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Abstract

Task-based functional Magnetic Resonance Imaging (fMRI) has been widely used to determine
population-based brain activations for cognitive tasks. Popular group-level analysis in fMRI is
based on the general linear model and constitutes a univariate method. However, univariate
methods are known to suffer from low sensitivity for a given specificity because the spatial
covariance structure at each voxel is not taken entirely into account. In this study, a spatially
constrained local multivariate model is introduced for group-level analysis to improve sensitivity
at a given specificity for activation detection. The proposed model is formulated in terms of a
multivariate constrained optimization problem based on the maximum log likelihood method and
solved efficiently with numerical optimization techniques. Both simulated data mimicking real
fMRI time series at multiple noise fractions and real fMRI episodic memory data have been used
to evaluate the performance of the proposed method. For simulated data, the area under the
receiver operating characteristic curves in detecting group activations increases for the subject and
group level multivariate method by 20%, as compared to the univariate method. Results from real
fMRI data indicate a significant increase in group-level activation detection, particularly in
hippocampus, parahippocampal area and nearby medial temporal lobe regions with the proposed
method.
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1. Introduction

Task-based functional magnetic resonance imaging (fMRI) studies have been widely used to
understand brain activations for cognitive tasks (Adleman et al., 2002; Kwong et al., 1992;
Peterson et al., 1999; Reagh and Yassa, 2014). In a task-based fMRI experiment, series of
brain images are collected while the subject is performing a task. To obtain group-level
inference, multiple subjects are studied and common activations among these subjects
specify a group map (Lindquist, 2008). Data analysis in task-based fMRI studies usually
consist of a two-level model. A subject-level analysis detects the activation of each
individual subject for a contrast of interest and a second group-level analysis localizes
common activations among multiple subjects (Beckmann et al., 2003; Ferreira da Silva,
2011; Friston et al., 2005; Holmes and Friston, 1998; Penny and Holmes, 2003; Road, 1996;
Woolrich et al., 2004; Worsley et al., 2002).

In the subject-level analysis, the experimental paradigm for each subject is modeled as a
matrix with multiple columns (Buxton, 2009). Each column corresponds to a specific task
condition, with 1 representing time points when the task is “on” and 0 when the task is “off”.
The binary task functions are then convolved with an appropriate hemodynamic response
function (HRF) to represent the fMRI signal. The resulting functions containing the signal
regressors as columns then define the design matrix for the subject (Friston et al., 1998;
Lindquist et al., 2009). The univariate general linear model (GLM) is a widely used method
that fits the collected time series to the subject-specific design matrix by minimizing the
Gaussian-distributed residual error. The signal magnitude in response to each single task
condition is computed during this fitting process and is defined as the effect of each task
condition. A contrast vector that constitutes a linear combination of one or multiple
condition effects can then be defined to estimate the signal magnitude in response to either a
single condition, an average effect over multiple conditions or a difference effect between
two conditions. The subject’s response to the same task condition may vary from trial to trial
and this variation is known as the within subject variance. Statistical inferences for a specific
contrast of interest is computed for each subject (Lindquist, 2008).

In the group-level analysis, individual subjects are considered as random samples from a
targeted population and brain activation effects for the same task vary from subject to
subject. To draw conclusions on brain activations for a population in response to a specific
task condition, between-subject variances need to be considered and a group analysis based
on a random-effects model is preferred (Friston et al., 2002; Woolrich et al., 2004). In the
random-effects model, activation effects from every single subject are taken as inputs and
are fitted to a binary group design matrix where an entry with a 1 represents subjects
belonging to a specific group. The group-level GLM could also be used to linearly model the
group effect. This model is widely recognized as the summary statistics method (Holmes
and Friston, 1998). The group-level GLM has been solved by using a) a direct Moore-
Penrose inverse operation that assumes Gaussian noise (Friston et al., 2005), b) a fully
Bayesian method (Woolrich et al., 2004), or ¢) a maximum likelihood estimation with an
expectation trust region algorithm (Li et al., 2014). A group contrast vector detects activation
effects averaging over multiple subjects in one group or detects difference effects between
multiple groups. Statistical inferences are then computed for the group effects.
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Another group-level analysis method in fMRI relies on combining hypothesis tests from
each individual subject (Lazar et al., 2002). Subject-level activation is tested using
parametric statistical tests and corresponding p-values are computed for each individual
subject. Group analysis methods, such as Fisher’s data fusion method (Fisher, 1992), are
used to generate group inferences from subjects’ p-values. Combining of p-value
information is easy to implement but difficult to interpret. The null hypothesis of such a
group-level analysis is that “no effect can be observed for any subject’. In Fisher’s data
fusion method, this null hypothesis could be rejected on the basis of a non-zero effect in
only one subject (Lazar et al., 2002) and therefore the computed group-level activation
effects are prone to false positives. Additional group-level analysis involves using
information across individual samples to assist in the recovery of group-level connections
among different regions of interests (ROIs) (Friston, 2011; Gates and Molenaar, 2012; Smith
etal., 2011). Instead of localizing the group-level common or different activated regions
during a cognitive task, these group-level methods focus on constructing network
connections between ROIs.

Both single subject and group-level analysis are performed independently for every voxel,
and therefore are univariate in nature. However, each voxel has a different spatial covariance
structure which is not taken into full consideration by a univariate method because a
univariate method assumes neighboring voxels to be independent and therefore is not
sensitive enough to detect activation effects especially for fMRI data with low signal-to-
noise ratio (SNR). To improve the sensitivity of activation detection, isotropic spatial
Gaussian smoothing is typically performed as a preprocessing step in most univariate
methods. However, an improper smoothing kernel size that does not match the spatial
activation pattern exactly may eliminate the detection of activation (Yang et al., 2018).
Specifically, an extended isotropic smoothing kernel can be problematic to cortical regions
with thin and folded grey-matter structures (Cordes et al., 2012; Zhuang et al., 2017).

CCA (Hotelling, 1936) applied to local neighborhoods to obtain adaptive spatial filter
kernels has been successfully applied to fMRI subject-level analyses and shown improved
sensitivity in activation detection (Friman et al., 2001). To obtain rotationally adaptive filter
kernels in local CCA, each voxel time series can be convolved with spatially anisotropic
basis functions with optimized weight coefficients determined by the data (Friman et al.,
2003, 2002, 2001). These low-pass spatial basis functions with optimized weight
coefficients determine the underlying spatial covariance structure at each voxel and therefore
can better capture arbitrarily-shaped activation patterns. Subject-level activation status is
then computed by maximizing the canonical correlation between the filtered time series
within each neighborhood of a voxel time series and the task design matrix. Statistical
inferences are finally computed for a specific contrast of interest an assigned to the center
voxel of each neighborhood. Compared to a univariate analysis method, local CCA has
higher degrees of freedom and therefore spatial constraints are needed in estimating weights
of the spatial basis functions to improve the specificity of the activation pattern (Cordes et
al., 2012; Zhuang et al., 2017). More accurate subject-level activation maps with improved
sensitivity at a given specificity have been computed with locally constrained CCA (cCCA)
methods (Yang et al., 2018; Zhuang et al., 2017).
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In this study, we introduce the cCCA model for fMRI group-level analysis, where local
neighboring voxels are incorporated with optimized spatial weights at each voxel to obtain
neighborhood-specific spatial filter kernels. However, due to the particular structure of the
group-level design matrix which is different for a 15t level design matrix involving cCCA,
the solution of the group cCCA model is performed differently than a subject-level cCCA. In
group-level analysis, a binary design matrix is used with 1s representing subjects belong to a
specific group. In this case, the design matrix is a vector with all 1s for within-group
activation detection and a two-column binary matrix for between-group difference detection.
Since the design matrix is a constant matrix with covariance equal to zero for within-group
activation detection, a covariance-based analysis cannot be directly carried out. To prevent
potential singularity problems in group-level cCCA, we convert the group-level cCCA
problem to a maximum log-likelihood problem and solve it with nonlinear optimization
techniques. Specifically, we form an optimization problem at each voxel with subject-level
effects of interest from center voxel and its neighboring voxels as inputs. Group inferences
of the center voxel, between-subject variance and optimum weight coefficients of each
neighboring voxels are estimated simultaneously. Using simulations, we show the
improvements of the proposed cCCA method over standard univariate group analysis
methods such as univariate summary statistics and Fisher’s data fusion with the same
subject-level analysis as input. We further apply the cCCA group model to real fMRI data
and demonstrate superior performance over other analysis methods in group activation
detection.

