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Abstract

Task-based functional Magnetic Resonance Imaging (fMRI) has been widely used to determine 

population-based brain activations for cognitive tasks. Popular group-level analysis in fMRI is 

based on the general linear model and constitutes a univariate method. However, univariate 

methods are known to suffer from low sensitivity for a given specificity because the spatial 

covariance structure at each voxel is not taken entirely into account. In this study, a spatially 

constrained local multivariate model is introduced for group-level analysis to improve sensitivity 

at a given specificity for activation detection. The proposed model is formulated in terms of a 

multivariate constrained optimization problem based on the maximum log likelihood method and 

solved efficiently with numerical optimization techniques. Both simulated data mimicking real 

fMRI time series at multiple noise fractions and real fMRI episodic memory data have been used 

to evaluate the performance of the proposed method. For simulated data, the area under the 

receiver operating characteristic curves in detecting group activations increases for the subject and 

group level multivariate method by 20%, as compared to the univariate method. Results from real 

fMRI data indicate a significant increase in group-level activation detection, particularly in 

hippocampus, parahippocampal area and nearby medial temporal lobe regions with the proposed 

method.
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1. Introduction

Task-based functional magnetic resonance imaging (fMRI) studies have been widely used to 

understand brain activations for cognitive tasks (Adleman et al., 2002; Kwong et al., 1992; 

Peterson et al., 1999; Reagh and Yassa, 2014). In a task-based fMRI experiment, series of 

brain images are collected while the subject is performing a task. To obtain group-level 

inference, multiple subjects are studied and common activations among these subjects 

specify a group map (Lindquist, 2008). Data analysis in task-based fMRI studies usually 

consist of a two-level model. A subject-level analysis detects the activation of each 

individual subject for a contrast of interest and a second group-level analysis localizes 

common activations among multiple subjects (Beckmann et al., 2003; Ferreira da Silva, 

2011; Friston et al., 2005; Holmes and Friston, 1998; Penny and Holmes, 2003; Road, 1996; 

Woolrich et al., 2004; Worsley et al., 2002).

In the subject-level analysis, the experimental paradigm for each subject is modeled as a 

matrix with multiple columns (Buxton, 2009). Each column corresponds to a specific task 

condition, with 1 representing time points when the task is “on” and 0 when the task is “off”. 

The binary task functions are then convolved with an appropriate hemodynamic response 

function (HRF) to represent the fMRI signal. The resulting functions containing the signal 

regressors as columns then define the design matrix for the subject (Friston et al., 1998; 

Lindquist et al., 2009). The univariate general linear model (GLM) is a widely used method 

that fits the collected time series to the subject-specific design matrix by minimizing the 

Gaussian-distributed residual error. The signal magnitude in response to each single task 

condition is computed during this fitting process and is defined as the effect of each task 

condition. A contrast vector that constitutes a linear combination of one or multiple 

condition effects can then be defined to estimate the signal magnitude in response to either a 

single condition, an average effect over multiple conditions or a difference effect between 

two conditions. The subject’s response to the same task condition may vary from trial to trial 

and this variation is known as the within subject variance. Statistical inferences for a specific 

contrast of interest is computed for each subject (Lindquist, 2008).

In the group-level analysis, individual subjects are considered as random samples from a 

targeted population and brain activation effects for the same task vary from subject to 

subject. To draw conclusions on brain activations for a population in response to a specific 

task condition, between-subject variances need to be considered and a group analysis based 

on a random-effects model is preferred (Friston et al., 2002; Woolrich et al., 2004). In the 

random-effects model, activation effects from every single subject are taken as inputs and 

are fitted to a binary group design matrix where an entry with a 1 represents subjects 

belonging to a specific group. The group-level GLM could also be used to linearly model the 

group effect. This model is widely recognized as the summary statistics method (Holmes 

and Friston, 1998). The group-level GLM has been solved by using a) a direct Moore-

Penrose inverse operation that assumes Gaussian noise (Friston et al., 2005), b) a fully 

Bayesian method (Woolrich et al., 2004), or c) a maximum likelihood estimation with an 

expectation trust region algorithm (Li et al., 2014). A group contrast vector detects activation 

effects averaging over multiple subjects in one group or detects difference effects between 

multiple groups. Statistical inferences are then computed for the group effects.
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Another group-level analysis method in fMRI relies on combining hypothesis tests from 

each individual subject (Lazar et al., 2002). Subject-level activation is tested using 

parametric statistical tests and corresponding p-values are computed for each individual 

subject. Group analysis methods, such as Fisher’s data fusion method (Fisher, 1992), are 

used to generate group inferences from subjects’ p-values. Combining of p-value 

information is easy to implement but difficult to interpret. The null hypothesis of such a 

group-level analysis is that “no effect can be observed for any subject’. In Fisher’s data 

fusion method, this null hypothesis could be rejected on the basis of a non-zero effect in 

only one subject (Lazar et al., 2002) and therefore the computed group-level activation 

effects are prone to false positives. Additional group-level analysis involves using 

information across individual samples to assist in the recovery of group-level connections 

among different regions of interests (ROIs) (Friston, 2011; Gates and Molenaar, 2012; Smith 

et al., 2011). Instead of localizing the group-level common or different activated regions 

during a cognitive task, these group-level methods focus on constructing network 

connections between ROIs.

Both single subject and group-level analysis are performed independently for every voxel, 

and therefore are univariate in nature. However, each voxel has a different spatial covariance 

structure which is not taken into full consideration by a univariate method because a 

univariate method assumes neighboring voxels to be independent and therefore is not 

sensitive enough to detect activation effects especially for fMRI data with low signal-to-

noise ratio (SNR). To improve the sensitivity of activation detection, isotropic spatial 

Gaussian smoothing is typically performed as a preprocessing step in most univariate 

methods. However, an improper smoothing kernel size that does not match the spatial 

activation pattern exactly may eliminate the detection of activation (Yang et al., 2018). 

Specifically, an extended isotropic smoothing kernel can be problematic to cortical regions 

with thin and folded grey-matter structures (Cordes et al., 2012; Zhuang et al., 2017).

