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abstract

Multiparametric imaging is a critical tool in the noninvasive study and assessment of cancer. Imaging methods
have evolved over the past several decades to provide quantitative measures of tumor and healthy tissue
characteristics related to, for example, cell number, blood volume fraction, blood flow, hypoxia, and metabolism.
Mechanistic models of tumor growth also have matured to a point where the incorporation of patient-specific
measures could provide clinically relevant predictions of tumor growth and response. In this review, we identify and
discuss approaches that use multiparametric imaging data, including diffusion-weighted magnetic resonance
imaging, dynamic contrast-enhanced magnetic resonance imaging, diffusion tensor imaging, contrast-enhanced
computed tomography, [18F]fluorodeoxyglucose positron emission tomography, and [18F]fluoromisonidazole
positron emission tomography to initialize and calibrate mechanistic models of tumor growth and response. We
focus the discussion on brain and breast cancers; however, we also identify three emerging areas of application in
kidney, pancreatic, and lung cancers. We conclude with a discussion of the future directions for incorporating
multiparametric imaging data and mechanistic modeling into clinical decision making for patients with cancer.
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INTRODUCTION

Medical imaging plays a critical role in the assessment
and diagnosis of solid tumors. After diagnosis, a series of
imaging data are collected to evaluate tumor size, in-
vasion into adjacent structures, and metastatic spread.
These data are used in conjunction with a clinical
staging model to help to guide treatment decisions and
provide a crude prognosis for the disease course. A
current challenge in clinical oncology is to predict the
response of the individual patient to a specified ther-
apeutic approach. Although the aforementioned mea-
sures can provide a general prognosis that is based on
the stage of the disease and historical data, the specific
response of the patient population to standard therapies
is heterogeneous. A potential approach to this challenge
is to leverage radiographic changes, which can readily
be acquired at multiple time points before and during
therapy, to enable patient-specific predictions of
treatment response.

The radiographic assessment of changes in tumor size
after treatment has been standardized to categorize
treatment response objectively. One commonly used
technique is the Response Evaluation Criteria in Solid
Tumors (RECIST).1,2 RECIST primarily relies on
morphologic changes to identify patient response.
However, the predictive utility of these measures is
fundamentally limited because the morphologic

changes that form the basis of RECIST are temporally
downstream of the underlying biochemical responses
to therapy. Developments in imaging technologies
have moved well beyond morphologic characterization
and can provide noninvasive characterization of the
tumor microenvironment.3 Post-treatment changes in
magnetic resonance imaging (MRI) or positron
emission tomography (PET) measures of hypoxia,4

cellularity,5,6 blood volume,7 and perfusion8,9 may be
predictive of response. The incorporation of these
advanced imaging measures into mechanism-based
models presents an opportunity to fundamentally shift
cancer care through the development of individually
optimized therapies.10,11 Of note, mechanism-based
mathematical models of disease represent a funda-
mentally different approach to relying only on statistical
data analysis (big data). This approach does not
dispute that statistical inference in itself is not of critical
importance; rather, by its very nature, it is based on
statistical properties of large populations of patients in
which conditions that prevail in specific individuals are
hard to detect. That is, the big data–only approach
captures the general trends but cannot account for
subtle changes in the individual patient (the very
characteristics that make us individuals) over an ex-
tended time. Imaging-based mechanistic models are
designed to predict the spatiotemporal changes as-
sociated with disease onset, progression, and
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response to therapy. Such a validated mathematical frame-
work enables the generation of testable, patient-specific
hypotheses in silico, thereby allowing optimization of in-
terventions for the individual patient by using the specific
characteristics of the patient’s unique situation.

