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Abstract

Spectral computed tomography (CT) reconstructs material-dependent attenuation images from the 

projections of multiple narrow energy windows which is meaningful for material identification and 

decomposition. Unfortunately, the multi-energy projection datasets usually have lower signal-

noise-ratios (SNR). Very recently, a spatial-spectral cube matching frame (SSCMF) was proposed 

to explore the non-local spatial-spectral similarities for spectral CT. This method constructs a 

group by clustering up a series of non-local spatial-spectral cubes. The small size of spatial 

patches for such a group makes the SSCMF fail to fully encode the sparsity and low-rank 

properties. The hard-thresholding and collaboration filtering in the SSCMF also cause difficulty in 

recovering the image features and spatial edges. While all the steps are operated on 4-D group, the 

huge computational cost and memory load might not be affordable in practice. To avoid the above 

limitations and further improve image quality, we first formulate a non-local cube-based tensor 

instead of group to encode the sparsity and low-rank properties. Then, as a new regularizer, the 

Kronecker- Basis-Representation (KBR) tensor factorization is employed into a basic spectral CT 

reconstruction model to enhance the capability of image feature extraction and spatial edge 

preservation, generating a non-local low-rank cube-based tensor factorization (NLCTF) method. 

Finally, the split-Bregman method is adopted to solve the NLCTF model. Both numerical 

simulations and preclinical mouse studies are performed to validate and evaluate the NLCTF 

algorithm. The results show that the NLCTF method outperforms other state-of-the-art competing 

algorithms.
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I. Introduction

THE spectral computed tomography (CT) has obtained a great achievement in terms of 

tissue characterization [1], lesion detection and material decomposition [2], etc. As a special 

case, the dual-energy CT (DECT) uses two different energy settings to discriminate material 

components in terms of their energy-related attenuation characteristics [3]. However, the 

DECT usually employs conventional detectors (i.e., energy-integrating detectors), and its 

results are often corrupted by beam hardening and spectral blurring. Besides, there are only 

two different energy source/detector pairs. As a result, only two or three basis material maps 

can be accurately decomposed. The photon-counting detectors (PCDs) illuminate the 

prospects of multi-energy CT in practical applications because PCDs can distinguish each 

incident photon energy by recording pulse height [4]. Theoretically speaking, compared with 

the conventional energy integrating detector, a PCD can improve signal-to-noise ratio with 

reduced dose by accounting the number of received photons. However, the PCD has 

different responses to individual photon’s energy. This can lead to spectral distortions, 

including charge sharing, K-escape, fluorescence x-ray emission and pulse pileups. These 

distortions can further corrupt the spectral CT projection datasets with complicated noises 

[5]. Therefore, it is difficult to obtain higher signal-noise-ratio (SNR) projections and 

reconstruct satisfactory spectral CT images. Alternatively, high quality spectral images can 

be achieved with higher-powered PCD or superior reconstruction methods [6]. In this work, 

we mainly focus on improving image quality by developing a more powerful reconstruction 

algorithm.

Many attempts have been made to reconstruct high quality spectral CT images. According to 

the employed prior knowledge, in our opinion, all of these efforts can be divided into two 

categories: empirical-knowledge and prior-image-knowledge based methods [7]. The 

empirical-knowledge based methods first convert the spectral images into a unified and 

image-independent transformation domain, and then formulate a sparsity/low-rank 

reconstruction model of the transform coefficients in terms of an L0-norm, nuclear-norm or 

L1-norm. Considering the diversity of targets, different empirical-knowledge methods were 

employed, such as total variation (TV) [8], tensor-based nuclear norm [9], PRISM (prior 

rank, intensity and sparsity model) [10, 11], tensor PRISM [12,13], superiorization-based 

PRISM [14], piecewise linear tight frame transform [15], total nuclear variation (TVN) [16], 

patch-based low-rank [17], tensor nuclear norm (TNN) with TV [18], structure tensor TV 

[19], nonlocal low-rank and sparse matrix decomposition [20], multi-energy non-local 

means (MENLM) [21], spatial spectral nonlocal means [22], etc. However, image 

similarities in non-local spatial space are usually ignored among these methods. Very 

recently, considering the non-local similarity within spatial-spectral space, we proposed a 

spatial-spectral cube matching frame (SSCMF) algorithm by stacking up a series of similar 

small cubes (4 × 4 × 4) to form a 4-D group and then operating hard-thresholding and 

collaboration filtering on the group [7]. The length of the patches in a group is usually too 

small to accurately characterize the sparsity and low-rank property. The hard-thresholding 

and collaboration filtering are rough in image feature recovery and spatial edge preservation. 

Besides, both the hard-thresholding filtering and collaboration filtering are applied on the 
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formulated 4D group, and it might not be affordable for such huge computational cost and 

memory load in practice.

The prior-image-knowledge based methods explore both image sparsity and similarity by 

adopting high quality prior images, such as constructing a redundant dictionary [23]. A dual-

dictionary learning (DDL) method was applied to sparse-view spectral CT reconstruction 

[24]. A tensor dictionary learning (TDL) was introduced to explore the image similarity 

among different energy bins [25]. Considering the similarity between the image gradient of 

different energy bins, the image gradient L0-norm was incorporated into the TDL (L0TDL) 

framework for sparse-view spectral CT reconstruction [26]. The spectral prior image 

constrained compressed sensing algorithm (spectral PICCS)[27], TV-TV and total variation 

spectral mean (TV-SM) methods [28] can also be considered as prior-image-knowledge 

based methods, where a high quality image is treated as prior to constrain the final solution 

[29]. Very recently, an average-image-incorporated BM3D technology was developed to 

enhance the correlations among energy bin images [30]. However, the high quality prior 

images may not be available in practice. In addition, they do not fully utilize the similarities 

within a single channel.

To handle the aforementioned issues, in this paper, a nonlocal low-rank cube-based tensor 

(NLCT) will be constructed to fully explore the similarities and features within the spatial-

spectral domain. Compared with the group formulation in the SSCMF algorithm, the NLCT 

unfolds a 2D spatial image patch as a column vector and the 4-D group degrades to a 3D 

cube. Tucker [31] and canonical polyadic (CP) [32] are two classic tensor decomposition 

techniques. Specifically, the Tucker decomposition treats a tensor as an affiliation of the 

orthogonal bases along all its modes integrated by a core coefficient tensor, and the CP 

factorizes a tensor as a summation of rank-1 Kronecker bases. However, the CP 

decomposition cannot characterize well low-rank property of the tensor subspaces along its 

modes, and the Tucker decomposition usually fails to evaluate tensor sparsity with the 

volume of core tensor [33, 34]. To address those issues, a Kronecker-Basis-Representation 

(KBR) measure will be adopted. In 2017, it was first proposed for multispectral image 

denoising and completion with excellent results [33–35]. Recently, the KBR tensor 

decomposition was also applied to low-dose dynamic cerebral perfusion CT reconstruction 

[36].