2. Materials and Methods.
2.1 Theory

2.1.1 Univariate group analysis in fMRI

Subject-level univariate analysis and variance structures.: In a two-level univariate
general linear model, the subject-level analysis for the A7’ subject is modeled as

Vi =Xkﬂk te€;, (1)
u u u

where y, € R’ %1 is a random vector of continuous variables representing the time course (¢
u

time points) from a single voxel ¢, and X, € R’ " represents /7 functions used to model the

blood oxygenation level-dependent (BOLD) response. Subscripts kin Eq. (1) denotes the
subject index and subscript v for By and e represents effects and residuals for a single

voxel. The single voxel residual vector ¢, follows a Gaussian distribution with E(ek ) =0
u u

and cov(ek ) =V, . With a known covariance V, , the best linear unbiased estimator of g, is
u u

u u

(Searle et al., 1992)
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+ 1

1
-5 -1

2 Ty —1 Ty—1
Vi yk:(XkauXk) XVilye @)

i 2
B =V X,
u u

where + indicates the pseudo inverse. Eq. (2) can be further simplified to

— -1 -1
B = (XIvi'x ) x[VE (X8 e | =B + (XX XV @
u u u u u u u u u

The covariance structure of g, is then computed as
u

ol )= el(8, =0, =) | = eopivinf xDvije) @

-1 -1 -1
Ty—1 Ty—1 T\ y-1 Ty—1 Ty—1
=(Xka Xk) b AD E(ek € )vk Xk(Xka Xk) =(Xka Xk) :
u u u u u u u

Without loss of generality, we can re-parameterize x4 to be an effective design matrix
corresponding to a specific contrast c of interest, Z.e. 7= 1. Then, the vector g, becomes a
u

scalar quantity 5, and represents the subject-level activation effect that will be estimated.
u

Group-level univariate analysis and variance structures.: The group-level group
univariate analysis is modeled as

ﬂu = XGﬂGM + "Gu’ )

T
where g, =B, B, ... By ] represents effects from A/ subjects at a single voxel and Xg is
u u u

the design matrix modeling either within-group activation detection (x; € R * ) or

between-group difference detection (X cERVX 2,)

. The vector 5, represent the Gaussian-
u

distributed residual error term of group activation with a mean vector of 0 and variance-
covariance matrix @, = aé I, where aé denotes the between subjects random effects
u u u

variance and | p/is a //x Nidentity matrix. We use the subscript G in Eq. (5) to denote the
group label. The mean and covariance structure of the random variable 8, in Eq. (5) is then
given by
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E(ﬂu) = XGﬂGu (6)

co(s,) = E[(8,~ EB)B,~ EB)| = |16 16, | = 0 -

In practice, the second level model uses estimated effects from the subject-level as inputs
instead of the true (but not observable) parameters (Beckmann et al., 2003). This
modification leads to

B, =X B, +iig, (1)
u u

e [— T, . .
where B,= [ﬂ1 B, ... By | indicates the estimated vector of B and g the
u u u u
remaining error vector. According to Eq. (3), we replace each g, with
u

To-ly | eTy—1 -
By +(Xka Xk) X, V, ‘¢, andobtain
u u u u

-1 1
Ty,—1 Ty,—1
(XIV1 Xl) X,V e
u u u

-1
3 XTV_IX) xIv;le
(2 2,72 272,72, +1s > 8)
u

-1
Ty—1 Ty—1
(Xka Xk) XV, €
u u ul

with E(ﬁG ) =0and cov (ﬁG ): =V, . Following the same derivation as in Eg. (6), we can
u u u

write cov(f,) = cov(ﬁG ) =V, . The variance-covariance matrix of 7, , i.e. V; , in Eq. (8)
u. u u u

consists of both within-subject variance R, and between-subjects variance Q. ata single
u

voxel, i.e.:

Ve =R, +0;, (9)
u u
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-1
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XSV, X XV, e
where R = cov ( 272, 2) 272,72,

1
To—1 To—1
(Xka Xk) X Vi s

u u u

-1
can write cov(ﬁk ) = cov((X]{Vle k) xivile, ) and therefore, R, takes the form of:
u u u

u

» cov (El\u ) 0 0
R, - 0 cov (ﬂ/z\u) 0 (10)
0 0 ... cov (EN\M)

Furthermore, for within-group activation detection, we have

X;=I1L1..11" eR"*!and Q; = aéuIN. (11)

For between-group difference detection, Xg is defined to be

0'2 1 0
_[1 10 O]TGR(N1+N2)><2 61N,

X dQ,. = .2
0..01..1 and Qg (12)

G

The non-diagonal terms vanish since all subject data are assumed to be independent
observations.

Page 7

and 9, = cov(nG ) respectively. from Eq. (4), we
u u

Maximum likelihood formulation in univariate second-level fMRI analysis.: The vector
B, in Eq. (7) follows a Gaussian distribution with £(,) = X ;8 and cov( )=V . The
u u

probability density function of ﬂAu is a multivariate Gaussian distribution (Li et al., 2014)

according to

n 1

u

Taking the natural log on both sides of Eq. (11) gives
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g(ﬂ:; o VGM) - _ %m(zn) - %m( VGM‘) - %(ﬂ: - XGﬂGM)TVz;i(ﬂAu - Xaﬂc;u) . (14

By maximizing the log-likelihood objective function in Eq. (14) with nonlinear optimization

techniques, we determine the solutions of unknown parameters g, and Vv, . Note that v ,
u u u

is either parameterized by oéu(Eq.ll) or [aélu,oézu}(Ein).

2.1.2 Multivariate group analysis in fMRI with local CCA.—With local CCA,
activation status of the center voxel of a neighborhood is determined by incorporating its
neighboring voxels. The two-level mixed effects model applies here.

Subject-level local CCA analysis and variance structures.: In local CCA analysis, the
subject-level multivariate model for subject & can be written as

cov(Y,a,, X, B,
max“k’ﬁk p(ak, ﬁk) = \/ K% 2Pk (15)

var(Y,a; Jvar(X, 8,)’

where X, € R'*" is the design matrix as before and ¥, = (y](cl), ...,yiM)) e R"*M is a matrix

of time courses (¢time points) of Mvoxels (e.g., M= 9 for 3x3 regions in a 2D slice and M
=27 for a 3D 3x3x3 neighborhood). We use superscripts 1,2, ... Mto denote indices of
voxels. Using optimization theory, we find spatial weight vectors &, € RM > 1 and

multivariate weight vectors g, € R"* ! that maximize the canonical correlation between Yk

and Xy With a proper normalization term (van(Y xa4) = 1), the subject-level CCA model can
be converted to an equivalent multivariate multiple regression model (Zhuang et al., 2017)
given by

Yo, =X,p, +€, (16)

nxl1 tx1

where g, € R is the regression weight vector and ¢, € R is the residual error vector.

In this case, B¢ 2 and e are linear combinations of g{**% -~ and ¢{!-% ) from the local
u u

neighborhood, and therefore, e, also follows a Gaussian distribution with E(ey) = 0 and
cov(ek) =V, = O'I%I[. We can further compute the best linear unbiased estimator of B with a

known covariance matrix Vto be

- - -1 -1 —1y \~! —1
Bo=(Xvi'X,) X{vi'Va = B+ (XV'X,) T X(Vile . (17)
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The mean and covariance structure of B; is then computed as E(B;) =0and

cov(ﬂAk) = (XZV; Ix k)_l

Group-level multivariate analysis and covariance structures.: Using the same concept of
incorporating local neighboring voxels, the group-level CCA can be modeled as

cov(Bag, X;Bs)

Ba, . X = 18
p( G GﬁG) \/var(BaG)Var(XGﬂG) (18)
ﬁ(ll) ﬁ(lz) ﬁ(lM)
(1) 5(2) (M)
where g = |2 P2 P e RV XM s a matrix that represents subject-level activation

ﬂg\}) ﬂ%) /3%\4)
effects of Mvoxels from A/ subjects in a local neighborhood of a center voxel (labeled as

voxel 1 in superscript) and X is the group analysis design matrix. We convert the group-
level local CCA model to a multivariate multiple regression model according to

Bag =X B;+ng (19)

where the vector B¢ is the group inference weight vector and 7 is the residual error vector.
In this case, B and g are linear combinations of & and 4& from the univariate model for
u u

local neighborhood voxels 7 e{Z,.., M} defined by

B =XcB +15  (20)

Therefore, 5 follows a multivariate Gaussian-distribution with E(7g) = 0 and
o2 1 0
GI'N,
var(ng) = Q= oél  for the within-group scenario or @ ; = for the
0 6é2IN
2
between-group scenario. In practice, the group-level multivariate model takes estimated
effects from the subject-level as input instead of the true (but not observable) parameters, i.e.
Eqg. (19) is modified to