Mechanism-based models are built on the assumption that
behavior of a complex system can be predicted with
mathematical descriptions of the interactions of individual
system components. Only recently have thesemodels begun
to incorporate noninvasive imaging measurements12,13 as
a means to parameterize these models on a patient-specific
basis. Noninvasive imaging techniques are well suited for
model initialization and calibration because they can provide
repeatable, reproducible, and evenly discretized measures
of tumor properties before, during, and after therapy. The
initialization and calibration mechanism-based models of
tumor growth on an individual basis facilitate the generation
of individual forecasts of response to chemotherapies,14,15

radiation therapy (RT),11,16,17 and resection18 that could be
used for therapeutic planning. One potential (clinical) utility
of mechanism-based models is in the application of opti-
mized and adaptive RT plans. RT is a central component of
the standard of care for many cancers, with medical imaging
playing a critical role in the positioning and guidance of RT.19

Adaptive RT is a strategy to alter treatment plans and delivery
to control for variations in patient radiosensivity.20 One po-
tential scenario for mechanistic modeling is to use patient
data before and during therapy to calibrate predictivemodels
of tumor growth and response to determine a patient’s re-
sponse to therapy. Guided by model predictions, clinicians
could simulate alternative treatment plans and select a plan
that improves the patient’s outcome. This modeling scenario
could then be repeated every time new data are collected to
provide a means to continuously adapt therapy for individual
patients. Recent developments in MRI-guided linear ac-
celerators21 could be used to provide the necessary quan-
titative multiparametric data to update model calibrations
and adapt patient therapy.

Two barriers to implementing imaging-based mechanistic
modeling are the access to proper data and the validity of
current mathematical descriptions of tumor growth and
response. In this review, we identify the type of data imaging
measures can provide and proceed to the numerical
methods, considerations required for implementation and
validation. We then present current modeling approaches
with examples from cancer of the brain, breast, pancreas,
kidney, and lung. Finally, we identify future opportunities in
this emerging subfield of oncology frequently referred to as
mathematical oncology.22

IMAGING MEASUREMENTS AND PATIENT DATA

Multiparametric Imaging Measures of Tumor and

Tissue Properties

This section identifies some of the imaging techniques that
currently are being used in mechanistic models of tumor

growth. Tumor cellularity (or the number of cells within an
imaging voxel) can be estimated by using diffusion-
weighted MRI23 (DW-MRI), dynamic contrast-enhanced
MRI24,25 (DCE-MRI), and contrast-enhanced computed
tomography26,27 (CE-CT). A variant of DW-MRI called dif-
fusion tensor imaging28 (DTI) also can be used to assess the
magnitude and direction of water diffusion in tissue,
thereby providing an estimate of the preferred direction of
tumor cell movement. Properties of the tumor vasculature,
such as blood volume and perfusion, can be estimated by
using contrast-based techniques, such as DCE-MRI24 and
dynamic CE-CT.26

Several PET tracers have been developed that can provide
estimates of glucose uptake, tumor hypoxia, and cell
proliferation. [18F]-fluorodeoxyglucose29 (18FDG) is a glu-
cose analog that is taken up by cells, phosphorylated, and
then trapped within the cell; thus, FDG preferentially ac-
cumulates within metabolically active cells. [18F]Fluo-
romisonidazole30 (18F-MISO) is a PET tracer commonly
used to assess the level of hypoxia in tumors. A summary of
the measurable quantities discussed in this section is listed
in Table 1, whereas Figure 1 shows an example of
quantitative PET and MRI data acquired in a patient with
breast cancer before and after the start of therapy.