CCA (Hotelling, 1936) applied to local neighborhoods to obtain adaptive spatial filter 

kernels has been successfully applied to fMRI subject-level analyses and shown improved 

sensitivity in activation detection (Friman et al., 2001). To obtain rotationally adaptive filter 

kernels in local CCA, each voxel time series can be convolved with spatially anisotropic 

basis functions with optimized weight coefficients determined by the data (Friman et al., 

2003, 2002, 2001). These low-pass spatial basis functions with optimized weight 

coefficients determine the underlying spatial covariance structure at each voxel and therefore 

can better capture arbitrarily-shaped activation patterns. Subject-level activation status is 

then computed by maximizing the canonical correlation between the filtered time series 

within each neighborhood of a voxel time series and the task design matrix. Statistical 

inferences are finally computed for a specific contrast of interest an assigned to the center 

voxel of each neighborhood. Compared to a univariate analysis method, local CCA has 

higher degrees of freedom and therefore spatial constraints are needed in estimating weights 

of the spatial basis functions to improve the specificity of the activation pattern (Cordes et 

al., 2012; Zhuang et al., 2017). More accurate subject-level activation maps with improved 

sensitivity at a given specificity have been computed with locally constrained CCA (cCCA) 

methods (Yang et al., 2018; Zhuang et al., 2017).
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In this study, we introduce the cCCA model for fMRI group-level analysis, where local 

neighboring voxels are incorporated with optimized spatial weights at each voxel to obtain 

neighborhood-specific spatial filter kernels. However, due to the particular structure of the 

group-level design matrix which is different for a 1st level design matrix involving cCCA, 

the solution of the group cCCA model is performed differently than a subject-level cCCA. In 

group-level analysis, a binary design matrix is used with 1s representing subjects belong to a 

specific group. In this case, the design matrix is a vector with all 1s for within-group 

activation detection and a two-column binary matrix for between-group difference detection. 

Since the design matrix is a constant matrix with covariance equal to zero for within-group 

activation detection, a covariance-based analysis cannot be directly carried out. To prevent 

potential singularity problems in group-level cCCA, we convert the group-level cCCA 

problem to a maximum log-likelihood problem and solve it with nonlinear optimization 

techniques. Specifically, we form an optimization problem at each voxel with subject-level 

effects of interest from center voxel and its neighboring voxels as inputs. Group inferences 

of the center voxel, between-subject variance and optimum weight coefficients of each 

neighboring voxels are estimated simultaneously. Using simulations, we show the 

improvements of the proposed cCCA method over standard univariate group analysis 

methods such as univariate summary statistics and Fisher’s data fusion with the same 

subject-level analysis as input. We further apply the cCCA group model to real fMRI data 

and demonstrate superior performance over other analysis methods in group activation 

detection.

2. Materials and Methods.

2.1 Theory

2.1.1 Univariate group analysis in fMRI

Subject-level univariate analysis and variance structures.: In a two-level univariate 

general linear model, the subject-level analysis for the kth subject is modeled as

yku
= Xkβku

+ ϵku
, (1)

where yku
∈ ℝt × 1 is a random vector of continuous variables representing the time course (t 

time points) from a single voxel u, and Xk ∈ ℝt × n represents n functions used to model the 

blood oxygenation level-dependent (BOLD) response. Subscripts k in Eq. (1) denotes the 

subject index and subscript u for βk and ∊k represents effects and residuals for a single 

voxel. The single voxel residual vector ϵku
 follows a Gaussian distribution with E ϵku

= 0

and cov ϵku
= Vku

. With a known covariance Vku
, the best linear unbiased estimator of βku

 is 

(Searle et al., 1992)
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βku
= Vku

− 1
2 Xk

+

Vku

− 1
2 yk = Xk

TVku
−1Xk

−1
Xk

TVku
−1yk, (2)

where + indicates the pseudo inverse. Eq. (2) can be further simplified to

βku
= Xk

TVku
−1Xk

−1
Xk

TVku
−1 Xkβku

+ ϵku
= βku

+ Xk
TVku

−1Xk
−1

Xk
TVku

−1ϵku
. (3)

The covariance structure of βku
 is then computed as

cov βku
= E βku

− βku
βku

− βku

T
= cov Xk

TVku
−1Xk

−1
Xk

TVku
−1ϵku

= Xk
TVku

−1Xk
−1

Xk
TVku

−1 E ϵku
ϵku

T  Vku
−1Xk Xk

TVku
−1Xk

−1
= Xk

TVku
−1Xk

−1
.

(4)

Without loss of generality, we can re-parameterize xk to be an effective design matrix 

corresponding to a specific contrast c of interest, i.e. n = 1. Then, the vector βku
 becomes a 

scalar quantity βku
 and represents the subject-level activation effect that will be estimated.

Group-level univariate analysis and variance structures.: The group-level group 

univariate analysis is modeled as

βu = XGβGu
+ ηGu

, (5)

where βu = β1u
 β2u

 , …,  βNu

T
 represents effects from N subjects at a single voxel and XG is 

the design matrix modeling either within-group activation detection XG ∈ ℝN × 1  or 

between-group difference detection XG ∈ ℝN × 2, . The vector ηGu
 represent the Gaussian-

distributed residual error term of group activation with a mean vector of 0 and variance-

covariance matrix QGu
= σGu

2 IN, where σGu
2  denotes the between subjects random effects 

variance and IN is a N × N identity matrix. We use the subscript G in Eq. (5) to denote the 

group label. The mean and covariance structure of the random variable βu in Eq. (5) is then 

given by
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E βu = XGβGu

cov βu = E βu − E βu βu − E βu
T = ηGu

ηGu
T = QGu

.