In this paper, we propose a NLCT factorization (NLCTF) model in terms of KBR 

regularization for low-dose spectral CT reconstruction. Compared with the previous SSCMF 

method, the NLCTF formulates cube-based tensor so that it can better explore the non-local 

spatial and spectral similarity of spectral CT images. The KBR tensor decomposition 

regularization outperforms the hard-thresholding and collaboration filtering in the SSCMF 

algorithm in feature extraction, image edge preservation and noise suppression. Our 

contributions are threefold. First, by considering the characters of spectral CT images, we 

creatively formulate the non-local low-rank cube-based tensor. Second, we analyze the 

features of spectral images and employ the KBR regularization term to further exploit the 

image low-rank and sparsity. Based on the small cube-based 3D low-rank tensors, we 

establish the NLCTF spectral CT reconstruction model. Third, because of the advantages of 
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the split-Bregman frame [37, 38] for our application in spectral CT, it was employed to solve 

the NLCTF model rather than the ADMM strategy.

The rest of this paper is organized as follows. In section II, the mathematic model is 

constructed and the reconstruction method is developed. In section III, numerical 

simulations and preclinical experiments are designed and performed to validate and evaluate 

the proposed algorithm. In section IV, some related issues are discussed and conclusions are 

made.

II. Method

A. KBR-based Tensor Factorization

A Nth order tensor can be denoted as 𝒳 ∈ ℛ
I1 × I2 × I3 × … × IN. The KBR measure for a 

tensor 𝒳 can be expressed as:

m(𝒳) = ‖𝒞‖0 + α∏n = 1
N rank X(n) , (1)

where ‖·‖0 represents the L0 norm, 𝒞 ∈ ℛ
I1 × I2 × I3 × … × IN is the core tensor of 𝒳 with 

higher order singular value decomposition (HOSVD), X(n) represents the unfolding matrix 

with the mode-n, and α > 0 is a tradeoff parameter to balance the roles of two terms. The 

first term in (1) constrains the number of Kronecker bases for representing the target tensor, 

complying with intrinsic mechanism of the CP decomposition [32]. The second term 

inclines to regularize the low-rank property of the subspace spanned upon each tensor mode, 

which can be considered as a nonzero-cube in the core tensor space. The KBR measurement 

facilitates both the inner sparsity of core tensor 𝒞 and low-rank property of all tensor 

unfolding modes X(n), n = 1, …,N. Compared with the conventional tensor sparsity measures 

(e.g. CP and Tucker decompositions [31]), the KBR has advantages in measuring the 

capacity of tensor space and unifying the traditional sparsity measures in case of 1-order and 

2-order. Thus, it was proposed and applied to multispectral image denoising [33–35], and it 

obtained a great success in low-dose dynamic cerebral perfusion reconstruction [36].

Because Eq. (1) contains L0-norm and low-rank terms, it is hard to optimize this problem. In 

practice, the KBR is relaxed as a log-sum form [33, 34] and Eq. (1) can be rewritten as

m(𝒳) = f (𝒞) + α∏n = 1
N f * X(n) , (2)

where

f (𝒞) = ∑
i1, i2, …, iN

I1, I2, …, IN
log |ci1, i2, …, iN

| + ϵ − log(ϵ) /( − log(ϵ))
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f * X(n) = ∑
q

log σq X(n) + ϵ − log(ϵ) /( − log(ϵ))

are two log-sum forms [33], ϵ is a small positive number and σq (X(n)) defines the qth 

singular value of X(n). In this work, we employ this relaxation form to approximate the KBR 

measure.

B. Spectral CT Imaging Model

Considering the noise in projections, the conventional forward model for fan-beam CT 

scanning geometry can be discretized as a linear system

argmin
x

y = ℋx + η, (3)

where x ∈ ℛ
NI NI = NW × NH  represents the vectorized 2D image, y ∈ ℛJ J = J1 × J2

stands for the vectorized projections, J1 and J2 are respectively the view and detector 

numbers and η ∈ ℛJ stands for projection noise. ℋ ∈ ℛ
J × NI is the CT system matrix. 

Because ℋ usually is too large to be saved in memory, Eq. (3) cannot be solved directly by 

matrix inverse techniques. Alternatively, it can be iteratively solved by minimizing the 

following optimization problem

argmin
x

1
2‖y − Hx‖2

2, (4)

where ‖·‖2 represents the L2 norm. Here, Eq. (4) can be minimized by the ART or SART 

methods [39]. To obtain a better solution, a regularization term of prior knowledge can be 

introduced and we have

argmin
x

1
2‖y − ℋx‖2

2 + λR(x) . (5)

Eq. (5) contains two terms, i.e., data fidelity term 1
2 y − ℋx

2
2
 and regularization term R (x), 

and λ > 0 is a parameter to balance the data fidelity and regularization term.

For the spectral CT, because the emitted x-ray spectrum is divided into several narrow 

energy bins, the detectors can collect multiple projection datasets of the same imaging object 

with one scan, and each projection dataset can reconstruct one energy-dependent image. The 

model of fan-beam spectral CT reconstruction can be expressed as
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argmin
x

∑
s = 1

S 1
2‖ys − ℋxs‖2

2 + λR(𝒳), (6)

where xs is the vectorized image in sth (s = 1, 2, …,S) energy channel, ys is the sth energy 

channel projection, and 𝒳 ∈ ℛ
NW × NH × S

 is a 3rd-order tensor representing the set xs s = 1
S .

The most important issue to reconstruct spectral CT image from its projections is to 

rationally extract prior structure knowledge and fully utilize such prior information to 

regularize the reconstruction. Due to the advantages of KBR regularizer, in this work, the 

KBR prior is incorporated into spectral CT reconstruction. That is, R(𝒳) in Eq. (6) is 

replaced by the aforementioned m(𝒳) defined in Eq.(2)

argmin
x

∑
s = 1

S 1
2‖ys − ℋxs‖2

2 + λm(𝒳) . (7)

C. Non-local Similar Cubes Matching

The noise in multi-energy projections can compromise the quality of the reconstructed 

image. Effectively implementing image reconstruction requires fully exploring prior 

knowledge. In this work, we mainly focus on the following three aspects.

