamics of Chignolin, as the
folded and unfolded states are not well-defined (Figure 7b,d).
On the contrary, CGnet not only can consistently fold and
unfold the protein but also correctly identifies three well-
defined minima: the folded (a’), unfolded (b’), and partially
misfolded (c’) ensembles corresponding to the minima a, b,
and c in the all-atom fully solvated model (Figure 7c,d).
Representative structures in the three minima are shown in
Figure 7e: the structures obtained from the CGnet simulations
are remarkably similar to the ones obtained in the all-atom
simulations. These results reinforce what has been already
observed for alanine dipeptide above: the multibody
interactions captured by CGnet are essential for correct
reproduction of the free energy landscape for the protein
Chignolin. The absence of such interactions in the spline
model dramatically alters the corresponding free energy
landscape to the point that the model can not reproduce the
folding/unfolding behavior of the protein.

B CONCLUSIONS

Here we have formulated coarse-graining based on the force-
matching principle as a machine learning method. An
important consequence of this formulation is that coarse-
graining is a supervised learning problem whose loss function
can be decomposed into the standard terms of statistical
estimator theory: Bias, Variance, and Noise. These terms have
well-defined physical meanings and can be used in conjunction
with cross-validation to select model hyperparameters and rank
the quality of different coarse-graining models.

We have also introduced CGnets, a class of neural networks
that can be trained with the force-matching principle and can
encode all physically relevant invariances and constraints: (1)
invariance of the free energy and mean force with respect to
translation of the molecule, (2) invariance of the free energy
and equivariance of the mean force with respect to rotation of
the molecule, (3) the mean force being a conservative force
field generated by the free energy, and (4) a prior energy able
to be applied to prevent the simulations with CGnets to
diverge into unphysical state space regions outside the training
data, such as states with overstretched bonds or clashing
atoms. Future CGnets may include additional invariances, such
as permutational invariance of identical CG particles, e.g,
permutation of identical particles in symmetric rings.

The results presented above show that CGnet can be used to
define effective energies for CG models that optimally
reproduce the equilibrium distribution of a target atomistic
model. CGnet provides a better approximation than functional
forms commonly used for CG models as it automatically
includes multibody effects and nonlinearities. The work
presented here provides a proof of principle for this approach
on relatively small solutes, but already demonstrates that the
complex solvation free energy involved in the folding/
unfolding of a polypeptide such as Chignolin can be encoded
in a CGnet consisting of only the C, atoms. The extension to
larger and more complex molecules presents additional
challenges and may require to include additional terms to
enforce physical constraints.

Additionally, the CG model considered here is designed ad
hoc for a specific molecule and is not transferable to the study
of different systems. Transferability remains an outstanding
issue in the design of coarse-grained models,"" and its
requirement may decrease the ability to reproduce faithfully
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properties of specific systems.*”*'~** In principle, transferable
potentials can be obtained by designing input features for
CGnet imposing a dependence of the energy function on the
CG particle types and their environment,*” similarly to what is
done in the learning of potential energy functions from
quantum mechanics data (see, e.g., refs 20, 24, 27, 33, and 66).
This approach may be able to define transferable functions if
enough data are used in the training.””’’ We leave the
investigation on the trade-off between transferability and
accuracy for future studies.

It is also important to note that the formulation used here to
define an optimal CG potential aims at reproducing structural
properties of the system, but it does not determine the
equations for its dynamical evolution. If one is interested in
designing CG models that can reproduce molecular dynamical
mechanisms, e.g, to reproduce the slow dynamical processes of
the fine-grained model, alternative approaches need to be
investigated.
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