(6)

In practice, the second level model uses estimated effects from the subject-level as inputs 

instead of the true (but not observable) parameters (Beckmann et al., 2003). This 

modification leads to

βu = XGβGu
+ ηGu

, (7)

where βu = β1u
β2u

, …, βNu

T
 indicates the estimated vector of βu and ηGu

 the 

remaining error vector. According to Eq. (3), we replace each βku
 with 

βku
+ Xk

TVku
−1Xk

−1
Xk

TVku
−1ϵku

 and obtain

ηGu
=

X1
TV1u

−1X1
−1

X1
TV1u

−1ϵ1u

X2
TV2u

−1X2
−1

X2
TV2u

−1ϵ2u

…

Xk
TVku

−1Xk
−1

Xk
TVku

−1ϵku

+ ηGu
, (8)

with E ηGu
= 0 and cov  ηGu

: = VGu
. Following the same derivation as in Eq. (6), we can 

write cov βu = cov ηGu
= VGu

. The variance-covariance matrix of ηGu
, i.e. VGu

, in Eq. (8) 

consists of both within-subject variance Ru and between-subjects variance QGu
 at a single 

voxel, i.e.:

VGu
= Ru + QGu

, (9)
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where Ru = cov

X1
TV1u

−1X1
−1

X1
TV1u

−1ϵ1u

X2
TV2u

−1X2
−1

X2
TV2u

−1ϵ2u
…

Xk
TVku

−1Xk
−1

Xk
TVku

−1ϵ3u

 and QGu
= cov ηGu

, respectively. from Eq. (4), we 

can write cov βku
= cov Xk

TVku
−1Xk

−1
Xk

TVku
−1ϵku

 and therefore, Ru takes the form of:

Ru =

 cov  β1u
0 … 0

0  cov  β2u
… 0

⋮ ⋮ ⋱ ⋮

0 0 …  cov  βNu

. (10)

Furthermore, for within-group activation detection, we have

XG = [1, 1, …, 1]T ∈ ℝN × 1and QGu
= σGu

2 IN . (11)

For between-group difference detection, XG is defined to be

XG = 1 … 1 0 … 0
0 … 0 1 … 1

T
∈ ℝ

N1 + N2 × 2
 and QGu

=
σG1u

2 IN1
0

0 σG2u
2 IN2

. (12)

The non-diagonal terms vanish since all subject data are assumed to be independent 

observations.

Maximum likelihood formulation in univariate second-level fMRI analysis.: The vector 

βu in Eq. (7) follows a Gaussian distribution with E βu = XGβGu
 and cov βu = VGu

. The 

probability density function of βu is a multivariate Gaussian distribution (Li et al., 2014) 

according to

f βu; βGu
, VGu

= (2π)
− n

2 VGu

− 1
2  exp  − 1

2 βu − XGβGu

T
VGu

−1 βu − XGβGu
. (13)

Taking the natural log on both sides of Eq. (11) gives
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ℒ βu; βGu
, VGu

= − n
2ln(2π) − 1

2ln VGu
− 1

2 βu − XGβGu

T
VGu

−1 βu − XGβGu
. (14)

By maximizing the log-likelihood objective function in Eq. (14) with nonlinear optimization 

techniques, we determine the solutions of unknown parameters βGu
 and VGu

. Note that VGu

is either parameterized by σGu
2 (Eq.11) or σG1u

2 , σG2u
2 (Eq.12).

2.1.2 Multivariate group analysis in fMRI with local CCA.—With local CCA, 

activation status of the center voxel of a neighborhood is determined by incorporating its 

neighboring voxels. The two-level mixed effects model applies here.

Subject-level local CCA analysis and variance structures.: In local CCA analysis, the 

subject-level multivariate model for subject k can be written as

maxαk, βk
 ρ αk, βk =

cov Ykαk, Xkβk

var Ykαk var Xkβk
, (15)

where Xk ∈ ℝt × n is the design matrix as before and Yk = yk
(1), …, yk

(M) ∈ ℝt × M is a matrix 

of time courses (t time points) of M voxels (e.g., M = 9 for 3×3 regions in a 2D slice and M 
=27 for a 3D 3×3×3 neighborhood). We use superscripts 1,2, …M to denote indices of 

voxels. Using optimization theory, we find spatial weight vectors αk ∈ ℝM × 1 and 

multivariate weight vectors βk ∈ ℝn × 1 that maximize the canonical correlation between Yk 

and Xk. With a proper normalization term (var(Ykαk) = 1), the subject-level CCA model can 

be converted to an equivalent multivariate multiple regression model (Zhuang et al., 2017) 

given by

Ykαk = Xkβk + ϵk, (16)

where βk ∈ ℝn × 1 is the regression weight vector and ϵk ∈ ℝt × 1 is the residual error vector. 

In this case, βk 2 and ∊k are linear combinations of βku
1, 2, …, M  and ϵku

1, 2, …, M  from the local 

neighborhood, and therefore, ∊k also follows a Gaussian distribution with E(∊k) = 0 and 

cov ϵk = Vk = σk
2It. We can further compute the best linear unbiased estimator of βk with a 

known covariance matrix Vk to be

βk = Xk
TVk

−1Xk
−1Xk

TVk
−1Ykαk = βk + Xk

TVk
−1Xk

−1Xk
TVk

−1ϵk . (17)
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The mean and covariance structure of βk is then computed as E βk = 0 and 

cov βk = Xk
TVk

−1Xk
−1

.

Group-level multivariate analysis and covariance structures.: Using the same concept of 

incorporating local neighboring voxels, the group-level CCA can be modeled as

ρ BαG, XGβG =
cov BαG, XGβG

var BαG var XGβG
(18)

where B =

β1
(1) β1

(2) … β1
(M)

β2
(1) β2

(2) … β2
(M)

⋮ ⋮ ⋱ ⋮
βN

(1) βN
(2) … βN

(M)

∈ ℝN × M is a matrix that represents subject-level activation 

effects of M voxels from N subjects in a local neighborhood of a center voxel (labeled as 

voxel 1 in superscript) and XG is the group analysis design matrix. We convert the group-

level local CCA model to a multivariate multiple regression model according to

BαG = XGβG + ηG, (19)

where the vector βG is the group inference weight vector and ηG is the residual error vector. 