First, the human body usually only consist of two or three basis materials, i.e., soft tissue, 

bone and water in clinical applications. The number of basis materials is less than energy 

channels. This indicates the spectral images contain a large amount of spectral redundancy, 

and the images obtained from different channels are highly correlated [40, 41]. Second, as 

the multi-energy projection datasets are obtained from the same patient by different energy 

thresholds, images reconstructed across spectral dimension have different attenuation 

coefficients but share the same image structures. Third, small patches among different 

locations share similar structure information in a single channel image. It has been shown 

that such prior knowledge are very helpful for spectral CT reconstruction [7]. In a discrete 

image, one pixel only has 4 directly adjoin pixels. This corresponds to locally horizontal and 

vertical structures. Because a series of non-local similar cubes around the current cube are 

extracted to construct a 4D group, the image edges and structures along the horizontal and 

vertical directions can be well preserved in such a 4D group. Fig. 1 demonstrates the process 

of grouping. To explore non-local similarity inside an image, the patch length in spatial 

domain is usually very small (for examples, 4×4 and 6×6). This makes it difficult to 

accurately extract the intrinsic subspace bases of the spatial information for the HOSVD 

[42]. Meanwhile, we cannot afford the computational cost and memory load of larger patch 

length in the spatial horizontal and vertical model.

Therefore, in this work, we construct a 3rd-order low-rank cube for spectral CT 

reconstruction (see Fig. 1). For one given cube with size rw × rh × rs within the whole 3D 
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images, we search t similar non-local cubes in a given local window. Then, these extracted t
+1 small cubes used to formulate a new cube with the size of (rwrh) ×rs × (t + 1), where 

(rwrh) × rs is the matrix formation of cube and t is the number of the non-local similar cubes. 

The formatted cube simultaneously explores the spatial local sparsity (mode-1), the non-

local similarity among spectral-spatial cubes (mode-2) and spectral correlation (mode-3), 

which would be good for tensor recovery. The constructed cube also provides a unified 

interpretation for the matrix-based recovery model. Especially, rs = 1 or t = 0, the 

constructed cube can be degenerated into a matrix by taking only non-local self-similarity or 

spectral correlation.

To better explore the similarities across spectral space, we set rs = S in the 3D low-rank cube 

construction. By traversing all the cubes across the spectral images with overlaps, we can 

build a set of 2D patches Gi j 1 ≤ i ≤ NW − rw, 1 ≤ j ≤ NH − rh ⊂ ℛ
rwrh × S

 to 

represent the spectral CT images, where each energy channel of a small patch is ordered 

lexicographically as a column vector. We can now reformulate all 2D patches as a group 

Xl l = 1
L  with one index l, where L = (NW − rw + 1) × (NH − rh + 1) is the patch number. 

Furthermore, for a given current Xl, we can find t ≥ 1 similar patches within a non-local 

window. A low-rank cube can be constructed and denoted as 𝒳l ∈ ℛ
rwrh × S × (t + 1)

. Each 

cube can be considered as an extraction from the original 3rd-order tensor 𝒳 with the 

operator El. Here, 𝒳l can be further expressed as

𝒳l = El𝒳 . (8)

D. NLCTF Reconstruction Model

Considering the non-local spatial similarity and correlation across spectral dimension in 

spectral images, we now construct a KBR-based non-local spectral CT reconstruction model 

based on Eq. (7),

argmin
x

∑
s = 1

S 1
2‖ys − ℋxs‖2

2 + λ ∑
l = 1

L
m 𝒳l . (9)

Substituting Eq. (8) into Eq.(9), we have

argmin
x

∑
s = 1

S 1
2‖ys − ℋxs‖2

2 + λ ∑
l = 1

L
m El𝒳 . (10)

To optimize the problem Eq.(10), the split-Bregman method is employed. We split 𝒳 and 

El𝒳 by introducing L auxiliary cubes 𝒯l l = 1
L  instead of El𝒳 l = 1

L , and Eq. (10) is 

rewritten as
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arg min
x, Tl l = 1

L

1
2 ∑

s = 1

S
‖ys − ℋxs‖2

2 + λ ∑
l = 1

L
m 𝒯l ,

s . t . 𝒯l = El𝒳 (l = 1, …L) .

(11)

Eq. (11) is a constrained optimization problem, which can be converted into an 

unconstrained version

arg min
x, TlWl l = 1

L

1
2 ∑

s = 1

S
ys − ℋxs 2

2 + λ ∑
l = 1

L
m 𝒯l

+ μ
2 ∑

l = 1

L
𝒯l − El𝒳 − 𝒲l F

2 .

(12)

where the Frobenius norm of a tensor is used, μ is the coupling parameter and 𝒲l l = 1
L

represent L error feedback cubes. Eq. (12) is equivalent to the following three sub-problems:

arg min
x

1
2 ∑

s = 1

S
‖ys − ℋxs‖2

2

+ μ
2 ∑

l = 1

L
‖𝒯l

(k) − El𝒳 − 𝒲l
(k)‖F

2
,

min
x, Tl l = 1

L
λ ∑

l = 1

L
m 𝒯l + μ

2 ∑
l = 1

L
‖𝒯l − El𝒳

(k + 1) − 𝒲l
(k)‖F

2 , (13b)

argmin
x, Wl l = 1

L

μ
2 ∑

l = 1

L
‖𝒯l

(k + 1) − El𝒳
(k + 1) − 𝒲l‖F

2 . (13c)

(13a)

where k is the current iteration number and Eqs. (13a) – (13c) can be alternatingly solved.

Eq. (13a) can be solved by utilizing a gradient descent method. Its solution can be given as

𝒳nwnhs
(k + 1) = 𝒳nwnhs

(k) − β ℋT ℋxs
(k) − ys nwnh

−μ ∑
l = 1

L
El

−1 El𝒳
(k) − 𝒯l

(k) + 𝒲l
(k)

nwnhs
.

(14)
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where the symbols [.]nwnh (1≤ nw ≤ NW, 1 ≤ nh ≤ NH) and [.]nwnh s respectively indicate the 

(nw, nh)th and (nw, nh, s)th elements within a matrix and a tensor, El
−1 is the inverse operation 

of El, and β ∈ (0, 2) is a relaxation factor, which is set as 0.03 in our experiments [7]. Eq. 

(13c) can be easily solved by using the steepest descent method

𝒲l
(k + 1) = 𝒲l

(k) − 𝒫l 𝒯l
(k + 1) − El𝒳

(k + 1) , ∀l = 1, …L, (15)

where 𝒫l is the length of step size and it is set as 1.0 in this work. Now, the challenge is to 

solve the problem (13b). Substituting Eq. (2) into Eq. (13b), we have

arg min
x, 𝒯l l = 1

L
∑
l = 1

L
f 𝒞l + α∏n = 1

3 f * Tl(n)

+ δ
2 ∑

l = 1

L
‖𝒯l − El𝒳

(k + 1) − 𝒲l
(k)‖F

2 ,

(16)

where Tl(n)
 represents the unfolding matrix with the mode-n of the tensor 𝒯l ⋅δ = μ/λ and N 

= 3. Eq. (16) can be divided into L independent sub-problems

arg min
x, (𝒯l l = 1

L
f 𝒞l + α∏n = 1

3 f * Tl(n)

+ δ
2‖𝒯l − El𝒳

(k + 1) − 𝒲l
(k)‖F

2 .