Bag,=X B+ (21)
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ﬁ(]l) ﬁ(12) ﬁ(]M) EIT

e | g
Where B = |2 P2 - Py | | B2 , E(ii;) = 0 and cov(if;) = V . similar to Eq. (8),

- e T

pU gD G0 By

cov(Bag) = cov(iig) = V ;. The variance-covariance of 7i; consists of both within-subject

variance-covariance Rg and between-subject variance-covariance Qg.Rg takes the following
form:

V cov (l/f\lTaG) 0 0
RG _ 0 cov(/B;TaG) 0 22)
0 0 . cov(l/BI\VTaG)

where

—T M M ’ 7 N
cov (Bk aG) =X X = lag")a(Gm )cov(ﬂ,({m), ﬁ,((m )), k=1,2,....N (23)

and (1%") is the element in a s of the " voxel in the local neighborhood.
To sum up, for within-group activation detection, we have

Xg=I1L...11"eR"* and V=R +o7l,. (24-1)

For between-group difference detection,

o2 1 0

10..07T (N1+N2)X2 Gl Ny
eR dV,.=R . 24-2
] and V- Gt 2, (24-2)

°G2'N

. 1...
XGlssetto 0. 01 . 1 o
2

2.1.3 Maximum likelihood formulation in multivariate second-level fMRI
analysis.—The main focus of this paper is to solve the multivariate second level analysis in

fMRI, i.e. estimate ag, Bgin Eq. (21) and o or {aél,azcz} in Egs. (24-1, 24-2). The

quantities B and Cov(ﬂim)) are computed from the subject-level analysis, where & denotes the

index of subjects and mis the voxel index. As discussed in section 2.1.2, I?aG in Eq. (21)

follows a Gaussian distribution with £(Ba,;) = X ;8 and cov(Ba,;) = V ;. The probability
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density function of l?aG takes the form of the multivariate Gaussian distribution (Li et al.,

2014) according to

L R R
! (E“G? B> VG) = (2m) 2|VG| ? eXp(_%(B“G - XGﬂG)TVEI(B“G - XGﬂG))' (25)

Taking natural log on both sides of Eq. (25) gives:

Bag: B Vo) = — 2n@m) — 2n(|V ) - 3(Bag — Xobo) V' (Bag - Xobo).  (26)

By maximizing the log-likelihood objective function in Eq. (26) with nonlinear optimization
; ; ; 2 2 2
techniques, we determine the solutions of unknown parameters a B and o, or {aGl,aGZ}.

2.1.4 Normalization of the term EaG.—A normalization term is further added to §aG

in Eq. (21) to guarantee the estimated Bg with different voxel configurations (a) are scale
invariant and therefore the computed statistical inference with various number of
neighboring voxels are comparable to the univariate statistic computed from only the center
voxel. In this case, Eq. 21 further turns into

Bag = Xh;+1g

|ag)y=1 &

where ||l§azGH2 is the L2-norm of the combined effect of the local neighborhood. As stated

above, Ba; follows a Gaussian distribution with E(Ba) = X ;8- and cov(Bag) = Vg,

therefore, after normalization, the same Gaussian distribution will be followed.

2.1.5 Constraints in multivariate second-level analysis.—In the subject-level
analysis, CCA without any spatial constraint has been shown to yield a significant
smoothing artifact, as activations of strongly active voxels tend to bleed into the neighboring
voxels. This artifact leads to a low specificity (Cordes et al., 2012; Friman et al., 2002). The
same problem also occurs for the group-level multivariate analysis due to the extra degrees
of freedom introduced by ag.

The constrained CCA (cCCA) model has been applied to the subject-level fMRI analysis to
guarantee the dominance of the center voxel in each local neighborhood (Cordes et al., 2012;
Zhuang et al., 2017). As before, we use the notation that a() is the weight of the center
voxel and a( the weight of the 7 neighboring voxel in each local neighborhood. A
dominant weight of the center voxel will reduce the smoothing artifact and increase the
specificity of the multivariate analysis method. In the following we use a sum-constraint
previously proposed (Cordes et al., 2012) with paramter K in the group-level multivariate
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analysis in this study, which we solve for the most important case where the dominant
constraint becomes an inequality constraint, i.e.

dD >k FM o

aV>0,...,aM>0

(28)

2.1.6 Solving the optimization problem of multivariate group-level analysis.—
By combining Eq. (26), Eq. (27) and Eq. (28), the full optimization problem in multivariate
group-level analysis becomes

max 2 Z(Bag: V)= — 5In@r) - %ln(|VG|) (29-1)

2
2gPe oG

~ 2 (Bag ~ X ) V5 (Bag ~ X g5)

RS NN
w.r.tig >0, o™ >0

[Baq, =1

for within-group activation detection and

1 M m
@ ZI{Zm=2a

max 5 5 g(ﬁaG;ﬂG, VG), w.r.tigl>0,....a¥>0 (29-2)
@BGoG1 G2 ||§a ” _,
Gllp —

for between-group difference detection. The objective function in Egs. (29) is convex since
V g is positive definite and therefore optimization techniques like the Broyden-Fletcher—
Goldfarb—Shanno (BFGS) with self-scaling (Nocedal and Wright, 2006; Shanno, 1985)
method can be applied to solve Egs. (29). BFGS is an iterative gradient descent method
where the search direction in each step is facilitated with a backtracking line search
algorithm (Nocedal and Yuan, 1998). In each optimization step, a() is replaced by

>M_ o and the non-negative constraint is satisfied by substituting a(™ = (&(™2), i.e.

spatial weights of all other neighboring voxels are represented by nonnegative variables
(0™2,j=2, ..., M.
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2.1.7 Statistical analysis: T statistics were used to determine the group inference of
the center voxel for a specific contrast c of interest, given by

T
t= “bo . (30)

\/(CT(XGTVZ;IXG)_ lc)

Statistical thresholds for significance are computed from the null distribution non-
parametrically. For within-group activation detection, all of the above analysis is repeated on
wavelet-resampled resting-state time courses (Breakspear et al., 2004) until a stable
maximum statistic is obtained. Specifically, the spatial structure of the wavelet resampled
resting-state time series is kept the same as the spatial structure of the original fMRI data by
using the same random permutation of the wavelet coefficients for the entire brain.
Breakspear et al. (2004) have demonstrated that constrained temporal resampling of the
resting-state data in the wavelet domain allows construction of bootstrapped data with the
following essential properties: (1) spatial and temporal correlations are preserved; (2) the
irregular geometry of the intracranial images is maintained; (3) there is adequate type | error
control; and (4) expected experiment-induced correlations are included. Therefore, the
spatiotemporal resampled data in the wavelet domain can be further used in testing the null
hypothesis of within-group activation.

For between-group difference detection, a permutation test (Nichols and Holmes, 2002) was
performed to generate the null distribution of the #statistic in Eq. (26). We randomly
shuffled the group assignment of the subjects in two groups and then repeated the same type
analysis again until a stable maximum statistic was obtained. The null hypothesis for the
two-group analysis here is that no activation differences existed between groups.

2.2 Data collection.

Subjects.—Eight subjects diagnosed with amnestic mild cognitive impairment (aMCI, 4
Males; Age: 60.9+3.2 years; Years of education: 16.9+1.9 years) and eight normal control
subjects (NC, 5 Males; Age 60.6+8.3 years; Years of education: 16.9+2.1 years) were
recruited with Institutional Review Board approval and scanned using a 3.0 T GE scanner at
the University of Colorado, Denver. All subjects were right-handed, and their demographics
were listed in Table 1. Diagnosis of aMCI was made by trained professionals based on
Petersen Criteria (Petersen et al., 2001). Clinical dementia rating for MCI subjects and Mini-
Mental State Examination scores for all subjects were also included in Table 1.

Table 1. Subject demographics.

MRI data collection.—One resting-state and one episodic memory fMRI data set were
collected with the following parameters: TR 2000 ms, TE 30 ms, parallel imaging factor of
2, 25 slices (coronal oblique, perpendicular to the long axis of hippocampus), slice
thickness/gap=4.0 mm/1.0 mm, in-plane resolution 96x96 interpolated to 128x128, voxel
size of 1.72x1.72 x5 mm3, 288 time frames (total scan duration 9.6 mins, both resting-state
run and episodic memory task run). Subjects were instructed to relax and refrain from
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executing any task with eyes closed during the resting-state data collection. High resolution
structural images were also acquired including a T1-weighted image (0.86x0.86x1 mm3)
and a coplanar T2-weighted image (0.43x0.43x2.5 mm?3) using a standard acquisition
protocol.