In this case, βG and ηG are linear combinations of βGu
i  and ηGu

i  from the univariate model for 

local neighborhood voxels i ∊{1,..,M} defined by

βu
(i) = XGβGu

(i) + ηGu
(i) (20)

Therefore, ƞG follows a multivariate Gaussian-distribution with E(ηG) = 0 and 

var ηG = QG = σG
2 IN for the within-group scenario or QG =

σG1
2 IN1

0

0 σG2
2 IN2

 for the 

between-group scenario. In practice, the group-level multivariate model takes estimated 

effects from the subject-level as input instead of the true (but not observable) parameters, i.e. 

Eq. (19) is modified to

BαG = XGβG + ηG, (21)
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Where B =

β1
(1) β1

(2) … β1
(M)

β2
(1) β2

(2) … β2
(M)

⋮ ⋮ ⋱ ⋮

βN
(1) βN

(2) … βN
(M)

≕

B1
T

B2
T

⋮
BN

T

, E ηG = 0 and cov ηG = VG. similar to Eq. (8), 

cov BαG = cov ηG = VG. The variance-covariance of ηG consists of both within-subject 

variance-covariance RG and between-subject variance-covariance QG.RG takes the following 

form:

RG =

 cov  B1
TαG 0 … 0

0 cov B2
TαG … 0

⋮ ⋮ ⋱ ⋮

0 0 … cov BN
TαG

(22)

where

cov  Bk
TαG = Σm = 1

M Σm′ = 1
M αG

(m)αG
m′ cov βk

(m), βk
(m′) ,  k = 1, 2, …, N (23)

and αG
(m) is the element in αG of the mth voxel in the local neighborhood.

To sum up, for within-group activation detection, we have

XG = [1, …, 1]T ∈ ℝN × 1 and VG = RG + σG
2 IN . (24-1)

For between-group difference detection,

XG is set to  1 … 1 0 … 0
0 … 0 1 … 1

T
∈ ℝ

N1 + N2 × 2
 and VG = RG +

σG1
2 IN1

0

0 σG2
2 IN2

. (24-2)

2.1.3 Maximum likelihood formulation in multivariate second-level fMRI 
analysis.—The main focus of this paper is to solve the multivariate second level analysis in 

fMRI, i.e. estimate αG, βG in Eq. (21) and σG
2  or σG1

2 , σG2
2  in Eqs. (24-1, 24-2). The 

quantities B and cov βk
(m)  are computed from the subject-level analysis, where k denotes the 

index of subjects and m is the voxel index. As discussed in section 2.1.2, BαG in Eq. (21) 

follows a Gaussian distribution with E BαG = XGβG and cov BαG = VG. The probability 
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density function of BαG takes the form of the multivariate Gaussian distribution (Li et al., 

2014) according to

f BαG; βG, VG = (2π)
− n

2 VG
− 1

2  exp − 1
2 BαG − XGβG

TVG
−1 BαG − XGβG . (25)

Taking natural log on both sides of Eq. (25) gives:

ℒ BαG; βG, VG = − n
2ln(2π) − 1

2ln VG − 1
2 BαG − XGβG

TVG
−1 BαG − XGβG . (26)

By maximizing the log-likelihood objective function in Eq. (26) with nonlinear optimization 

techniques, we determine the solutions of unknown parameters αG,βG and σG
2  or σG1

2 , σG2
2 .

2.1.4 Normalization of the term BαG.—A normalization term is further added to BαG

in Eq. (21) to guarantee the estimated βG with different voxel configurations (αG) are scale 

invariant and therefore the computed statistical inference with various number of 

neighboring voxels are comparable to the univariate statistic computed from only the center 

voxel. In this case, Eq. 21 further turns into

BαG = XGβG + ηG,

BαG 2 = 1
(27)

where BαG 2 is the L2-norm of the combined effect of the local neighborhood. As stated 

above, BαG follows a Gaussian distribution with E BαG = XGβC and cov BαG = VG, 

therefore, after normalization, the same Gaussian distribution will be followed.

2.1.5 Constraints in multivariate second-level analysis.—In the subject-level 

analysis, CCA without any spatial constraint has been shown to yield a significant 

smoothing artifact, as activations of strongly active voxels tend to bleed into the neighboring 

voxels. This artifact leads to a low specificity (Cordes et al., 2012; Friman et al., 2002). The 

same problem also occurs for the group-level multivariate analysis due to the extra degrees 

of freedom introduced by αG.

The constrained CCA (cCCA) model has been applied to the subject-level fMRI analysis to 

guarantee the dominance of the center voxel in each local neighborhood (Cordes et al., 2012; 

Zhuang et al., 2017). As before, we use the notation that α(1) is the weight of the center 

voxel and α(m) the weight of the mth neighboring voxel in each local neighborhood. A 

dominant weight of the center voxel will reduce the smoothing artifact and increase the 

specificity of the multivariate analysis method. In the following we use a sum-constraint 

previously proposed (Cordes et al., 2012) with paramter K in the group-level multivariate 
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analysis in this study, which we solve for the most important case where the dominant 

constraint becomes an inequality constraint, i.e.

α(1) ≥ K ∑m = 2
M α(m)

α(1) ≥ 0, …, α(M) ≥ 0
. (28)

2.1.6 Solving the optimization problem of multivariate group-level analysis.—
By combining Eq. (26), Eq. (27) and Eq. (28), the full optimization problem in multivariate 

group-level analysis becomes

max
αG, βG, σG

2  ℒ BαG; βG, VG = − n
2ln(2π) − 1

2ln VG

− 1
2 BαG − XGβG

TVG
−1 BαG − XGβG

w . r . t

α(1) ≥ K∑m = 2
M α(m)

α(1) ≥ 0, …, α(M) ≥ 0
BαG 2 = 1

(29-1)

for within-group activation detection and

max
α, βG, σG1

2 , σG2
2 ℒ BαG; βG, VG , w . r . t

α1 ≥ K ∑m = 2
M αm

α1 ≥ 0, …, αM ≥ 0
BαG 2 = 1

(29-2)

for between-group difference detection. The objective function in Eqs. (29) is convex since 