Challenges in the Acquisition, Processing, and Sharing of

Patient Image Data

Although multiparametric imaging data are the focus of this
review, many pieces of information are needed to provide
informative model predictions to clinicians. This section
highlights challenges and concerns about imaging met-
adata, medical records, instrument types and variability,
and data sharing. A more comprehensive review of these
challenges can be found in Yankeelov et al31 and Shaikh
et al.32

Imaging metadata (eg, observations, tissue annotations)
and medical records are essential for the proper use of
imaging data sets. These data often are stored separately
from the image data themselves and require database
management33 to connect metadata and medical records

TABLE 1. Summary of Tumor Properties Available From Common
Medical Imaging Techniques
Property Modality

Cellularity DW-MRI,23 DCE-MRI,24 CE-CT26

Direction of cell movement DTI28

Blood volume and perfusion DCE-MRI, CE-CT

Hypoxia or hypoxic tissues 18F-MISO-PET30

Glucose metabolism 18FDG-PET29

Abbreviations: CE-CT, contrast-enhanced computed tomography;
DCE-MRI, dynamic contrast-enhanced magnetic resonance imaging;
DTI, diffusion tensor imaging; DW-MRI, diffusion-weighted magnetic
resonance imaging; 18FDG, [18F]fluorodeoxyglucose; 18F-MISO, [18F]
fluoromisonidazole; PET, positron emission tomography.
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to the appropriate image series. Modelers should be aware
of medical details (eg, patient’s individual history, disease
subtypes, treatment schedules,34 response) to model
treatment response accurately. When sharing data, re-
searchers should use consistent file types, naming pro-
cedures, and de-identification procedures to ease the
interpretation and use of imaging data. Curated re-
positories35 can provide a mechanism for archived data to
meet consistent standards and improve the utility of
shared data.

Site-to-site variation in image acquisition and analysis also
may affect the interpretation of imaging data. Researchers
should establish the repeatability and reproducibility of the
imaging techniques used in their study.31 In addition,
postprocessing (eg, tissue segmentation, image analysis)
procedures should be reproducible within and outside
a site to provide consistent analysis of the imaging data.34

These analyses are particularly important when working
with data acquired from multiple institutions with different
instruments and different postprocessing routines.36-40

NUMERICAL METHODS

This section reviews the calibration, selection, and vali-
dation of models; the sensitivity analysis of the parameters;
and how to address uncertainties in data, model selection,
parameter estimation, and predictions. Figure 2 shows

a schematic of a framework for model calibration, selection,
and validation.

Model Calibration, Selection, and Validation

For a given problem (eg, the prediction of tumor growth41,42),
different mathematical models can be developed on the
basis of the hypotheses to be tested. This will lead to different
sets of parameters within the model that need to be esti-
mated. The process of determining the values of the free
parameters within a model is called calibration, and it fre-
quently involves the solving of an inverse problem for the
parameters that are based on experimental observations.
More specifically, for a given model M(ψ), where ψ repre-
sents the model parameters, calibration consists of mini-
mizing the residual R = y − M(ψ), where y is the measured
data.43-45 If the parameters are properly calibrated, then R =
0, assuming that no experimental error or model inadequacy
exists.46 This minimization process can be done in a de-
terministic or statistical framework. The deterministic
framework searches for the set of parameter values that
minimize the residual error. In the statistical framework, the
parameters are assumed to have a prior distribution that
contains the true parameter. The statistical model is the
probability distribution image of the mechanistic model
applied to the prior distribution. The data are just one re-
alization of this model.44 Through Bayes’ theorem, the data
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FIG 1. Example multiparametric data acquired in a patient with breast cancer before and after one cycle of neoadjuvant chemotherapy. Diffusion-
weighted magnetic resonance imaging (DW-MRI) returns estimates of the apparent diffusion coefficient (ADC), which can be used to provide estimates
of cellularity. Dynamic contrast-enhanced MRI (DCE-MRI) provides estimates of tissue blood flow and permeability (Ktrans), extracellular-extravascular
volume fraction (ve), and plasma volume fraction (vp). [18F]Fluorodeoxyglucose positron emission tomography (18FDG-PET) provides estimates of the
glucose standardized uptake value (SUV). These imaging measurements can be acquired noninvasively before, during, and after the start of therapy to
characterize functional changes in tumor properties.
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are used to improve knowledge with regard to the parameter
distribution. Among the enormous number of possible
calibrated models, selection of which model is the best for
predicting the quantities of interest is crucial. Two common
methods are based on information theory, such as the
Akaike information criterion47 and the Bayesian information
criterion,48 that penalizes the number of parameters from the
model. After the best model is selected, whether themodel is
capable of predicting the quantities of interest with sufficient
accuracy must be determined. This process is called vali-
dation and involves experimental observations obtained from
more-complex scenarios than those involved in the cali-
bration process or an independent subset of the data not
used during the calibration step. The model is tested at this
new scenario with the calibrated parameters, and if the
differences between the values of quantities of interest is less
than the (user-defined) tolerance, the model is valid; how-
ever, technically, one can only say that with this metric and
with this tolerance, the model is not invalid because addi-
tional information always could falsify a model. Thus, a not
informative or inaccuratemodel is invalid because it does not
satisfy the validation metric that compares the model pre-
diction with experimental data.46