Episodic memory task.—The episodic memory task involved encoding and recognition
activity using stimuli of human faces paired with occupations (face-occupation task). The
task consisted of six periods of encoding, distraction, recognition activity, and short
instructions where words on the screen reminded subjects of the task component ahead. The
encoding task consisted of seven novel visual stimuli, and the recognition task consisted of
fourteen stimuli, half novel and half identical to the items seen in the previous encoding task.
An active control task (button press responding to the letter “Y” or “N”) was used as a
distraction task between each pair of encoding and recognition activity. A detailed task
description can be found in Cordes et al. (2012).

2.3 fMRI data preprocessing.

The first 5 time frames of the EPI data (10 seconds) were removed to avoid incomplete
steady-state magnetization. All other time frames were slice-timing corrected and realigned
to the mean EPI image in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), further co-registered
to the subject T1 space using affine transformation, and then non-linearly normalized to the
standard MNI-152 2mm-template using ANTSs software (http://stnava.github.io/ANTS/). The
normalized data were further smoothed using 3D Gaussian filters with full-width-half-
maximum (FWHM) of 2mm, 4mm and 6mm, respectively. All voxels were high-pass
filtered using cosine basis functions with a cut-off frequency of 1/120 Hz to remove
temporal drift (Holmes et al., 1997).

2.4 Subject-level analysis.

A univariate GLM analysis was first performed at the subject-level. For each subject (4), a
design matrix X, € R’ ** was constructed by first modeling the episodic memory task design

with 4 regressors for conditions {instruction, encoding, distraction and recognition}, and
further convolving the task design with the standard canonical hemodynamic response
function. Both unsmoothed and smoothed time series were fitted to this design matrix
separately. A voxel-wise effect map for contrast encoding v/s contro/ was computed for
every subject and a voxel-wise variance map of this effect was also obtained. A subject-level
t-statistic map for contrast encoding v/s contro/ was also computed for each subject. The
corresponding p-value map for subject’s t-statistics was then determined parametrically,
with a degree of freedom equal to the number of time frames in the task fMRI data minus
the number of regressors in the design matrix (Xg).

A 3D local constrained CCA (cCCA) model was also applied to each subject. Optimum
parameters in this local cCCCA model of the same dataset were determined in Zhuang et al
(2017) and applied to each subject. A voxel-wise effect map for contrast encoding v/s
control was computed and a voxel-wise variance map of this effect was also obtained.
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2.5 Simulation.

Realistic simulated data were generated to evaluate the sensitivity and specificity of the
proposed method and other existing methods for group-level analysis with a known ground
truth. For within-group activation analysis, 500 5x5 neighborhoods with active center voxels
and 500 5x5 neighborhoods with inactive center voxels were simulated for 16 subjects. The
group-level analysis is carried out for the center voxel only within each simulated
neighborhood.

2.5.1 Generation of simulated data.

Determine number of active neighbors in each neighborhood.: The distribution of active
neighbors in each local neighborhood followed the empirical distribution of unsmoothed real
fMRI data analyzed with subject-level univariate GLM analysis plus the group-level
univariate summary statistics method (Holmes and Friston, 1998). Specifically, effect maps
of contrast encoding v/s control for all subjects computed from unsmoothed time series were
input into a group-level univariate summary statistics analysis. A voxel-wise t-map was
computed for the group inferences, i.e. an activation map for within-group activation
detection. A t-threshold corresponding to an uncorrected p-value of 1e-5 was used to label
active voxels in the group maps. The empirical distribution of active neighbors in each local
neighborhood was then computed by counting how many of the neighboring voxels were
also active given an active or inactive center voxel. Activation patterns in simulated
neighborhoods were then generated by randomly sampling from this empirical distribution
so that the activation patterns in the simulated data represent real data.

Generate simulated time series in each neighborhood.: Simulated time series for each
neighborhood at multiple noise levels were generated for all 16 subjects. Time frames for
simulated neighborhoods were obtained from neighborhoods in unsmoothed real data with
the same 5x5 neighborhood arrangement. For each simulated neighborhood, both resting-
state and task fMRI time frames of the real data fMRI neighborhoods were obtained for all
16 subjects, which preserves the spatial dependency within each simulated 5x5
neighborhoods as in real data. Specifically, wavelet-resampled resting-state time courses
(Ynui) were added to the task activated time series (Yiask) With different noise fractions (4 to
simulate time courses at different noise levels for the entire neighborhood using

(1= Yk + Yy active voxel

. . . (27
Yhull inactive voxel

Ysimulated =

We varied the noise fraction Ffrom 0.45 to 0.95 in steps of 0.1 to cover a wide range of noise

levels in fMRI data. The corresponding SNR = % ranges from 1.22 to 0.05.

2.5.2 Analyze simulated data.

Subject-level analysis.: Univariate GLM analysis (single voxel analysis (SV)) was first
performed on each simulated neighborhood for all 16 subjects. Time series of each voxel
were linearly fitted to the subject-specific design matrix X The effect and its variance of
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contrast encoding v/s control were determined for every voxel in each neighborhood. The
corresponding t-statistics were computed and p-values were determined parametrically.
Gaussian filters with FWHMs equal 2mm, 4mm and 6mm were then used to smooth the
middle 3x3 voxels in each simulated 5x5 neighborhood, respectively. Univariate GLM
analysis was performed and the effect and its variance of the middle 3x3 voxels were
computed for each smoothed neighborhood with various FWHMs, respectively (SVGS).
Parametric p-values were then determined. The subject-level local constrained CCA method
(cCCA) was also applied to the middle 3x3 voxels in each simulated 5x5 neighborhood. The
effect and its variance were determined for the same contrast.

Group-level analysis.: The effect and its variance of the center voxel in each simulated 5x5
neighborhood computed from every subject-level analysis method were input to the group-
level univariate summary statistics method (SV+SV and SVGS+SV). Group inferences were
estimated by solving Eq. (14) and t-statistic was computed following Eq. (30). Uncorrected
p-values of the effect of the center voxel in each simulated neighborhood were input to the
Fisher’s data fusion (SV+Fisher) method. The group inferences were computed as

- 22;{\]: \log(p,), N = 16. The effect and its variance of the middle 3x3 voxels in each

tF =
simulated 5x5 neighborhood were input to the proposed multivariate group-level analysis
(SV+cCCA) method. By solving Eq. (29-1), the group inferences of the center voxel were
determined and t-statistics were computed following Eq. (30). Table. 2 summarizes all
methods performed to analyze the simulated data, with subject-level smoothing kernel size,

both subject-level and group-level analysis methods and their abbreviations.

Evaluating model performance.: Receiver operating characteristic (ROC) curve was used
to evaluate the performance of each method by comparing the computed group inferences of
each center voxel with the simulated ground truth. The fractions of true positives (TPR) and
false positives (FPR) were computed at each threshold. Area under the ROC curves (AUC),
integrating from FPR of 0 to 0.1 were computed for all analysis methods and plotted against
noise fractions for selected methods. AUC for all methods applied to simulated data with a
noise fraction that is close to real fMRI data (7= 0.85, SNR = 0.18) were also computed to
make comprehensive comparisons of all methods.

Significance analysis of multivariate and univariate group-level analysis methods.: To
conduct the significance analysis between univariate and multivariate group-level methods,
we repeated our simulation procedure (detailed in Section 2.5.1) 10 times to generate 10 sets
of different simulated data at the noise fraction of 0.85. Subject-level univariate analysis
(SV) was performed. Group-level univariate (SV+SV) and multivariate (SV+cCCA)
methods were then applied to compute the group-level activation for each data set. AUCs,
integrating over FPR € [0, 0.1], were finally computed and compared between these two
methods (SV+SV and SV+cCCA).

2.6 Group-level analysis of task fMRI data.

Both univariate and the proposed multivariate methods were applied to detect brain
activations within-group as well as the differences between groups during the episodic
memory task. In the within-group activation detection, we include all 16 subjects (8 NC and
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8 aMCl subjects) to achieve a larger sample size. For all analysis methods, the group design
matrix Xgissettobe[1,1,....,1]7 e RV X ! for one group activation detection and to be

1...10..0]T _ _
[0 01 1] e RV*2 for between-group difference detection.

Univariate summary statistics as described in section 2.1.1 were first applied to compute
group inferences. A voxel-wise effect map for contrast encoding v/s control (ﬁAu in Eq. (14))

and the corresponding variance map (cov(ﬁ; ) in Eq. (14)) computed from both unsmoothed
u

(SV+SV) and smoothed (SVGS+SV) time series were input to the group-level analysis. The
effect and its variance computed from the subject-level optimum cCCA model were also
input to the univariate group-level analysis (cCCA+SV). By maximizing the log-likelihood

function in Eq. (14), we obtained the group inferences g, and the group variance aZG . The
u u

cﬁG
u

-1
T Ty—1
\/c (XG VGuXG) c

group analysis and ¢ = [1, —1] for between-group analysis.