VG is positive definite and therefore optimization techniques like the Broyden–Fletcher–

Goldfarb–Shanno (BFGS) with self-scaling (Nocedal and Wright, 2006; Shanno, 1985) 

method can be applied to solve Eqs. (29). BFGS is an iterative gradient descent method 

where the search direction in each step is facilitated with a backtracking line search 

algorithm (Nocedal and Yuan, 1998). In each optimization step, α(1) is replaced by 

∑m = 2
M α(m) and the non-negative constraint is satisfied by substituting α(m) = (θ(m)2), i.e. 

spatial weights of all other neighboring voxels are represented by nonnegative variables 

(0m)2, j = 2, …, M.
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2.1.7 Statistical analysis: T statistics were used to determine the group inference of 

the center voxel for a specific contrast c of interest, given by

t =
cT βG

cT XG
TVG

−1XG
−1c

. (30)

Statistical thresholds for significance are computed from the null distribution non-

parametrically. For within-group activation detection, all of the above analysis is repeated on 

wavelet-resampled resting-state time courses (Breakspear et al., 2004) until a stable 

maximum statistic is obtained. Specifically, the spatial structure of the wavelet resampled 

resting-state time series is kept the same as the spatial structure of the original fMRI data by 

using the same random permutation of the wavelet coefficients for the entire brain. 

Breakspear et al. (2004) have demonstrated that constrained temporal resampling of the 

resting-state data in the wavelet domain allows construction of bootstrapped data with the 

following essential properties: (1) spatial and temporal correlations are preserved; (2) the 

irregular geometry of the intracranial images is maintained; (3) there is adequate type I error 

control; and (4) expected experiment-induced correlations are included. Therefore, the 

spatiotemporal resampled data in the wavelet domain can be further used in testing the null 

hypothesis of within-group activation.

For between-group difference detection, a permutation test (Nichols and Holmes, 2002) was 

performed to generate the null distribution of the t statistic in Eq. (26). We randomly 

shuffled the group assignment of the subjects in two groups and then repeated the same type 

analysis again until a stable maximum statistic was obtained. The null hypothesis for the 

two-group analysis here is that no activation differences existed between groups.

2.2 Data collection.

Subjects.—Eight subjects diagnosed with amnestic mild cognitive impairment (aMCI, 4 

Males; Age: 60.9±3.2 years; Years of education: 16.9±1.9 years) and eight normal control 

subjects (NC, 5 Males; Age 60.6±8.3 years; Years of education: 16.9±2.1 years) were 

recruited with Institutional Review Board approval and scanned using a 3.0 T GE scanner at 

the University of Colorado, Denver. All subjects were right-handed, and their demographics 

were listed in Table 1. Diagnosis of aMCI was made by trained professionals based on 

Petersen Criteria (Petersen et al., 2001). Clinical dementia rating for MCI subjects and Mini-

Mental State Examination scores for all subjects were also included in Table 1.

Table 1. Subject demographics.

MRI data collection.—One resting-state and one episodic memory fMRI data set were 

collected with the following parameters: TR 2000 ms, TE 30 ms, parallel imaging factor of 

2, 25 slices (coronal oblique, perpendicular to the long axis of hippocampus), slice 

thickness/gap=4.0 mm/1.0 mm, in-plane resolution 96×96 interpolated to 128×128, voxel 

size of 1.72×1.72 ×5 mm3, 288 time frames (total scan duration 9.6 mins, both resting-state 

run and episodic memory task run). Subjects were instructed to relax and refrain from 
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executing any task with eyes closed during the resting-state data collection. High resolution 

structural images were also acquired including a T1-weighted image (0.86×0.86×1 mm3) 

and a coplanar T2-weighted image (0.43×0.43×2.5 mm3) using a standard acquisition 

protocol.

Episodic memory task.—The episodic memory task involved encoding and recognition 

activity using stimuli of human faces paired with occupations (face-occupation task). The 

task consisted of six periods of encoding, distraction, recognition activity, and short 

instructions where words on the screen reminded subjects of the task component ahead. The 

encoding task consisted of seven novel visual stimuli, and the recognition task consisted of 

fourteen stimuli, half novel and half identical to the items seen in the previous encoding task. 

An active control task (button press responding to the letter “Y” or “N”) was used as a 

distraction task between each pair of encoding and recognition activity. A detailed task 

description can be found in Cordes et al. (2012).

2.3 fMRI data preprocessing.

The first 5 time frames of the EPI data (10 seconds) were removed to avoid incomplete 

steady-state magnetization. All other time frames were slice-timing corrected and realigned 

to the mean EPI image in SPM12 (http://www.fil.ion.ucl.ac.uk/spm/), further co-registered 

to the subject T1 space using affine transformation, and then non-linearly normalized to the 

standard MNI-152 2mm-template using ANTs software (http://stnava.github.io/ANTs/). The 

normalized data were further smoothed using 3D Gaussian filters with full-width-half-

maximum (FWHM) of 2mm, 4mm and 6mm, respectively. All voxels were high-pass 

filtered using cosine basis functions with a cut-off frequency of 1/120 Hz to remove 

temporal drift (Holmes et al., 1997).

2.4 Subject-level analysis.

A univariate GLM analysis was first performed at the subject-level. For each subject (k), a 

design matrix Xk ∈ ℝt × 4 was constructed by first modeling the episodic memory task design 

with 4 regressors for conditions {instruction, encoding, distraction and recognition}, and 

further convolving the task design with the standard canonical hemodynamic response 

function. Both unsmoothed and smoothed time series were fitted to this design matrix 

separately. A voxel-wise effect map for contrast encoding v/s control was computed for 

every subject and a voxel-wise variance map of this effect was also obtained. A subject-level 

t-statistic map for contrast encoding v/s control was also computed for each subject. The 

corresponding p-value map for subject’s t-statistics was then determined parametrically, 

with a degree of freedom equal to the number of time frames in the task fMRI data minus 

the number of regressors in the design matrix (Xk).