Sensitivity Analysis

Sensitivity analysis refers to quantitatively understanding
how variation in amodel’s parameters influences the output
of the model. (This is not to be confused with uncertainty

analysis, which generally refers to a lack of knowledge
about parameter values.) The goal of a sensitivity analysis is
to rank parameters by their importance on the basis of how
their prescribed variations affect the output measures
compared with the results from other parameters’ changes.
This provides a means to identify the driving interactions of
the system and narrow the scope for which parameters
should be targeted for experimental estimation (which is
particularly useful for complex systems) or to identify pa-
rameters that could be eliminated or set to a nominal value.
A broad range of methods for calculating sensitivity mea-
sures can be divided into two major groups: local and
global. For local sensitivity measures, each parameter is
varied individually, whereas for global sensitivity measures,
individual parameter sensitivity is determined while all
parameters are varied. Although global methods are more
computationally expensive, they are less likely to mis-
categorize an important parameter as insignificant. Within
these two groups, the types of analyses range from de-
rivatives that determine local dependence,49,50 statistical
methods that use correlations,51-53 popular variance-based
methods,54-58 and even methods that consider the shape of
output distributions.59,60 Careful examination of individual
sensitivity methods should be performed before choosing
a sensitivity index to rank parameters in a model because
different methods can give differing rankings of parameters
or can even disagree on the importance of particular pa-
rameters overall.

Model Calibration

Calibrate model parameters to minimize
the error between the model and the

measured data.

Model Selection

Use model selection criteria, such as
Akaike information criterion,

Bayesian information criterion, or
Bayesian model plausibilities, to select

the most appropriate model.

Select most
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Model Validation

Model is valid if error in quantity of
interest is less than the prescribed

threshold; otherwise, the model fails
the validation stage and is rejected.

t1 t2

t3 t3
M1(1)

M2(2)

M3(3)

A B C

FIG 2. Schematic of model calibration, selection, and validation framework. (A) A deterministic or statistical approach to model calibration is used to minimize
the error between the model and the measurement of a specific quantity of interest (eg, tumor volume, cell density distribution). In this example, the model is
initialized at time point 1 (t1), and the error is calculated at time point 2 (t2). (B) Model selection criteria are used to select the most appropriate model that
accurately describes the data. (C) The selected model is then evaluated in a validation stage by simulating tumor growth at time point 3 (t3) and comparing it
with the measured tumor growth. If the model error is within a prescribed error threshold for a quantity of interest, it is considered valid.
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Uncertainty Quantification

The construction of models to represent most phenomena
are subject to uncertainties in the observational data pa-
rameters and in the mathematical and computational
models (eg, model structure, modeling assumptions,
constitutive laws, boundary conditions). The models can be
subject to epistemic uncertainties because of our lack of
knowledge about the parameters or aleatoric uncertainties
because of the parameter variability.61 Disregard of such
uncertainties would lead to biased predictions of the
quantities of interest. In particular, for the tumor growth
models, uncertainty can lead to under- or overestimation of
the tumor size/position or incorrect treatment protocols and
might lead to selection of an inadequate model.62 To have
a way to quantify these uncertainties and their propagation
through the several steps that lead to model prediction is of
fundamental importance. One way is through Bayesian
approaches where the parameters, the data, and the model
are not assumed to be deterministic and, instead, are
considered as random variables characterized by proba-
bility density functions.63 These characterizations lead to
a stochastic model able to propagate uncertainty from
model inputs to outputs.