, Where ¢ = 1 for one

corresponding t-statistics were computed as 7, =
u

The proposed multivariate group-analysis method was then applied. The inputs to Eg. (30)
were the voxel-wise effect map and the corresponding variance map of contrast encoding v/s
control inside each local 3x3%3 neighborhood computed from subject-level univariate (SV
+cCCA) and multivariate (cCCCA+cCCA) methods. The group inference of the center voxel
was determined of this neighborhood. By solving Eq. (30) with BFGS optimization
techniques, we obtained multivariate group inferences B, the optimum weight coefficients

ag and the one group variance o7, or the two-group variances {azcl,azcz}. T-statistics (¢) for

each center voxel were computed following Eq. (30), where ¢= 1 for one groyp analysis and
¢ =[1, —1] for between-group analysis.

Fisher’s data fusion was also applied to generate a voxel-wise within-group activation map
using unsmoothed time series (SV+Fisher). We combined subject-level independent tests
from N subjects at each voxel by following Fisher’s data fusion (1992) rule as

tp= — 222’: llog(pk), N = 16. The combined group-level test statistics follows a XZ
distribution with 2N degrees of freedom. By combining tests this way, we cannot obtain
information on the direction of the group-level activation. For between-group difference
detection, the null hypothesis was that no activation differences existed between groups.
Since the group difference hypothesis cannot be computed at subject-level, the Fisher’s data

fusion model was not applicable in this case.
Statistical threshold for significance levels of group inferences 7, , #zand #-for each
u

analysis method were computed non-parametrically as described in section 2.1.7.

Specifically, we repeated the exact analysis on wavelet-resampled resting-state time series
from all 16 subjects by using at least 200 iterations to achieve a stable null distribution for
within-group activation detection. For between-group difference detection, NC and aMCI
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subjects were randomly assigned to each group and the exact analysis was carried out on the
shuffled groups. At least 200 iterations of randomly shuffling were performed to achieve a
stable null distribution. We used the 7, , fgand fvalue at the a'" percentile of the null

u

distribution with all statistical values to be the thresholds of the uncorrected p-value of
1

- %
100

comparisons and obtain the statistical thresholds at a family-wise-error-rate (FWE) corrected
p<0.05 (R. Nandy and Cordes, 2004) for all analysis methods.

We used the distribution of the maximum statistics to correct for multiple

2.7 Evaluating group-analysis methods with task fMRI data.

Activation maps.—We thresholded each within-group activation map obtained from
different analysis methods using a significance threshold of p=0.05 (corrected for multiple

. PR # of activated voxel
comparisons) and computed an activation percentage ( Fofvoxels RO 100%) for each

Automated Anatomical Labeling (AAL) region (Tzourio-Mazoyer et al., 2002). Activation
percentage in targeted medial temporal regions (bilateral hippocampus, para-hippocampal
gyrus and fusiform gyrus, further detailed in section 4.1.2) then provide quantitative
measurements to directly make the comparison among different methods. We then ranked
the regions according to descending values of activation percentages and compared the
activation status in each region among different analysis methods. The between-group
difference maps computed with various methods were thresholded at p<0.01 (uncorrected),
with a minimum cluster size of 15. The number of voxels passing the threshold were also
counted and the percentage for each AAL regions was computed.

Modified ROC curve.—In real fMRI activation detection, since the ground-truth is
unknown, the ROC method cannot be applied directly. In our previous studies, we have
shown that the ROC method can be modified and applied to real fMRI data, termed
“modified ROC curves” (Cordes et al., 2012; Nandy and Cordes, 2003; Nandy and Cordes,
2004). The modified ROC curve has been demonstrated to always be the lower bound of
traditional ROC curve and the ordinate of both ROC methods are linearly related (Cordes et
al., 2012). Specifically, instead of fractions of true positives (TPR) and false positives (FPR),
we estimated the fraction of active positives (AP) using task-activated fMRI time series and
the fraction of resting positives (RP) using resting-state time series. FPR is then
approximated using RP and the upper bound of TPR is estimated using AP as detailed in
Nandy and Cordes, (2003). Modified ROC curves were generated here to compare different
analysis methods in within-group activation detection. Area under the modified ROC curve
(AUC), integrated from false positive rate of 0 to 0.1, was computed for each method. The
correlation between sequences of AUCs computed from simulated data and real fMRI data
with multiple analysis methods was computed.

3. Results

Table 2 summarizes maximum log-likelihood formulations of both univariate and
multivariate group-analysis methods.

Table 2. Univariate and multivariate group analysis methods.
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3.1 Simulation.

Simulation of within-group activation results are summarized in Fig. 1, Table 3 and Table 4.
Six typical simulated activation patterns in local 5x5 neighborhoods are shown in Fig. 1(A),
three with active center voxels (top) and three with inactive center voxels (bottom). Fig. 1(B)
shows the empirical distribution of active neighbors with an active (top) or inactive (bottom)
center voxel for the real data (solid bars) and simulated data (unfilled bars). The active
voxels are labeled as described in section 2.5.1. As shown in Fig. 1(B), the empirical
distribution of active neighbors with an active or inactive center voxel for the real data and
simulated data are approximately matched, with Pearson correlations between these two
distributions of 0.96 (p-value<0.001) for neighborhoods with active center voxels and 0.99
(p-value<0.001) for neighborhoods with inactive center voxels.

Table 3 lists details of each method used to analyze the simulated data. The area under the
ROC curves (AUC), integrated for false positive rates 0 to 0.1, at multiple noise levels
methods are plotted in Fig. 1(C). AUC for each analysis method at the noise fraction of 0.85
(dotted red circle in Fig. 1(C)), corresponding to an SNR of 0.18 that is close to the real
fMRI data, is listed in Table 3. As shown in Fig. 1(C) and Table 3, applying multivariate
analysis at group-level shows an increased AUC of 12% at high noise fractions (/0.85, SV
+cCCA, solid yellow curve in Fig. 1(C)) when compared to the univariate method (SV+SV,
solid blue curve in Fig. 1(C)). Subject-level Gaussian smoothing with proper kernel sizes
(FWHM < 4mm) increase the group-level performance at high noise levels (£=0.75, SVGS
+SV, dashed green and purple curves in Fig. 1(C)), compared to the same analysis
performed on unsmoothed time series (SV+SV). However, SVGS+SV is still less accurate
than either level constrained multivariate models (solid yellow and orange curves in Fig.
1(C)) in activation detection. Furthermore, applying both level constrained multivariate
methods (solid grey curve in Fig. 1(C)) further increases the AUC by 13% at the noise level
of 0.85 (Table 3), as compared to only applying multivariate method at either subject-level
or group-level (SV+cCCA or cCCA+SV). Last, Fisher’s data fusion gives the worst
performance at high noise fractions (£=0.65).

Fig. 1(D) plots the ROC curves for different analysis methods of simulated data with a noise
fraction of 0.85 (dotted red circle in Fig. 1(C)). As we can see in Fig. 1(D), given a
specificity (1-FPR), the multivariate methods show higher sensitivities (TPR, solid grey,
yellow and orange curves), which demonstrates optimum performance of the proposed
multivariate method at high noise levels. Table 4 lists AUCs integrated from FPR of 0 to 0.1,
computed for all analysis methods with simulated data at the noise level of 0.85. AUCs were
computed for combinations of subject-level (SV, SVGS and cCCA) and group-level (SV,
cCCA and Fisher) univariate and multivariate analysis methods. As shown in Table 4, with
results from the same subject-level analysis method as inputs, multivariate methods at
group-level can always increase the model performance in activation detection.

Fig. 1. Simulation: Within-group activation detection.
Table 3. Details of methods used to analyze the simulated data at noise fraction of 0.85.

Table 4. AUCs for all analysis methods.
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Fig. 2 plots the AUCs computed from univariate (SV+SV) and multivariate (SV+cCCA)
group-level analysis methods for 10 different simulated data sets at noise fraction of 0.85.
The average AUC is 0.0737 £ 0.0048 for the proposed multivariate group-level method (SV
+cCCA) and is 0.0652+0.0057 for the univariate group-level method (SV+SV). Significant
between-group difference is observed (p-value=0.0023).

Fig. 2 Significance analysis between SV+SV and SV+cCCA methods.