A 3D local constrained CCA (cCCA) model was also applied to each subject. Optimum 

parameters in this local cCCA model of the same dataset were determined in Zhuang et al 

(2017) and applied to each subject. A voxel-wise effect map for contrast encoding v/s 
control was computed and a voxel-wise variance map of this effect was also obtained.
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2.5 Simulation.

Realistic simulated data were generated to evaluate the sensitivity and specificity of the 

proposed method and other existing methods for group-level analysis with a known ground 

truth. For within-group activation analysis, 500 5×5 neighborhoods with active center voxels 

and 500 5×5 neighborhoods with inactive center voxels were simulated for 16 subjects. The 

group-level analysis is carried out for the center voxel only within each simulated 

neighborhood.

2.5.1 Generation of simulated data.

Determine number of active neighbors in each neighborhood.: The distribution of active 

neighbors in each local neighborhood followed the empirical distribution of unsmoothed real 

fMRI data analyzed with subject-level univariate GLM analysis plus the group-level 

univariate summary statistics method (Holmes and Friston, 1998). Specifically, effect maps 

of contrast encoding v/s control for all subjects computed from unsmoothed time series were 

input into a group-level univariate summary statistics analysis. A voxel-wise t-map was 

computed for the group inferences, i.e. an activation map for within-group activation 

detection. A t-threshold corresponding to an uncorrected p-value of 1e-5 was used to label 

active voxels in the group maps. The empirical distribution of active neighbors in each local 

neighborhood was then computed by counting how many of the neighboring voxels were 

also active given an active or inactive center voxel. Activation patterns in simulated 

neighborhoods were then generated by randomly sampling from this empirical distribution 

so that the activation patterns in the simulated data represent real data.

Generate simulated time series in each neighborhood.: Simulated time series for each 

neighborhood at multiple noise levels were generated for all 16 subjects. Time frames for 

simulated neighborhoods were obtained from neighborhoods in unsmoothed real data with 

the same 5×5 neighborhood arrangement. For each simulated neighborhood, both resting-

state and task fMRI time frames of the real data fMRI neighborhoods were obtained for all 

16 subjects, which preserves the spatial dependency within each simulated 5×5 

neighborhoods as in real data. Specifically, wavelet-resampled resting-state time courses 

(ynull) were added to the task activated time series (ytask) with different noise fractions (f) to 

simulate time courses at different noise levels for the entire neighborhood using

ysimulated =
(1 − f )ytask + f ynull active voxel
ynull inactive voxel . (27)

We varied the noise fraction f from 0.45 to 0.95 in steps of 0.1 to cover a wide range of noise 

levels in fMRI data. The corresponding SNR = 1 − f
f  ranges from 1.22 to 0.05.

2.5.2 Analyze simulated data.

Subject-level analysis.: Univariate GLM analysis (single voxel analysis (SV)) was first 

performed on each simulated neighborhood for all 16 subjects. Time series of each voxel 

were linearly fitted to the subject-specific design matrix Xk. The effect and its variance of 
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contrast encoding v/s control were determined for every voxel in each neighborhood. The 

corresponding t-statistics were computed and p-values were determined parametrically. 

Gaussian filters with FWHMs equal 2mm, 4mm and 6mm were then used to smooth the 

middle 3×3 voxels in each simulated 5×5 neighborhood, respectively. Univariate GLM 

analysis was performed and the effect and its variance of the middle 3×3 voxels were 

computed for each smoothed neighborhood with various FWHMs, respectively (SVGS). 

Parametric p-values were then determined. The subject-level local constrained CCA method 

(cCCA) was also applied to the middle 3×3 voxels in each simulated 5×5 neighborhood. The 

effect and its variance were determined for the same contrast.

Group-level analysis.: The effect and its variance of the center voxel in each simulated 5×5 

neighborhood computed from every subject-level analysis method were input to the group-

level univariate summary statistics method (SV+SV and SVGS+SV). Group inferences were 

estimated by solving Eq. (14) and t-statistic was computed following Eq. (30). Uncorrected 

p-values of the effect of the center voxel in each simulated neighborhood were input to the 

Fisher’s data fusion (SV+Fisher) method. The group inferences were computed as 

tF = − 2∑k = 1
N log pk , N = 16. The effect and its variance of the middle 3×3 voxels in each 

simulated 5×5 neighborhood were input to the proposed multivariate group-level analysis 

(SV+cCCA) method. By solving Eq. (29-1), the group inferences of the center voxel were 

determined and t-statistics were computed following Eq. (30). Table. 2 summarizes all 

methods performed to analyze the simulated data, with subject-level smoothing kernel size, 

both subject-level and group-level analysis methods and their abbreviations.

Evaluating model performance.: Receiver operating characteristic (ROC) curve was used 

to evaluate the performance of each method by comparing the computed group inferences of 

each center voxel with the simulated ground truth. The fractions of true positives (TPR) and 

false positives (FPR) were computed at each threshold. Area under the ROC curves (AUC), 

integrating from FPR of 0 to 0.1 were computed for all analysis methods and plotted against 

noise fractions for selected methods. AUC for all methods applied to simulated data with a 

noise fraction that is close to real fMRI data (f = 0.85, SNR = 0.18) were also computed to 

make comprehensive comparisons of all methods.

Significance analysis of multivariate and univariate group-level analysis methods.: To 

conduct the significance analysis between univariate and multivariate group-level methods, 

we repeated our simulation procedure (detailed in Section 2.5.1) 10 times to generate 10 sets 

of different simulated data at the noise fraction of 0.85. Subject-level univariate analysis 

(SV) was performed. Group-level univariate (SV+SV) and multivariate (SV+cCCA) 

methods were then applied to compute the group-level activation for each data set. AUCs, 

integrating over FPR ∊ [0, 0.1], were finally computed and compared between these two 

methods (SV+SV and SV+cCCA).