EXAMPLES FROM THE LITERATURE

Brain Cancer

Mathematical modeling of glioblastoma using advanced
imaging techniques to initialize and calibrate subject-
specific models of growth and response to therapy is
well developed in the literature.16-18,64-71 Tumor growth in
general and glioblastoma growth in particular commonly
have been modeled using a reaction-diffusion–type model
that describes the proliferation (reaction) and movement
(diffusion) of tumor cells, as shown in Equation 1:

∂N(x ,t )
∂t

�b∇$[D∇N(x ,t )]
Diffusion

+
b
k$N(x ,t )

8>>:1 −
N(x ,t )

θ

9>>;
Proliferation

(1)

where N(x , t ) is the number of tumor cells at a given three-
dimensional position x and time t, D is the tumor cell
diffusion coefficient, k is the proliferation rate, and θ is the
carrying capacity or the maximum number of cells that can
be fit within a volume of interest (eg, a voxel). Baldock et al65

pioneered image-based model calibration for glioblastoma
by introducing the use of anatomic T1- and T2-weighted
MRI to provide estimates of the detectable tumor and the
infiltrative nondetectable tumor margins, respectively.
Model parameters calibrated from individual patients
through this approach correlated with tumor grade,72

overall patient survival,73 and prediction of response to
therapy.16,18 This approach has been expanded by many
groups to include multiparametric imaging measures from
MRI17,70,71,74,75 and PET.66 The incorporation DTI data has
been investigated as a means to introduce anisotropic
movement of tumor cells.67-70,74-76 It has been suggested

that the direction of cell movement is aligned with the
diffusion tensor direction,70 which potentially introduces
anisotropic cell diffusion within the brain. DTI data often are
incorporated in mechanistic models that use data acquired
in the individual patient68,74,75 or supplied from a common
brain atlas.67,69,70,76 In Swan et al,74 the incorporation of
anisotropic diffusion (by using DTI data) compared with
isotropic diffusion showed promising results, where
a higher level of overlap between the model and measured
tumor volumes was observed for the anisotropic diffusion
model for nine of the 10 patients observed. This approach
potentially could be used to identify infiltrative regions or
define treatment volumes that incorporate areas where
tumor cells are likely to migrate. 18F-MISO-PET data also
have been incorporated into a reaction-diffusion–type
model of response to RT.66 The level of hypoxia as
assessed from 18F-MISO uptake was used to assign an
oxygen-enhancing ratio to spatially vary the radiosensitivity
of tumor cells to the delivered therapy. Rockne et al66

observed in one patient data set that incorporation of
18F-MISO data in their mechanistic model relative to the
model that did not include 18F-MISO decreased the error in
tumor volume predictions from 14.6% to 1.1%. Several
efforts have proposed the incorporation of DW-MRI esti-
mates of cellularity,17,64,71 fluid-attenuated inversion re-
covery MRI estimates of edema,77 DCE-MRI estimates of
perfusion,77 and DCE-MRI estimates of blood volume
fraction.78