3.2 Episodic memory fMRI data analysis.

Fig. 3 shows the within-group activation maps of contrast encoding v/s control for the
episodic memory task, produced by: 1) subject-level univariate GLM analysis on
unsmoothed time series plus group-level univariate summary statistics (SV+SV); 2) subject-
level univariate GLM analysis on smoothed time series plus group-level univariate summary
statistics (SVGS+SV); 3) subject-level univariate GLM analysis plus group-level
multivariate method (SV+cCCA)); and 4) subject-level optimum cCCA model (3D 3x3x3
neighborhood) plus group-level multivariate method (cCCA+cCCA)). The subject-level
smoothing kernel size in SVGS+SV is selected to be FWHM=2mm and is determined from
both the simulated data performance and the fMRI raw resolution (1.7x1.7x5mm3).

T-statistic described in section 2.1.7 is used to display the activation maps. All activation
maps are thresholded at p<0.05 (FWE corrected) and overlaid on the MNI-152 2-mm
anatomical template. Selected slices with hippocampus, para-hippocampal areas and
fusiform gyrus are shown. Table 5 lists the top 20 AAL regions that have the largest positive
activation percentages at the same statistical threshold for all analysis methods. As shown in
Fig. 3 and Table 5, the proposed group-level multivariate methods (SV+cCCA and cCCA
+cCCA\) detect larger and more accurate activations in bilateral hippocampus, bilateral
fusiform gyrus and bilateral para-hippocampal areas (highlighted in red in Table 5), as
compared to the univariate methods (SV+SV and SVGS+SV). The statistical values are also
higher for group-level multivariate methods (highlighted by red arrows in Fig. 3 and in red
in Table 5), as compared to the univariate methods.

Fig. 3. Within-group activation map of contrast encoding v/s control, computed for different
analysis methods.

Table 5. Top 20 AAL regions with the largest activation percentages, computed for the
Within-group activation maps of contrast encoding v/s contro/ with different analysis
methods.

Fig. 4(A) plots the modified ROC curves for these four analysis methods. Areas under the
modified ROC curves (AUCs), integrated of FPR from 0 to 0.1, are listed in Table 6. As
shown in Table 6, applying group-level multivariate method (SV+cCCA) increases the AUC
by 14%, as compared to univariate analysis at both levels (SV+SV). Applying both level
multivariate analysis methods (cCCCA+cCCA) further increases the AUC by another 16%.

Furthermore, all analysis methods listed in Table 3 are applied to real fMRI data and each
method generate a within-group activation map. Table 6 lists details of each method and
corresponding AUCs computed from the modified ROC curves. As shown in Fig. 4(B) and
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Table 6, we obtain a Pearson correlation of 0.92 (p-value=0.001) between sequence of AUCs
computed from the simulated data at the noise fraction 0.85 and sequence of AUCs
computed from the real fMRI data. This high positive correlation demonstrates the linear
dependence between the performance of the proposed method in analyzing real fMRI data
and simulated pseudo-real data, further validating the simulation method and the proposed
analysis method.

Fig. 4. (A) Modified ROC curves for real fMRI data and (B) correlation between the
sequences of AUCs computed from simulated and real data.

Table 6. Area under the modified ROC curve, integrated over FPR € [0, 0.1] for
eachanalysis method.

Fig. 5 shows the between-group difference maps (NC v/s MCI) for the contrast encoding v/s
control, computed for univariate summary statistics (SV+SV and SVGS+SV,) and proposed
multivariate group-level methods (SV+cCCA and cCCA+cCCA). T-statistics maps,
thresholded at p<0.01(uncorrected) with at least 15 voxels in each cluster, are shown.
Activation percentages for each AAL region at the same thresholds are listed in Table 7.
Larger between-group differences are seen in hippocampus and fusiform gyrus (Table 7)
using the multivariate group-level analysis method, as compared to the univariate methods.
The statistical values are also higher in the multivariate group-level methods (see red arrows
in Fig. 5), as compared to the univariate methods.

Fig. 5. Between-group difference map (NC v/s MCI) for contrast encoding v/s control,
computed with different analysis methods.

Table 7. Top 20 AAL regions with the largest between-group difference (in percent),
computed for the between-group difference maps of contrast encoding v/s control/ with
different analysis methods.

4. Discussion

This study introduces a constrained multivariate model for group-level analysis and shows
that it provides improved detection of activations. The proposed method incorporates local
neighboring voxels with optimal spatial weights to determine group activations. The
proposed method simultaneously estimates spatial weights and group-level effect and
variance using numerical optimization techniques. The group-level cCCA model is validated
by both simulation studies (Fig. 1, 2, Table 3 and 4) and real episodic memory fMRI data for
8 aMCI subjects and 8 NCs (Fig. 3, 4 and Table 5, 6 and 7). Results demonstrate superior
performance of the group-level cCCA model over univariate analysis methods.

4.1 Performance of group-level cCCA model.

The proposed cCCA model is compared to two widely used group analysis methods, namely
the univariate summary statistics (Friston et al., 2005; Holmes and Friston, 1998) and
Fisher’s data fusion method (Fisher, 1992).
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4.1.1 Simulated data.—The comparison is first done using unsmoothed simulated data
where the ground truth is known. Specifically, the univariate GLM analysis is performed at
subject-level using unsmoothed time series. The effect and its variance map were then input
to the group analysis and the group-level activation status of the center voxel within each
simulated 5x5 neighborhood were computed with different analysis methods. We computed
the area under the ROC curves (AUC), integrated over false positive rate (FPR) € [0, 0.1],
which is a range that is most important in fMRI activation detection to provide a quantitative
measurement of the overall model performance for method SV+SV, SV+cCCA and SV
+Fisher. As shown by the solid blue (SV+SV), solid yellow (SV+cCCA) and dashed
brown(SV+Fisher) curves in Fig. 1(C), all three methods show decent performance with
AUC close to 0.1 for high SNRs (7<0.6, Fig. 1(C)). Incorporating neighboring voxels in this
case would not provide much additional improvements because the SNR is already high. As
the noise level increases in the simulated data (>0.8), univariate methods (SV+SV) lose
sensitivity in activation detection, as indicated by a decreasing AUC (solid blue curve in Fig.
1(C)). On the contrary, the proposed multivariate method still shows high AUC (solid yellow
curve in Fig. 1(C)) since incorporating local neighboring information increases the
sensitivity of activation detection while the constraint in the model preserves the specificity
of activation detection. This improvement in AUC of SV+cCCA method is significant as
compared to the SV+SV (p<0.005), as plotted in Fig. 2. Furthermore, Fisher’s data fusion
starts performing poorly at lower noise levels (£0.65, dashed brown curve in Fig. 1(C)),
mainly due to the way independent tests for each subject are combined. The null hypothesis
of no effect in all subjects in this case could be easily rejected on the basis of a nonzero
effect in just one subject (Lazar et al., 2002). More specifically, if the p-value is large (near
1) for some subjects, then the combined #zis close to zero and the value of the statistic is
nearly unchanged. If the p-value is small (close to 0) on the other hand, a small change of p-
value in a single subject will affect the combined statistics potentially leading to false
positives.

We next compare the proposed multivariate group analysis method (SV+cCCA) with the
univariate methods using smoothed simulated time series (SVGS+SV). Specifically, for
SVGS+SV, neighboring voxels were incorporated at subject-level with an isotropic Gaussian
smoothing kernel. Multiple kernel sizes were used in our analysis to conduct a thorough
comparison. As shown in Fig. 1(C), applying Gaussian smoothing with proper kernel sizes
(FWHM=2mm and 4mm) at subject-level analysis can improve the AUC of the group-level
univariate method at high noise levels (0.8, dashed purple curve). Furthermore, an
extended isotropic smoothing kernel (FWHM=6mm) may decrease the activation detection
power at medium to high noise levels (0.55</0.95), as indicated by the dashed dark blue
curve in Fig. 1(C)). The proposed constrained multivariate method optimizes the weights of
incorporated neighboring voxels at group-level so that a common neighborhood
configuration that matches actual spatial activation patterns among all subjects can be
determined, especially for fMRI data with high noise fractions. Therefore, as shown by the
solid yellow curve in Fig. 1(C), the proposed method improves the group-level activation
detection performance at high noise levels (/>0.8), as compared to SVGS+SV.
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We further compare the performance of SVGS+cCCA and SVGS+SV using simulated data
with the noise fraction of 0.85. As listed in Table 4, with effect and variance maps from the
same subject-level analysis method as inputs, multivariate group-level analysis method (last
column) always outperforms univariate methods (34 and 4™ columns) since incorporating
neighboring voxels in this case improves the sensitivity in group-level activation detection.
At the same time, the constraint put in the multivariate method guarantees the dominance of
the center voxel in each local neighborhood so that the smoothing artifact is limited.