2.6 Group-level analysis of task fMRI data.

Both univariate and the proposed multivariate methods were applied to detect brain 

activations within-group as well as the differences between groups during the episodic 

memory task. In the within-group activation detection, we include all 16 subjects (8 NC and 
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8 aMCI subjects) to achieve a larger sample size. For all analysis methods, the group design 

matrix XG is set to be [1, 1, …, 1]T ∈ ℝN × 1 for one group activation detection and to be 

1 … 1 0 … 0
0 … 0 1 … 1

T
∈ ℝN × 2 for between-group difference detection.

Univariate summary statistics as described in section 2.1.1 were first applied to compute 

group inferences. A voxel-wise effect map for contrast encoding v/s control (βu in Eq. (14)) 

and the corresponding variance map (cov βku
 in Eq. (14)) computed from both unsmoothed 

(SV+SV) and smoothed (SVGS+SV) time series were input to the group-level analysis. The 

effect and its variance computed from the subject-level optimum cCCA model were also 

input to the univariate group-level analysis (cCCA+SV). By maximizing the log-likelihood 

function in Eq. (14), we obtained the group inferences βGu
 and the group variance σGu

2 . The 

corresponding t-statistics were computed as tGu
=

cT βGu

cT XG
TVGu

−1XG
−1

c

, where c = 1 for one 

group analysis and c = [1, −1] for between-group analysis.

The proposed multivariate group-analysis method was then applied. The inputs to Eq. (30) 

were the voxel-wise effect map and the corresponding variance map of contrast encoding v/s 
control inside each local 3×3×3 neighborhood computed from subject-level univariate (SV

+cCCA) and multivariate (cCCA+cCCA) methods. The group inference of the center voxel 

was determined of this neighborhood. By solving Eq. (30) with BFGS optimization 

techniques, we obtained multivariate group inferences βG, the optimum weight coefficients 

αG and the one group variance σG
2  or the two-group variances σG1

2 , σG2
2 . T-statistics (tG) for 

each center voxel were computed following Eq. (30), where c = 1 for one group analysis and 

c = [1, −1] for between-group analysis.

Fisher’s data fusion was also applied to generate a voxel-wise within-group activation map 

using unsmoothed time series (SV+Fisher). We combined subject-level independent tests 

from N subjects at each voxel by following Fisher’s data fusion (1992) rule as 

tF = − 2∑k = 1
N log pk , N = 16. The combined group-level test statistics follows a χ2 

distribution with 2N degrees of freedom. By combining tests this way, we cannot obtain 

information on the direction of the group-level activation. For between-group difference 

detection, the null hypothesis was that no activation differences existed between groups. 

Since the group difference hypothesis cannot be computed at subject-level, the Fisher’s data 

fusion model was not applicable in this case.

Statistical threshold for significance levels of group inferences tGu
, tG and tF for each 

analysis method were computed non-parametrically as described in section 2.1.7. 

Specifically, we repeated the exact analysis on wavelet-resampled resting-state time series 

from all 16 subjects by using at least 200 iterations to achieve a stable null distribution for 

within-group activation detection. For between-group difference detection, NC and aMCI 
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subjects were randomly assigned to each group and the exact analysis was carried out on the 

shuffled groups. At least 200 iterations of randomly shuffling were performed to achieve a 

stable null distribution. We used the tGu
, tG and tF value at the αth percentile of the null 

distribution with all statistical values to be the thresholds of the uncorrected p-value of 

1 − α
100 . We used the distribution of the maximum statistics to correct for multiple 

comparisons and obtain the statistical thresholds at a family-wise-error-rate (FWE) corrected 

p<0.05 (R. Nandy and Cordes, 2004) for all analysis methods.

2.7 Evaluating group-analysis methods with task fMRI data.

Activation maps.—We thresholded each within-group activation map obtained from 

different analysis methods using a significance threshold of p=0.05 (corrected for multiple 

comparisons) and computed an activation percentage # of activated voxel 
# of voxels in ROI  * 100%  for each 

Automated Anatomical Labeling (AAL) region (Tzourio-Mazoyer et al., 2002). Activation 

percentage in targeted medial temporal regions (bilateral hippocampus, para-hippocampal 

gyrus and fusiform gyrus, further detailed in section 4.1.2) then provide quantitative 

measurements to directly make the comparison among different methods. We then ranked 

the regions according to descending values of activation percentages and compared the 

activation status in each region among different analysis methods. The between-group 

difference maps computed with various methods were thresholded at p<0.01 (uncorrected), 

with a minimum cluster size of 15. The number of voxels passing the threshold were also 

counted and the percentage for each AAL regions was computed.

Modified ROC curve.—In real fMRI activation detection, since the ground-truth is 

unknown, the ROC method cannot be applied directly. In our previous studies, we have 

shown that the ROC method can be modified and applied to real fMRI data, termed 

“modified ROC curves” (Cordes et al., 2012; Nandy and Cordes, 2003; Nandy and Cordes, 

2004). The modified ROC curve has been demonstrated to always be the lower bound of 

traditional ROC curve and the ordinate of both ROC methods are linearly related (Cordes et 

al., 2012). Specifically, instead of fractions of true positives (TPR) and false positives (FPR), 

we estimated the fraction of active positives (AP) using task-activated fMRI time series and 

the fraction of resting positives (RP) using resting-state time series. FPR is then 

approximated using RP and the upper bound of TPR is estimated using AP as detailed in 

Nandy and Cordes, (2003). Modified ROC curves were generated here to compare different 

analysis methods in within-group activation detection. Area under the modified ROC curve 

(AUC), integrated from false positive rate of 0 to 0.1, was computed for each method. The 

correlation between sequences of AUCs computed from simulated data and real fMRI data 

with multiple analysis methods was computed.

3. Results

Table 2 summarizes maximum log-likelihood formulations of both univariate and 

multivariate group-analysis methods.

Table 2. Univariate and multivariate group analysis methods.
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3.1 Simulation.

Simulation of within-group activation results are summarized in Fig. 1, Table 3 and Table 4. 