(17)

To minimize an objective function similar to Eq. (17), the ADMM was proposed in [33]. 

Compared with ADMM method, the split-Bregman can simplify the minimization step by 

decoupling the variables coupled by the constraint matrix Iin the Eq. (17)[43, 44]. Besides, 

because the regularization function f 𝒞l + α∏n = 1
3 f * Tl(n)

 is a nonconvex function, the 

split-Bregman outperforms the ADMM to optimize Eq. (17) [43–45]. Finally, because of the 

faster convergence and easier implementation than ADMM, the split-Bregman method is 

increasingly becoming a method of choice for solving sparsity recovery problems [46–48]. 

Here, we adopt the split-Bregman method instead of ADMM and then follow similar steps 

in [33] to obtain the final solution. First, we need to introduce 3L auxiliary cubes ℳln n = 1

3
. 

Eq. (17) can be written as
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arg min
𝒞l, ℳln

, Qln n = 1

3
f 𝒞l + α∏n = 1

3 f * Mln(n)

+ δ
2‖𝒞l ×1 Ql1

×2 Ql2
×3 Ql3

− El𝒳
(k + 1) − 𝒲l

(k)‖F
2

s . t . , 𝒞l ×1 Ql1
×2 Ql2

×3 Ql3
= ℳln

(n = 1, 2, 3),

Qln
T Qln

= I(n = 1, 2, 3),

(18)

where the factor matrices Qln n = 1

3
 denote orthogonal in columns and Mln(n)

 represent the 

unfolding matrix along mode-n of the cube ℳln
. Eq. (18) is a constrained problem which 

can be converted into an unconstrained one

argmin
𝒞l, ℳln

, 𝒵ln
QIn n = 1

3
f 𝒞l + α∏n = 1

3 f * Mln(n)

+ δ
2 𝒞l ×1 Ql1

×2 Ql2
×3 Ql3

− El𝒳
(k + 1) − 𝒲l

(k)
F

2

+ θ
2 ∑

n = 1

3
𝒞l ×1 Ql1

×2 Ql2
×3 Ql3

− ℳln
+ 𝒵ln F

2
,

(19)

where 𝒵ln n = 1

3
 represent errors feedback cube, θ is a positive parameter and Qln n = 1

3

satisfy Qln
T Qln

= I. Now Eq. (19) can be updated by solving the following sub-problem:

i. 𝒞l sub-problem: With the other parameters fixed, 𝒞l can be updated by solving 

the following minimization problem:

arg min
𝒞l

γ f 𝒞l + 1
2‖𝒞l ×1 Ql1

(k) ×2 Ql2
(k) ×3 Ql3

(k) − ℬl
(k)‖F

2 . (20)
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where γ = 1/(δ + 3θ) and 

ℬl
(k) = δ El𝒳

(k + 1) + 𝒲l
(k) + θ ∑n = 1

3 ℳln
(k) − 𝒵ln

(k) /(δ + 3θ). Based the results 

in [33], Eq. (20) can be converted to

γ f 𝒞l + 1
2‖𝒞l − 𝒟l

(k)‖F
2 , (21)

where

𝒟l
(k) = ℬl

(k) ×1 Ql1
(k) T

×2 Ql2
(k) T

×3 Ql3
(k) T

.

Eq. (21) has a closed-form solution [49]

𝒞l
(k + 1) = Dγ, ϵ 𝒟l

(k) , (22)

where Dγ, ϵ (·) denotes the hard-thresholding operation, which has the following 

form

Dγ, ϵ(x) =
0 i f  |x| ≤ 2 c1γ − ϵ

sign 
c2(x) + c3(x)

2 i f   x > 2 c1γ − ϵ,
(23)

where c1 = ( − 1)/log(ϵ), c2(x) = |x| − ϵ, c3(x) = (|x| + ϵ)2 − 4c1γ and sign 

represents the sign function.

ii. Qln n = 1

3
 sub-problem: with respect to Ql1

, we fix the Ql2
(k), Ql3

(k) and others 

parameters. Ql1
 can be updated by minimizing the following problem

min
Ql1

1
2 𝒞l

(k + 1) ×1 Ql1
×2 Ql2

(k) ×3 Ql3
(k) − ℬl

(k)

F

2
s . t . Ql1

T
Ql1

= I . (24)

According the work in [36], Eq. (24) is equivalent to
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max
Ql1

T
Ql1

ℒl1
Ql1

, (25)

where ℒl1
= Bl(1)

(k) Ql2
(k) ⊗ Ql3

(k) 𝒞l(1)
(k + 1) T

 and Bl(1)
(k)  represent the unfolding matrix 

of ℬl
(k) along mode-1. Then, Ql1

 can be updated by [33]

Ql1
(k + 1) = Gl1

Vl1

T
, (26)

where Gl1
Θl1

Vl1

T
 represents the SVD decomposition of ℒl1

. Similarly, Ql2
 and 

Ql3
 can be updated by minimizing

min
Ql2

T
Ql2

= I

1
2‖𝒞l

(k + 1) ×1 Ql1
(k + 1) ×2 Ql2

×3 Ql3
(k) − ℬl

(k)‖F
2

min
Ql3

T
Ql3

= I

1
2‖𝒞l

(k + 1) ×1 Ql1
(k + 1) ×2 Ql2

(k + 1) ×3 Ql3
− ℬl

(k)‖F
2

(27)

iii. ℳln n = 1

3
 sub-problem: To update ℳl1

, we fix ℳl2
(k), ℳl3

(k) another parameters. 

The update of ℳl1
 can be obtained by minimizing

bl1
f * Ml1(1) + 1

2‖ℳl1
− 𝒬l

(k + 1) − 𝒵l1
(k)‖F

2 ,

where

𝒬l
(k + 1) = 𝒞l

(k + 1) ×1 Ql1
(k + 1) ×2 Ql2

(k + 1) ×3 Ql3
(k + 1) . (28)

The ble
 is defined as ble

= α
θ ∏e ≠ n f * Mln(n)

 and e = 1, 2, 3, i.e., bl1
 in Eq. (29) 

can be expressed as
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bl1
= α

θ ∏n = 2, 3 f * Mln(n)
. (29)

According to Theorem 1 in [50] and the work in [33], Eq. (29) has the following 

closed-form solution:

ℳl1
(k + 1) =  fold1 Ψl1

Σdl1
ψl1

T , (30)

where Σdl1
=  diag  Ddl1

, ϵ σ1 , Ddl1
, ϵ σ2 , …, Ddl1

, ϵ σM  and 

Ψl1
 diag  σ1, σ2, …, σM ψl1

T  is the SVD decomposition of unfold1 𝒬l
(k + 1) + 𝒵l1

(k) . 