Previous studies have shown that in subject-level activation detection, the local cCCA
method optimizes weights of incorporated neighboring voxels and therefore outperforms
univariate methods with or without Gaussian smoothing (Cordes et al., 2012; Zhuang et al.,
2017). The optimum performance of the subject-level cCCA has also been demonstrated in
our analysis using group-level activation detection. As shown by the orange curve in Fig.
1(C), applying constrained multivariate method at subject-level (cCCCA+SV) also improves
the group-level activation detection performance, as compared to SV+SV and SVGS+SV.
Furthermore, applying both level constrained multivariate analysis methods (cCCA+cCCA)
will further increase the AUC at high noise levels (£>0.8, solid grey curve in Fig. 1(C)),
since subject-level cCCA optimizes weights of neighboring voxels to match subject-specific
activation patterns and group-level constrained multivariate method determines an optimum
neighborhood configuration that matches common activation patterns among all subjects.

In summary, applying constrained multivariate methods at group-level analysis will
incorporate the local spatial activation information while keep the appropriate dominance of
the center voxel; therefore are able to more accurately detect activations in noisy data, as
compared to the univariate analysis methods with the same subject-level inputs.

4.1.2 Episodic memory activation.

Within-group activation detection.: We compared the selected univariate and multivariate
methods using real fMRI data of an episodic memory task, namely: SV+SV, SVGS+SV, SV
+cCCA and cCCA+cCCA. We set the size of the isotropic Gaussian smoothing kernel
during preprocessing for SVGS+SV method to be FWHM=2mm for our episodic memory
task data. We choose this conservative smoothing kernel size because 1) simulation results
have demonstrated an optimum performance of SVGS2+SV, as compared to SV+SV; and 2)
the targeted activated medial temporal regions are with thin cortical thicknesses and folded
grey-matter structures; therefore an extended isotropic smoothing kernel may contaminate
activated voxels in this area with nearby non-grey matter structures and further eliminate the
detection of activation or produce false positives in nearby non-grey matter regions.
Furthermore, we set the window-size for multivariate group-level analysis to be 3x3x3
based on the fMRI resolution and to incorporate only the nearest neighbors. This 3D 3x3x3
window-size is also comparable with the Gaussian smoothing kernel size (FWHM=2mm) in
SVGS2+SV. In addition, an optimum cCCA model determined in (Zhuang et al., 2017) is
used for subject-level analysis in cCCA+cCCA.

We have repeated the group-level multivariate method with a 3D 5x5x5 spatial
neighborhood using real fMRI data. We would like to test if a 3D 5x5%5 spatial
neighborhood could further improve the model performance on real fMRI data and
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therefore, the first level analysis remains the constrained cCCA method. The computation
time doubled with this larger neighborhood (will be further discussed in section 4.3). Greater
activations have been observed in the targeted medial temporal lobe, as compared to the
analysis with cCCA+cCCA method with 3x3%3 neighborhood. The area under the modified
ROC curve, integrated from FPR 0 to 0.1, is 0.0886, which shows a further increase of 2%,
as compared to cCCA+cCCA method with 3x3x3 neighborhood. Therefore, in joint
consideration of model performance improvement and computation time increase, we have
reported results of cCCA+cCCA method with 3x3x3 neighborhood on real fMRI data in this
manuscript.

Episodic memory is a type of declarative memory that involves conscious recollection of
previous experiences together with their context in terms of time, place, and associated
emotions (https://en.wikipedia.org/wiki/Episodic memory). Previous studies have shown that
episodic memory is facilitated by neural pathways in the medial temporal lobe (MTL),
which includes hippocampus, para-hippocampal areas and other nearby regions (Squire et
al., 2004; Zeineh et al., 2003a). In particular, using a face-name encoding and retrieval task,
Zeineh et al. (2003) have shown that strong activation can be detected in hippocampal sub-
regions including Cornu Ammonis (CA) fields and Dentate Gyrus (DG) during encoding
while fusiform is active regardless of encoding and retrieval. Therefore, regions of activation
during a face-occupation memory task should involve bilateral hippocampus, para-
hippocampal areas and fusiform gyrus (pointed to in Fig. 3 and highlighted in red in Table
5). However, activation detection in these regions is often complicated due to the low SNR
caused by susceptibility artifacts and the anatomically small size of hippocampal subfields.
As can be seen from Fig. 3 and Table 5, univariate summary statistics (SV+SV) detects less
active voxels and misses part of the activations in hippocampus or para-hippocampal areas at
a significance level of p<0.05 (FWE corrected). SVGS+SV detects large activations in
bilateral hippocampus, bilateral fusiform gyrus, but misses part of the activations in para-
hippocampal area. Both SV+cCCA and cCCA+cCCA find bilateral hippocampus, bilateral
fusiform gyrus and bilateral para-hippocampal areas within the top 20 activated regions,
which is more accurate and as expected in our memory task. In addition, activations in other
brain regions such as occipital areas involved in visual processes and frontal areas involved
in cognitive process are also better detected with the proposed method (column 3 and 4 in
Table 5), as compared to univariate methods (column 1 and 2 in Table 5).

Furthermore, the modified ROC curve provides a more comprehensive way to make
comparisons among all analysis methods at multiple sensitivity and specificity levels. The
multivariate method incorporates multiple time series with optimal weights in each local
neighborhood and is thus more sensitive to detect activations. On the other hand, the
constraint term in the cCCA model reduces the extra degrees of freedom introduced by the
multivariate method and therefore preserves specificity at the same time. In this case, as
shown in Fig. 4(A), applying both level multivariate analysis methods (cCCA+cCCA)
improves the sensitivity (TPR) extensively at a given specificity (1-FPR), as compared to SV
+SV and SVGS+SV.

We further computed the area under the ROC curves (AUC) by integrating FPR from 0 to
0.1, as a quantitative measurement to compare different methods. As shown in Fig. 4(B), a
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significant linear dependency (p=0.001) between sequences of AUCs computed from
simulated data and real fMRI data has been observed, which validates the conclusion we
draw from the comparisons using simulated data. Based on our observations, we expect that
the proposed method will detect group-level activations more accurately in noisy fMRI data.

We included all 16 subjects (8 NC and 8 MCI) for within-group activation detection to
obtain a larger sample size with increased power of activation detection. We also computed
the within-group activation maps for all three analysis methods for the NC group and the
aMCI group separately. For both groups, we observe more activations in hippocampus, para-
hippocampal areas and other medial temporal lobe regions using the proposed method when
compared to the univariate summary statistics method.

Between-group difference detection.: Previous studies on MTL functional changes in MCI
subjects reported diverse results, with either increased MTL activation found during
encoding and retrieval phases (Dickerson et al., 2005; Selkoe et al., 2006) or hypoactivation
in MTL regions reported (Machulda et al., 2003) in MCI subjects. In this study, we observe
less activation in MTL regions for the contrast encoding v/s control during the episodic
memory task in MCI subjects, as compared to the normal subjects. These observations are
consistent with results in Jin et al. (2012), where functional abnormalities in the same set of
amnestic MCI subjects during three different episodic memory tasks (word-name, picture-
name and face-occupation) are reported. More importantly, in this study, a between-group
analysis is conducted to compare performances in cross-group difference detection between
the proposed method and univariate methods. As shown in Fig. 5 and Table 7, greater
between-group differences are found in MTL regions with the proposed multivariate
method, as compared to univariate methods.

4.2 Other multivariate modeling methods in group analysis.

In the past decade, multivariate pattern analysis (MVPA) has become one of the most
popular multivariate modeling methods in fMRI analysis (Allefeld and Haynes, 2014;
Haxby, 2012; Haxby et al., 2001). MVVPA examines several voxels simultaneously but the
signs of the contrast for each individual subject are neglected. A classification process is
then carried out for multiple subjects. Therefore, MVPA is different from the methods
proposed and described in this study since our proposed method can detect both within-
group activations and between-group differences.

Gilron et al. (2017) proposed a directional MVPA to detect similar multivariate spatial
patterns of activity over subjects. In their method, the Srivastava-Du (2008) statistic is used
for directional analysis at the group-level and common differences between two effects are
being detected. Both directional MVPA and the proposed multivariate model are related to
searchlight (Allefeld and Haynes, 2014; Kriegeskorte et al., 2006) methods that incorporates
local neighborhood information in the group-level analysis. The statistics in the directional
MVPA is not adjusted by the variance at the single subject-level and may suffer from power
losses (Gilron et al., 2017). We applied the directional MVPA method to simulated data (SV
+MVPA) at noise fraction of 0.85 and obtained an AUC of 0.0718 by integrating FPR from
0to 0.1. MVPA in group-level analysis (SV+MVPA) slightly improves the performance in

Neuroimage. Author manuscript; available in PMC 2020 July 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Zhuang et al.