Breast Cancer

Imaging-based models for breast cancer have been de-
veloping quickly over the past decade, beginning first with
DW-MRI measures used to approximate tumor cell number
and initialize a simple logistic growth model (ie, tumor cell
proliferation slows as it reaches a carrying capacity) to
predict tumor growth.79 By using DW-MRI data for indi-
vidual patients, the tumor cell number within the tumor
region of interest was estimated from the apparent diffusion
coefficient value. For each patient, one pretreatment scan
and one early post-treatment scan were used to calibrate
the parameters of the model, which were then used to
simulate the tumor forward to be compared with the third
imaging time point. By using these patient-specific data,
the mathematical model’s prediction for tumor cell num-
bers in the patient’s third scan was found to be statistically
correlated to the corresponding experimental data. Later,
DW-MRI data were used to initialize a partial differential
equation model that included a mathematical diffusion
term to simulate the outward movement of cells as the
tumor mass grows (mass effect) on the basis of similar
modeling efforts for glioblastomas.80 The mechanical
properties of these different tissues were incorporated by
modulating the diffusive effect of the tumor cells. Briefly,
this coupled model describes tumor growth changes that
can cause deformations in the surrounding healthy tissues
and potentially increase stress and therefore reduce the

Mechanism-Based Modeling of Tumor Growth and Response
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outward expansion of tumor growth.14,15,81 When compared
with RECIST measures of response, the approach by Weis
et al81 had increased specificity and equal sensitivity to
RECIST results. The most recent work in this effort used
DCE-MRI data to estimate the delivery of chemotherapy to
the tumor. By using parameters derived from the extended
Tofts-Kety24 model built to determine the concentration of
contrast agent in tissues for DCE-MRI, the concentration of
drug in the tissue is approximated for each individual
patient per voxel. The system of equations in Equation 2 are
thus extended as follows (Equations 3 to 5):

∂N(x ,t )
∂t

�b∇$�D∇N(x ,t )
�Diffusion

+
b
k$N(x , t )
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θ

9>>;−
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−
b
λ∇N

�
x , t

�Local body force from invading tumor

� 0 (5)

where N(x , t ) is the number of tumor cells at time t, D is the
diffusion coefficient, k(x) is a spatially resolved proliferation
rate map for tumor cells, θ is the carrying capacity, and
Cdrug
tissue(x , t ) is the approximate amount of drug therapy in

the tissue at time t with effectiveness α. Ktrans is the volume
transfer constant from the plasma space to the tissue
space, vp is the volume fraction of the plasma space, and ve
is the volume fraction of the extravascular extracellular
space24 and Cdrug

plasma(t ) is the concentration of the drug in the
plasma.D0 is the tumor cell diffusion constant in the absence of
stress; γ is an empirical coupling constant for the von Mises
stress σvm; G is the shear modulus, where G = E / [2(1 − ν)]
for the Young’s modulus (E) and Poisson ratio (ν) material
properties; u

.
is the displacement as a result of tumor cell

growth; and λ is another empirical coupling constant. (σvm
reflects the experienced stress and often is used within
failure criterion strategies in materials.) Preliminary results
in a cohort of five patients showed reductions in the error
between the model’s predictions of tumor cellularity and
size compared with when drug therapy is not incorporated
explicitly. This approach demonstrates the plausibility of

using DCE-MRI to characterize drug delivery and repre-
sents a step toward the goal of achieving a patient-specific
model for predicting tumor response to neoadjuvant che-
motherapy in breast cancer.82

Other Disease Sites

The mathematical modeling frameworks developed for
glioblastoma and breast cancer have, in principle, appli-
cation to any solid tumor type. Recently, image-based
models also have been developed for kidney,83 lung,84