ℳl2
 and ℳl3

 can be updated in a similar way.

iv. 𝒵ln n = 1

3
 sub-problem: From Eqs. (19), (28) and (29), 𝒵ln

 can be updated as

𝒵ln
(k + 1) = 𝒵ln

(k) − ℳln
(k + 1) − 𝒬l

(k + 1) . (31)

All the aforementioned steps in the proposed NLCTF method can be summarized 

in Algorithm I. Note that all cubes are constructed by the normalized 𝒳(k + 1) not 

the original 𝒳(k + 1). Thus, it is necessary to denormalize the updated 

𝒯l
(k + 1)(l = 1, …L). For the formulation of a low-rank cube, rw, rh and t are set as 

6, 6 and 50, respectively. The parameter δ depends on τ and δ = cτ−1, where c is 

set as a constant 10−3. The size of the search window is set as 80 × 80 in this 

work.

E. Comparison algorithms

To evaluate the performance of our proposed NLCTF algorithm, the SART, total variation 

minimization (TV)[8], total variation and low rank (TV+LR) [10], image gradient L0-norm 

and tensor dictionary learning (L0TDL) [26], as well as the spatial-spectral cube matching 

frame (SSCMF) [7] algorithms are chosen and implemented for comparison. It should be 

emphasized that all hyper-parameters in the TV, TV+LR, L0 TDL and SSCMF methods are 

empirically optimized in our experiments.

III. Experiments and Results

In this section, projections from both numerically simulated mouse thorax phantom and real 

mouse with injected gold nanoparticles (GNP) are employed to validate and evaluate the 
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developed NLCTF algorithm. In numerical simulations, we mainly demonstrate the 

performance of our proposed method in terms of reconstructed image quality, material 

decomposition accuracy, algorithm convergence, and computational cost. To quantitatively 

evaluate the image quality, the root mean square error (RMSE), peak-signal-to -noise ratio 

(PSNR), feature similarity (FSIM) [51] and structural similarity (SSIM) are employed. The 

results from preclinical real mouse data also confirm the outperformance of the proposed 

method in recovering finer structures and preserving image edges with reduced noise.

Algorithm 1

NLCTF

Input: ys s = 1
S

, α, τ, θ, μ and other parameters;

1:Initialization: 𝒳(0) 0; 𝒳l
(0), 𝒲l

(0) 0, initializing Qln
(0)

, 𝒞l
(0)

 by high-order SVD of 𝒳l
(0)

; 

ℳln
(0), 𝒵ln

(0), 𝒯l
(0) 𝒳l

(0)
, ∀n = 1,2,3 and l = 1, …L; k = 0

2: While not convergence do

3: Updating 𝒳(k + 1)
 using Eq. (14);

4: Constructing all cubes 𝒳l
(k + 1)(l = 1, …L) using normalized 𝒳(k + 1)

 by Eq. (8);

6: for l = 1:L

7:  Updating 𝒞l
(k + 1)

 using Eq. (22);

8:  Updating Qln
(k + 1)(n = 1, 2, 3) using Eq. (26);

9:  Updating ℳln
(k + 1)(n = 1, 2, 3) using Eq. (30);

10:  Updating 𝒵ln
(k + 1)(n = 1, 2, 3) using Eq. (31);

11:  Updating the denormalized 𝒯l
(k + 1) = 𝒞l

(k + 1) ×1 Ql1
(k + 1) ×2 Ql1

(k + 1) ×3 Ql1
(k + 1)

12:  Updating 𝒲l
(k + 1)

 using Eq. (15);

13: End for

14: k = k + 1;

15: End while

Output: 𝒳

A. Numerical Simulation Study

A numerical mouse thorax phantom injected with a 1.2% iodine contrast agent is used (see 

Fig.2 (a)), and a polychromatic 50KVp x-ray source is assumed whose normalized spectrum 

is given in Fig. 2(b). The spectrum is divided into eight energy bins: [16, 22) keV, [22, 25) 

keV, [25, 28) keV, [28, 31) keV, [31, 34) keV, [34, 37) keV, [37, 41) keV, and [41, 50) keV. 

The PCD includes 512 elements, and the length of each element is 0.1mm. The distances 

from x-ray source to PCD and object are set as 180mm and 132mm, generating a field of 
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view (FOV) of 37.2 mm in diameter. 640 projections are acquired over a full scan. Poisson 

noise is superimposed, and the photon number emitting from the x-ray source for each x-ray 

path is set as 2×104. All the energy bin images of 512×512 matrixes from different methods 

are reconstructed after 50 iterations.

The parameter selection is challenging for the proposed NLCTF method. There are four key 

parameters, i.e., α, δ, θ, and μ. To make it clear, these parameters are summarized in Table I. 

Other parameters in the competing algorithms are also optimized, and the best results are 

selected for comparison and analysis.

1) Reconstruction Results: Fig.3 shows three representative energy channels (1st, 4th 

and 8th) of the reconstructed images, where the reference images are reconstructed from 

noise-free projections by the SART. It can be seen that the images reconstructed by the 

SSCMF and L0TDL methods have much finer structures and details compared with those 

are reconstructed by the TV+LR method followed by the TV algorithm. Without any prior 

knowledge in the mathematical model, there are always strongest noise and image artifacts 

in the SART results.

It can be seen that the reconstructed image quality from the TV and TV+LR methods are 

improved (3rd and 4th rows) with prior knowledge. Because both the TV and TV+LR models 

contain TV regularization, their results have blocky artifacts and blurry image edges. The 

L0TDL can provide better images than the TV and TV+LR methods with significantly 

reduced blocky artifacts. Compared with the L0TDL method, the SSCMF can retain much 

finer structures. However, some finer structures and details are still lost in the SSCMF 

results. In comparison, the NLCTF algorithm achieves a great success in capturing smaller 

image structures and details.

To clearly compare the reconstruction performance of all algorithms, two lung ROIs (“A” 

and “B”) and one bony ROI (“C”) are extracted from Fig. 3 and magnified in Fig. 4. From 

Fig. 4(a), we can observe that the finer details indicated by the arrows “1” and “2” can still 

be seen in the NLCTF results, but these structures are lost by other competitors. The image 

structure indicated by the arrow “3” has disappeared in TV, TV+LR results and blurred from 

SSCMF. However, it is persevered well in the L0TDL and NLCTF methods even if it is 

slightly blurred from the L0TDL, especially in high energy bins. The feature indicated by the 

arrow “4” cannot be seen in the TV and TV+LR results. Although this feature can be found 

in low energy bins, it is invisible in high energy bin results of the L0TDL and SSCMF. 