Page 26

activation detection, as compared to SV+SV (with AUC of 0.0712) but is still less accurate
than proposed multivariate methods (SV+cCCA, with AUC of 0.0790). Furthermore, the
statistic used in the proposed cCCA model is easier to compute and statistically significant
levels in the proposed method are determined non-parametrically, which are more accurate
and easier to interpret.

Kriegeskorte et al. (2006) introduced a searchlight based MVPA method, which is known as
information-based functional brain mapping method, to determine the subject-level center
voxel activation status by incorporating information from the local neighborhood. We
applied the Kriegeskorte’s searchlight method to group-level analysis using the Mahalanobis
A2 = E (COV(E

-1 =T
)) B 5 Nsub xq i
,where BER ° represents estimated
B = mean (E)
subject-level effects of a local neighborhood (with g voxels) from N, subjects, and

distance defined as:

BeRr'¥4= mean(ﬁ) represents the average estimated effects (over subjects) of this local

neighborhood. Applying the Kriegeskorte’s searchlight method to simulated data (SV
+Kriegeskorte’s MVPA) at noise fraction of 0.85 with a 3x3 window gives an AUC of
0.0738 by integrating FPR from 0 to 0.1. Kriegeskorte’s searchlight in group-level analysis
(SV+Kriegeskorte’s MVPA) improves the performance in activation detection, as compared
to SV+SV (with AUC of 0.0712); and is comparable to the performance of SVGS2+SV
(with AUC of 0.0745); but is still less accurate than the proposed multivariate method (SV
+cCCA, with AUC of 0.0790). Both MVPA methods in Gilron et al. (2017) and
Kriegeskorte et al. (2006) incorporate neighboring voxels with equal weights. Therefore, for
an active center, both inactive neighbors and active neighbors are treated equivalently. In this
case, the effect of incorporating neighboring voxels is similar to apply a smoothing kernel
but adjusted for the spatial noise covariance. In the proposed cCCA method, however,
neighboring voxels are incorporated with optimum weights, so that active neighboring
voxels could contribute greater to the statistics of the active center voxel, as compared to the
inactive neighbors. Therefore, the proposed method outperforms both searchlight-based
MVPAs.

Correa et al. (2010) proposed a multiset-CCA (MCCA) method to analyze multiple data set
for a single modality for group inferences. In their method, similar to widely used
independent component analysis (ICA, Calhoun et al., 2001) method, fMRI time series from
all subjects are stacked together and blind-source-separation based on mCCA is performed.
The resulting group inferences are group source components with the maximal between-set
correlation values. In this case, the mCCA model is a data decomposition method whereas
the proposed cCCA model is a data modeling technique.

4.3 Technical aspects of multivariate group-level analysis.

Group-level multivariate analysis is different from subject-level cCCA.—In this
study, we modeled and solved the group-level multivariate problem based on the maximum
log likelihood method by considering the joint distribution of all unknowns, which is
different from the traditional CCA (Friman et al., 2001; Hotelling, 1936) that maximizes the
correlation between two canonical variables (o(Ya,Xg) in Eq. (15)). The design matrix in
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group-level cCCA (X,) is a constant vector with all ones for within-group activation
detection, which is rank deficient and leads to a covariance of zero. In this case, maximizing
p(Ya,Xp) is not possible. Cordes et al.(2012) proves that the CCA model can be converted
into an equivalent multivariate multiple regression problem under proper normalization
terms (van(Ya) = 1). In this study, we utilized the same concept by forming a multiple
regression problem and introduced a as an unknown multivariate vector that incorporates
neighboring voxels in the model. In this case, the estimated group-inference is not scale
invariant among different voxel configurations and therefore, a proper normalization term is
necessary. Group-level activation status, optimum weights of neighboring voxels (a) and the
group-level variance are estimated simultaneously.

Computational time.—All calculations are performed in MATLAB (The Mathworks,
Inc., version R2018b) on a Dell-workstation with Intel Xeon E5-2687W architecture
running at a clock speed of 3.4GHz and equipped with 96GB of memory. Under this
hardware setting, the average computational time for SV+cCCA method with a 2D 3x3
window to detect the group-level whole brain activation is around 600 seconds. Extending
the window-size to 3D 3x3x3 takes around 1000 seconds to finish a whole brain multivariate
group-level analysis. Further increasing the window-size to a 3D 5x5%5 neighborhood
doubles the computation time, as compared to the 3x3x3 neighborhood size. Applying both
level multivariate methods (cCCA+cCCA) requires a longer computational time since the
subject-level cCCA model takes about 600 seconds (1000 seconds for 3D window) per
subject. In this case, cCCA+cCCA needs 600 x (N, + 1) seconds to compute one group
activation map. The computational time of cCCA+cCCA needs to be taken into
consideration when selecting the analysis method, because the statistical significance needs
to be determined non-parametrically.

4.4 Future directions.

In this study, we have tested the performance of a local cCCA model using 3x3x3 in-plane
neighborhoods for group-level analysis. CCA can link multiple datasets by maximizing the
correlation among canonical components. We have not tested these algorithms in multiple
groups. In the future, performance of combining cCCA modeling technique and a mCCA
data fusion method will also be evaluated for group-level analysis.

Furthermore, as we stated above, the group-level design matrix X, for within-group
activation detection is rank deficient, which limits the usage of kernel based cCCA methods
(YYang et al., 2018) in group-level analysis. In the future, for within-group activation
detection, we could form a second group using wavelet resampled resting-state time series.
In that case, the null hypothesis will be to detect the differences between the real task group
and the null group and the design matrix will be a binary matrix with two columns of input.
Therefore, kernel CCA could also be applied.

5. Conclusion.

We have introduced a constrained multivariate method to incorporate local neighboring
voxels for fMRI group-level analysis. Using simulation, we have demonstrated better
performance for activation detection of the proposed method over univariate techniques with
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the same subject-level inputs. Applying the proposed method to real fMRI episodic memory
data, larger within-group activation in hippocampus, fusiform gyrus, para-hippocampal areas
and stronger between-group differences in hippocampus and fusiform gyrus have been
found. Furthermore, we have shown that applying both level constrained multivariate
methods further increases the power of group-level activation detection, but also
significantly increases the computational time.
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Neighborhoods with an active center voxel
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Simulation: Within-group activation detection. (A). Examples of simulated 5x5
neighborhoods with an active (top) or inactive (bottom) center voxel. (B). The distribution of
number of active neighbors with an active (top) or inactive (bottom) center voxel in both real
data (filled) and simulated data. (C). Area under the ROC curves (AUC), integrated over
FPR € [0, 0.1] for different analysis methods applied to simulated data with different noise
levels. (D). ROC curves for different analysis methods applied to simulated data with a noise
fraction of 0.85 (SNR = 0.18) which is close to the real fMRI data (dotted red ellipse in (C)).
Areas under ROC curves, integrated over FPR € [0, 0.1] for each method are listed in the
legend.
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AUC (integrating over FPR from 0 to 0.1)

—_—

s s — —

1 1

Multivariate Group Analysis  Univariate Group Analysis

Significance analysis between multivariate (SV+cCCA) and univariate (SV+SV) group-level
analysis methods using simulated data with a noise fraction of 0.85. Areas under the ROC
curves (AUCs), integrating over false positive rate (FPR) from 0 to 0.1, are plotted for
multivariate (left) and univariate (right) group-level analysis methods. Significant between-
group difference is observed (p=0.0023).
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Figure 3.
Within-group activation map of contrast encoding v/s control, computed for different

analysis methods. Selected slices with hippocampus, para-hippocampal areas and fusiform
gyrus are shown.
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Figure 4.
(A). Modified ROC curves for different analysis methods. Areas under modified ROC

curves, integrated over FPR € [0, 0.1] for each method are listed in the legend. (B).
Correlation between the sequence of AUC computed from simulated data and real fMRI
data.
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Figure 5.
Between-group difference map (NC v/s MCI) for contrast encoding v/s control, computed

for different analysis methods. Selected slices with hippocampus, para-hippocampal area
and fusiform gyrus are shown.
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Table 1.

Subject demographics. Abbreviations: CDR: Clinical Dementia Rating; MMSE: Mini- Mental State
Examination.

NC aMCl Group difference

Number of subjects 8 (5 Males) 8 (4 Males) Not significant

Age (years) 60.6+8.3 60.9+3.2 Not significant
Years of education (years) 16.9+2.1 16.9+1.9 Not significant
CDR 0+0 0.5+0 p=0
MMSE 29.6+0.5 28.1+1.1 p=0.0041
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