and pancreatic85 tumors. For example, Chen et al83,86

leveraged CE-CT images to develop a reaction-diffusion
equation to predict kidney tumor growth on a longitudinal
image series, which expanded Equation 1 to include
a biomechanical model that related tumor cell density to
a force applied on the surrounding tissue. In this effort,
Chen et al observed an average error in tumor volume
predictions of 5.1% in five patients. Mi et al84 developed an
advection-reaction model of lung tumor growth during RT
that leveraged PET/CT imaging. Tumor cell diffusion was
assumed to be negligible within the lung, and any motion
(the advection term) was assumed to be the result of cells
migrating toward increased concentrations of oxygen,
nutrients, and space. The group assumed cell density to be
proportional to the 18FDG-PET standardized uptake value,
and the model provided a means to estimate the effect of
radiotherapy. The approach demonstrated promising re-
sults in a cohort of seven patients with non–small-cell lung
carcinoma, with an average concordance of 76% between
measured and predicted tumor volumes. The group ex-
tended this approach to improve tumor segmentation on
subsequent imaging data, which provided a method to
estimate more accurately tumor changes (and thus model
parameters), and thereby, to improve model predictions of
tumor volumes.87 Liu et al85 developed a reaction-advec-
tion-diffusion model to describe the proliferation of tumor
cells (reaction), the movement of tumor cells to displace-
ment (advection), and the movement of tumor cells as
a result of diffusion to predict the growth of pancreatic
tumors. The model was parameterized by using 18FDG-PET
and dual-phase CT to estimate the proliferation rate and
cellular volume fraction, respectively. The model of Liu et al
was expanded recently by modeling tumor mass effects
with elastic growth decomposition, which separates the
continuous deformation field of a growing tumor into its
elastic and growth components to describe more accu-
rately pancreatic tumor behavior.27 These examples
demonstrate the broad application areas for image-based
models of cancer growth and treatment response.

FUTURE DIRECTIONS

There are two fundamental barriers to the field of imaging-
based mechanistic modeling of tumor growth and re-
sponse to treatment being able to reach its promise:
access to proper data and model validity. Mechanism-
based models require a level of quantification that is not

Hormuth et al
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typically available in the standard-of-care setting. The
majority of imaging data types acquired as standard of
care are limited to qualitative descriptions of tissue
morphology. Such data types fundamentally limit the
calibration and prediction fidelity that can be achieved
with mechanism-based models. Thus, specialized clinical
studies must be designed and executed to provide the
data types needed to initialize and constrain these models.
With such data available, systematic testing of the validity
of a range of mathematical models that account for a wide
range of biologic and physical factors becomes possible,
which leads to an entire family of potentially predictive
models. Model selection algorithms then can be used to
select the optimal model and validate its ability to accu-
rately predict the spatiotemporal development of an in-
dividual patient’s tumor.41,42

If these two limitations can be overcome, or even partially
addressed, then it may be possible to build, calibrate, and
apply realistic mathematical models for use in patient
care. Figure 3 shows a schematic diagram for how such an

approach could be realized. Initially, a mathematical
formulation is defined to model the desired quantity of
interest. In vitro experiments can be used to acquire
knowledge on parameter values43 (Fig 3A). Imaging data
are then acquired before, during, and early in the course
of therapy (Fig 3B). The images are spatially coregistered
(or aligned) across time, discretized, and segmented
according to the important features to be captured by the
model. The values of the parameters are updated on this
patient-specific scenario. With the optimized parameter
values, the model passes through the validation step
(Fig 3C). If deemed valid, the model can be used with
some confidence to make a prediction. This prediction will
provide additional scores or model-based biomarkers to
be used to improve current clinical staging models and
response assessment criteria or to define new therapy
protocols. Success in this program would represent,
without question, an enormous improvement in the hu-
man condition.
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FIG 3. Modeling framework that describes how a mathematical model can be developed and implemented. (A) In vitro experiments provide data to calibrate
a particular tumor model. (B) Triphase computed tomography data are acquired (before and after treatment), segmented, and registered. (C) The domain is
discretized so that the model can be calibrated and validated to patient data. If the model meets validation criteria, it can be used to predict tumor evolution.
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In summary, the integration of mechanism-based mathe-
matical modeling with quantitative, multiparametric im-
aging data that capture the unique characteristics of the
individual patient promises to generate accurate and

actionable predictions that can optimally guide the care of
the patient. This would fundamentally shift existing para-
digms of therapy monitoring and selection in cancer and
hasten personalized cancer medicine.
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