However, it can always be seen in the NLCTF results. Fig. 4 (b) shows another lung ROI 

“B”. From Fig. 4 (b), we can see that the image structures indicated by arrows “5” and “6” 

are lost by other competing algorithms, and these structures can still be faithfully 

reconstructed by the NLCTF algorithm. Fig. 4(c) shows a magnified bony ROI “C”, where 

the thoracic vertebra bones are separated by low-density tissues. It can be seen that the 

SART results contain severe noise, especially in the 8th channel where the signal-to-noise 

ratio (SNR) is too low to distinguish the thoracic vertebra bony structures and soft tissue. 

The SSCMF results preserve more bony structures than the TV and TV+LR techniques. 

However, the image edges surrounding the bony region are still not clear. Generally 

speaking, both the L0TDL and NLCTF can offer high quality images with sharp image 
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edges and reduced image noise. However, the image edge indicated by the arrow “8” is still 

slightly blurred.

Table II shows the quantitative evaluation results of the reconstructed images from all energy 

bins. It shows that the proposed NLCTF can always obtain the smallest RMSEs for all 

energy bins. From table II, we can see that the TV+LR method has slightly smaller RMSEs 

than the TV. Compared with the TV and TV+LR methods, the L0TDL and SSCMF have 

better reconstruction performance. Specifically, the RMSE values of L0TDL are greater than 

those obtained by the SSCMF method in lower energy bins (1st, 2nd), and the L0TDL has 

smaller RMSE values than those achieved by the SSCMF in higher energy bins (3rd-8th). In 

terms of PSNR, similar conclusions can be made. The SSIM and FSIM measure the 

similarity between the reconstructed images and references, which are recently employed to 

compare reconstructed CT image quality [52]. Here, the dynamic range of all channel 

images are scaled to [0 255]. The closer to 1.0 the SSIM and FSIM values are, the better the 

reconstructed image quality is. In Table II, the NLCTF results obtain the greatest SSIM and 

FISM values for all channels all the time. In terms of these two indexes, the L0TDL and 

SSCMF outperform the TV and TV+LR methods. In general, the NLCTF method has the 

higher image quality in terms of quantitative assessment.

2) Material Decomposition: To evaluate all the algorithms for material decomposition, 

all the reconstructed spectral CT images are decomposed into three basis materials (soft 

tissue, iodine contrast agent and bone) utilizing a post-processing method [25]. Fig. 5 shows 

the three decomposed basis materials and the corresponding color rendering images. The 

first column of Fig. 5 shows the bone component. It can be seen that many soft tissue and 

iodine contrast agent pixels are wrongly introduced by the SART. Compared with the 

L0TDL and SSCMF results, more pixels of the iodine from the TV and TV+LR are also 

wrongly classified as bone structure. However, there are still some pixels of iodine contrast 

agent that are wrongly classified as bone in the L0TDL and SSCMF. In contrast, the NLCTF 

result has a clear bone map. Regarding the soft tissue component (2nd column), two ROIs 

indicated by “D” and “E” are extracted to evaluate the performance of all algorithms. From 

the extracted ROI “D”, it can be seen that the image edges indicated by arrows are blurred in 

the TV, TV+LR and SSCMF results. The resolution of the image edges is significantly 

improved in the L0TDL results. However, the image structures are still slightly blurred when 

they are compared with those obtained from the NLCTF reconstructions. In terms of ROI 

“E”, finer structures indicated by arrows are lost in the competitors, and they are well 

preserved in the proposed NLCTF results. As for the iodine contrast agent results (3rd 

column in Fig. 5), the bony structures have an impact on the accuracy of the iodine contrast 

agent component, especially on the results from the SART. The accuracy of the iodine 

contrast agent is significantly improved in the TV and TV+LR results. However, some bony 

pixels are still wrongly decomposed. Compared with the results of the SSCMF, the L0TDL 

and NLCTF provide much clear maps.

To further quantitatively evaluate the accuracy of material decomposition for all the 

reconstruction algorithms, the RMSE, SSIM, PSNR and FSIM values of three decomposed 

basis materials are also listed in table II, where the references are obtained from the SART 

results with noise-free projections. Table II demonstrates the NLCTF can obtain the smallest 
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RMSE values for three different materials, even if the L0TDL can obtain the same RMSE 

value for the iodine contrast agent. In terms of PSNR and SSIM, we can obtain similar 

conclusions. As for the FSIM index, the higher values of bone and iodine contrast agent can 

be obtained by the NLCTF method. The L0TDL method can obtain greater FSIM value than 

other algorithms. However, the finer image details and small structures are lost in the L0TDL 

results.

3) Parameters analysis: The parameters of NLCTF mainly comes from two parts: 

model regularization parameters (α, μ, δ, θ) and cube formulation parameters (patch size 

r×r, similar patch number t). To investigate the effect of each parameter on the final 

reconstruction, the NLCTF results with respect to different parameter settings are compared. 

Here, the RMSE and SSIM are computed after 50 iterations for analysis. Fig. 6 shows the 

final RMSE and SSIM values of the NLCTF method with respect to different parameters, 

and each subplot represents the RMSE or SSIM values with respect to one varying 

parameter with other parameters are fixed.

It is observed from Fig. 6 that the parameters α, μ, and δ play an important role in 

controlling the reconstructed image quality. Specifically, an appropriate α can reduce RMSE 

value with greater SSIM value, while one smaller or greater α can increase the RMSE and 

reduce the SSIM. Regarding μ and δ, similar conclusions can be made. According to the Fig. 

6 (g) and (h), it can be observed that the parameter θ has a small impact on the RMSE 

values. However, it can improve the SSIM by selecting an appropriate value. From Fig. 6 (i) 

and (j), we can see that, when the number of similar patches is 50, we can obtain relatively 

optimized reconstructed results. For the optimal patch size, Fig. 6 (k) and (l) show the 6 × 6 

can always obtain the smallest RMSE values with greatest SSIM values in all energy 

channels.

4) Convergence and Computational Cost: There are two regularization terms in the 

KBR model, i.e., sparsity constraint of core tensor and low-rank property of tensor 

unfolding. In this study, the L0-norm and nuclear norm are employed to respectively enhance 

the sparsity and low-rank properties. The optimization convergence is difficult to analyze. In 

addition, the L0-norm minimization of core tensor coefficients is a nonconvex optimization 

problem, which also makes it more difficult to analyze the convergence. Alternatively, we 

only numerically investigate the convergence of the NLCTF method. Fig. 7 shows the 

averaged RMSE and PSNR values among all energy channels vs. iteration number. Since the 

projection datasets are corrupted by Poisson noise, the PSNR values of SART increase 

rapidly and then drop off slowly [7]. The RMSEs of all optimization methods are strictly 

decreasing with respect to iteration number and finally converge to a stable level. 

Particularly, the NLCTF can obtain a good solution with the smallest RMSE or a highest 

PSNR, followed by the SSCMF, L0TDL, TV+LR and TV.

Regarding the computational cost, the NLCTF method is divided into two major procedures: 

data fidelity term update and regularization constraint. The backprojection reconstruction 

step is necessary for all the iteration algorithms and different regularization terms 

correspond to different computational costs. In this study, all the source code are 
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programmed by Matlab (2017b) on a PC (8 CPUs @3.40GHz, 32.0GB RAM, Intel(R) HD 

Graphics 530). Table III summarizes the required time for one iteration for all algorithms.

B. Preclinical Mouse Study

A mouse was scanned by a MARS micro spectral CT system including one micro x-ray 

source and one flat-panel PCD. The distances between the source to the PCD and object are 

255 mm and 158 mm, respectively. The PCD horizontally includes 512 pixels and its length 

is 56.32 mm, resulting in an FOV with a diameter of 34.69 mm. Gold nanoparticles (GNP) 

are injected into the mouse as contrast agent. Because the PCD only contains two energy 

bins, multiple scans were performed to obtain 13 energy channels for 371 views with a cost 

of increased radiation dose. This can help to increase the stability of material decomposition 

and quality of decomposed basis material images. To compare all the reconstruction 

algorithms, the projections for the central slice are extracted and employed in this 

experiment. The size of each reconstructed channel image is 512×512.

Fig. 8 shows the reconstructed and gradient images of three representative energy channels 

(1st, 9th and 13th). The 1st row of images in Fig. 8 are reconstructed by the SART. Because 

they are corrupted by severe noises and lose most of details and fine structures, it is difficult 

to distinguish small bony details and soft tissues. The image quality of TV and TV+LR 

methods are improved (2nd and 3rd rows). From Fig. 8, we can see that the L0TDL and 

SSCMF methods (4th and 5th rows) have significant advantages in recovering fine structures 

as well as preserving image edges than the TV and TV+LR results. Compared with the 

results of the proposed NLCTF, the capability of L0TDL and SSCMF is weaker in 

preserving edges and recovering image features.

Here, ROIs indicated by “A” and “B” are extracted to demonstrate the aforementioned 

advantages of the NLCTF method. The magnified version of ROIs “A” and “B” are also 

given in Fig. 8. It can be seen that the bony profile in ROI “A” cannot be distinguished in the 

SART, TV and TV+LR results, especially in high energy bins (i.e., 9th and 13th). Compared 

with the TV and TV+LR methods, the L0TDL can provide clearer bony profiles. However, 

the connected bone is broken in all channels in the L0TDL results and high energy channels 

(such as 13) in the SSCMF results, which can be observed in the gradient images of ROI 

“A”. From the reconstructed and gradient images of ROI “A”, we can see that the proposed 

NLTDL can accurately recover the broken bony structure (e.g. the bone structure labelled by 

arrow “1”). For the ROI “B”, the shape of bone is severely distorted in the images 

reconstructed by the SART and TV methods. The noise and blocky artifacts comprise the 

TV+LR final results. The shape of bony structures and image edges are also corrupted in the 

L0TDL and SSCMF results, which can be seen from the location indicated by the arrow “2”. 

Compared with all the competitors, the NLCTF can provide more accurate image edges and 

bony shapes.

A more complicated ROI “C” is extracted to further demonstrate the advantages of the 

NLCTF method. Fig. 9 shows the magnified ROI “C” of the L0TDL, SSCMF and NLCTF 

methods. From Fig. 8, one can see that the SART, TV and TV+LR have a poor performance, 

and their results are omitted in Fig. 9 to save space. The image edge indicated by the arrow 

“3” is blurred, and it is hardly observed in all comparisons (i.e., L0TDL and SSCMF 
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methods). However, in the NLCTF results, one can easily see the sharp image structure edge 

and the image gap between two ribs. This is also verified by the gradient images. If we use 

the L0TDL and SSCMF results in Fig 9, one may mistakenly conclude that the image 

structure “4” is broken and then lead to a wrong inference about the structure of the mouse. 

However, it is not difficult to infer that the image structure “4” is always continuous based 

on the NLCTF results. Again, the NLCTF may give more accurate structural information 

than other competitors. The image structure “5” reconstructed by the SSCMF is blurred and 

image edge quality is degraded, and the profile reconstructed by the L0TDL method is 

slightly distorted in high energy bins. In contrast, the NLCTF method can avoid these 

drawbacks and enhance the ability of edge preservation. In term of image structure “6”, the 

SSCMF and NLCTF methods can provide similar high quality images. However, the edge is 

blurred in the L0TDL results, and this can be confirmed by the corresponding gradient 

images.

Better reconstructed image quality can benefits the basis material decomposition. Fig. 10 

shows three decomposed basis materials. Regarding the decomposed bone results, ROIs 

indicated by “D” and “E” are extracted and magnified. From the magnified “D”, a gap 

indicated by the arrow “7” can be easily observed in our proposed NLCTF result. However, 

it disappears in other competitors. The bony structure within the ROI “E” is always 

continuous for the SSCMF and NLCTF, while it is broken in the SART, TV, TV+LR and 

L0TDL results. As for the decomposed soft tissue, the image structure, indicated by the 

arrow “8” in ROI “F”, is well reconstructed by the NLCTF method, and image edges are 

clear than those obtained by other reconstruction methods. Besides, the gap between two 

bony profiles is much clearer than the SART, TV, TV+LR, L0TDL and SSCMF methods. 

From the magnified ROI “G”, it can be seen that the image structure reconstructed by the 

NLCTF technique provides sharper image edges. This point can be verified by the region 

around the arrow “9”. For the iodine contrast agent decomposed results, the L0TDL, SSCMF 

and NLCTF methods can obtain similar accuracy with clear image edges.

IV. Discussions and Conclusions

To reconstruct high quality spectral CT images from noisy projections, the NLCTF method 

is proposed and developed. The NLCTF can sufficiently explore the low-rank property 

among the spatial-spectral space and image-self similarities by formulating small 3D cubes. 

Compared with the formulation of 4D group in the SSCMF, such 3D cubes can both fully 

encode the image spatial information and reduce memory load. Different energy bins 

correspond to different image contrast resolutions and noise levels. Specifically, higher 

energy channels have lower contrast resolutions so that the finer image details are difficult to 

distinguish. However, the noise levels of higher energy channels are lower than those 

obtained from lower energy channels. In contrast, the spectral images of lower energy 

channels have higher attenuation coefficients and contrast resolutions with larger noise 

levels than higher energy channels. The unfolding operations along every direction of the 

tensor 𝒳 may be beneficial to improve the contrast resolutions in both higher and lower 

energy channels by reducing the noise. Thus, compared with the SSCMF method, NLCTF 

employs an advanced tensor factorization technique (KBR) to decompose the formulated 3D 

cubes rather than hard-thresholding and collaborative filtering operating on the 4D group in 
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the SSCMF method. In this way, more image details and structures can be preserved in the 

final results.

To further validate the advantages of 3D cubes rather than 4D groups, Fig. 11(a) shows the 

nonlocal patch-based T-RPCA (NL-T-RPCA) results [36]. To the best of our knowledge, the 

cerebral perfusion CT mainly focuses on reconstructing both dynamic and static structures 

simultaneously. How to remove the motion artifacts with clear image structures is the 

biggest obstacle in practical application for cerebral perfusion CT. The success of NL-T-

RPCA [36] is that it treats cerebral perfusion CT images as a low-rank component (static 

structures) and a sparsity component (dynamic structures). Then the KBR regularization and 

tensor-based total variation (TTV) regularization are employed to characterize the 

corresponding spatial–temporal correlations (low-rank) and spatial–temporal varying 

component (sparsity), respectively. This corresponds to the PRISM model reported by H. 

Gao et al. in 2011 [11]. Regarding the spectral CT, multi-energy projections are collected 

from the same object using different energy windows. Because the spectral CT images have 

different attenuation coefficients while sharing the same structures and details among 

different energy channels, it is more difficult to model the sparsity of the spectral-image. In 

addition, because there are only one or two materials within a small patch, it is appropriate 

to employ the KBR to realize small formulated 3D cubes. Here, the sparsity term in the NL-

T-RPCA model is eliminated. It can be seen from Fig. 11(a) that the finer structures 

indicated by arrows are still smoothed and the image edges are hardly observed, which are 

similar to the SSCMF results.

Compared with the L0TDL methods, the NLCTF can also obtain better results. To further 

demonstrate this point, the reconstructed mouse results using the TDL techniques are given 

in Fig. 11(b). Those results are the same as in [25]. From Fig. 11(b), it can be seen that the 

small structures indicated by arrows are broken, and the details cannot be observed. 

However, those structures can be clearly observed in our NLCTF results. This point has been 

mentioned in the above sub-section.

While the NLCTF algorithm has an outstanding performance for spectral CT reconstruction, 

there are still some open problems in practical applications. First, there are several 

parameters in the NLCTF model which need to be selected for different objects, such as α, 

δ, θ, μ, patch size, similar patch number, etc. In this study, the parameters are carefully 

selected and optimized by comparing the values of different metrics. However, there may be 

no reference in practice. For that case, the final results are picked up based on our 

experiences, which may be inappropriate. Thus, it is important to develop a strategy for 

selecting good results with combining deeply theoretical analysis and extensive experiments 

in the future. Second, the NLCTF needs larger computational cost than the SSCMF, L0TDL, 

TV+LR and TV. This can be speeduped by the GPU techniques. Third, the proposed NLCTF 

currently focuses on fan-beam rather than cone-beam geometry. To generalize it to cone-

beam geometry, a 4th-order low-rank tensor rather than the cube should be formulated.

In summary, the KBR measure is employed to decompose the non-local low-rank cube-

based tensor to fully explore the similarities among spatial-spectral space, and the split-

Bregman method is employed to solve the NLCTF model to obtain the optimized solution. 
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Both simulation and preclinical experiments validate and demonstrate the outperformances 

of our proposed NLCTF reconstruction method.
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Fig. 1. 
Illustration of the formation process for a group and cube.
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Fig. 2. 
Numerical simulation setup. (a) is the mouse thorax phantom, where green, red and blue 

stand for water, bone and iodine, respectively. (b) is the normalized x-ray source spectrum.
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Fig. 3. 
Three representative energy bin reconstruction results. The 1st row are reference images, and 

the 2nd to 7th row images are reconstructed by using the SART, TV, TV+LR, L0TDL, 

SSCMF and NLCTF methods. The 1st to 3rd columns correspond to the 1st, 4th and 8th 

channels, and their display windows are [0, 3], [0, 1.2] and [0, 0.8] cm−1, respectively.
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Fig. 4. 
Magnified ROIs. (a), (b) and (c) correspond to the ROI A, B and C in Fig. 3. The display 

windows of both (a) and (b) are [0, 1.6], [0, 0.4] and [0, 0.2] cm−1. The display window of 

(c) is the same as Fig. 3.
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Fig. 5. 
Three basis materials decomposed from the reconstructed results in Fig. 3. The 1st to 3rd 

columns represent bone, soft tissue and iodine, and their display windows are [0, 0.05], [0.2, 

0.8] and [0, 0.25] cm−1. The 4th column images are color rendering, where red, green and 

blue represent bone, soft tissue and iodine. The 1st row images are the references and 2nd to 

7th rows are the decomposed results using the SART, TV, TV+LR, L0TDL, SSCMF and 

NLCTF methods for reconstruction, respectively.
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Fig. 6. 
Parameters comparison in terms of RMSE and SSIM. (a) and (b),(c) and (d), (e) and (f), (g) 

and (h), (i) and (j), (k) and (l) are the RMSEs and SSIMs with different setting of the 

parameter α, μ, δ, θ, t and patch size, respectively.
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Fig. 7. 
Convergence curves in terms of RMSEs and PSNRs.
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Fig. 8. 
Preclinical mouse study results. The left panel shows the reconstructed original images from 

1st, 9th and 13th (from left to right) energy bins and the right panel shows the corresponding 

gradient images. The 1st to 6th rows are reconstructed by using the SART, TV, TV+LR, 

L0TDL, SSCMF and NLCTF methods, respectively. The display windows for 1st to 6th 

columns are [0, 0.8] cm−1, [0, 0.8] cm−1 [0, 0.8] cm−1, [0, 0.08] cm−1, [0, 0.04] cm−1and [0, 

0.04] cm−1, respectively.
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Fig. 9. 
The magnified ROI “C” in Fig. 8 of the L0TDL, SSCMF and NLCTF methods.
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Fig. 10. 
Decomposed basis materials from Fig. 8. The 1st to 3th columns represent bone, soft tissue, 

and GNP. The 4th column images are the corresponding color rendering, where red, green 

and blue represent bone, soft tissue and GNP. The display windows for the 1st to 3rd columns 

are [0.1, 0.5], [0, 1] and [0, 0.5] cm−1, respectively.
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Fig. 11. 
Reconstructed images of three representative energy channels (1st, 9th and 13th) using the 

NL-T-RPCA and TDL techniques. The 1st and 3rd rows shows the original images, and the 

2nd and 4th rows show the original and gradient images of a magnified ROI.
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Table I

NLCTF parameters.

Methods Photon No. α τ θ μ

Numerical Simulation 2×104 10 0.050 250 0.5

Preclinical Application - 10 0.075 250 0.5
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Table III

Computational costs of all reconstruction methods (unit: s).

Methods SART TV TV+LR L0TDL SSCMF NLCTF

Data term 114.58 114.58 114.58 114.58 114.58 114.58

Regularizer 0 1.64 0.52 32.78 38.23 327.53
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