Six typical simulated activation patterns in local 5×5 neighborhoods are shown in Fig. 1(A), 

three with active center voxels (top) and three with inactive center voxels (bottom). Fig. 1(B) 

shows the empirical distribution of active neighbors with an active (top) or inactive (bottom) 

center voxel for the real data (solid bars) and simulated data (unfilled bars). The active 

voxels are labeled as described in section 2.5.1. As shown in Fig. 1(B), the empirical 

distribution of active neighbors with an active or inactive center voxel for the real data and 

simulated data are approximately matched, with Pearson correlations between these two 

distributions of 0.96 (p-value<0.001) for neighborhoods with active center voxels and 0.99 

(p-value<0.001) for neighborhoods with inactive center voxels.

Table 3 lists details of each method used to analyze the simulated data. The area under the 

ROC curves (AUC), integrated for false positive rates 0 to 0.1, at multiple noise levels 

methods are plotted in Fig. 1(C). AUC for each analysis method at the noise fraction of 0.85 

(dotted red circle in Fig. 1(C)), corresponding to an SNR of 0.18 that is close to the real 

fMRI data, is listed in Table 3. As shown in Fig. 1(C) and Table 3, applying multivariate 

analysis at group-level shows an increased AUC of 12% at high noise fractions (f=0.85, SV

+cCCA, solid yellow curve in Fig. 1(C)) when compared to the univariate method (SV+SV, 

solid blue curve in Fig. 1(C)). Subject-level Gaussian smoothing with proper kernel sizes 

(FWHM ≤ 4mm) increase the group-level performance at high noise levels (f ≥0.75, SVGS

+SV, dashed green and purple curves in Fig. 1(C)), compared to the same analysis 

performed on unsmoothed time series (SV+SV). However, SVGS+SV is still less accurate 

than either level constrained multivariate models (solid yellow and orange curves in Fig. 

1(C)) in activation detection. Furthermore, applying both level constrained multivariate 

methods (solid grey curve in Fig. 1(C)) further increases the AUC by 13% at the noise level 

of 0.85 (Table 3), as compared to only applying multivariate method at either subject-level 

or group-level (SV+cCCA or cCCA+SV). Last, Fisher’s data fusion gives the worst 

performance at high noise fractions (f ≥0.65).

Fig. 1(D) plots the ROC curves for different analysis methods of simulated data with a noise 

fraction of 0.85 (dotted red circle in Fig. 1(C)). As we can see in Fig. 1(D), given a 

specificity (1-FPR), the multivariate methods show higher sensitivities (TPR, solid grey, 

yellow and orange curves), which demonstrates optimum performance of the proposed 

multivariate method at high noise levels. Table 4 lists AUCs integrated from FPR of 0 to 0.1, 

computed for all analysis methods with simulated data at the noise level of 0.85. AUCs were 

computed for combinations of subject-level (SV, SVGS and cCCA) and group-level (SV, 

cCCA and Fisher) univariate and multivariate analysis methods. As shown in Table 4, with 

results from the same subject-level analysis method as inputs, multivariate methods at 

group-level can always increase the model performance in activation detection.

Fig. 1. Simulation: Within-group activation detection.

Table 3. Details of methods used to analyze the simulated data at noise fraction of 0.85.

Table 4. AUCs for all analysis methods.
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Fig. 2 plots the AUCs computed from univariate (SV+SV) and multivariate (SV+cCCA) 

group-level analysis methods for 10 different simulated data sets at noise fraction of 0.85. 

The average AUC is 0.0737 ± 0.0048 for the proposed multivariate group-level method (SV

+cCCA) and is 0.0652±0.0057 for the univariate group-level method (SV+SV). Significant 

between-group difference is observed (p-value=0.0023).

Fig. 2 Significance analysis between SV+SV and SV+cCCA methods.

3.2 Episodic memory fMRI data analysis.

Fig. 3 shows the within-group activation maps of contrast encoding v/s control for the 

episodic memory task, produced by: 1) subject-level univariate GLM analysis on 

unsmoothed time series plus group-level univariate summary statistics (SV+SV); 2) subject-

level univariate GLM analysis on smoothed time series plus group-level univariate summary 

statistics (SVGS+SV); 3) subject-level univariate GLM analysis plus group-level 

multivariate method (SV+cCCA)); and 4) subject-level optimum cCCA model (3D 3×3×3 

neighborhood) plus group-level multivariate method (cCCA+cCCA)). The subject-level 

smoothing kernel size in SVGS+SV is selected to be FWHM= 2mm and is determined from 

both the simulated data performance and the fMRI raw resolution (1.7×1.7×5mm3).

T-statistic described in section 2.1.7 is used to display the activation maps. All activation 

maps are thresholded at p<0.05 (FWE corrected) and overlaid on the MNI-152 2-mm 

anatomical template. Selected slices with hippocampus, para-hippocampal areas and 

fusiform gyrus are shown. Table 5 lists the top 20 AAL regions that have the largest positive 

activation percentages at the same statistical threshold for all analysis methods. As shown in 

Fig. 3 and Table 5, the proposed group-level multivariate methods (SV+cCCA and cCCA

+cCCA) detect larger and more accurate activations in bilateral hippocampus, bilateral 

fusiform gyrus and bilateral para-hippocampal areas (highlighted in red in Table 5), as 

compared to the univariate methods (SV+SV and SVGS+SV). The statistical values are also 

higher for group-level multivariate methods (highlighted by red arrows in Fig. 3 and in red 

in Table 5), as compared to the univariate methods.

Fig. 3. Within-group activation map of contrast encoding v/s control, computed for different 

analysis methods.

Table 5. Top 20 AAL regions with the largest activation percentages, computed for the 

Within-group activation maps of contrast encoding v/s control with different analysis 

methods.

Fig. 4(A) plots the modified ROC curves for these four analysis methods. Areas under the 

modified ROC curves (AUCs), integrated of FPR from 0 to 0.1, are listed in Table 6. As 

shown in Table 6, applying group-level multivariate method (SV+cCCA) increases the AUC 

by 14%, as compared to univariate analysis at both levels (SV+SV). Applying both level 

multivariate analysis methods (cCCA+cCCA) further increases the AUC by another 16%.

Furthermore, all analysis methods listed in Table 3 are applied to real fMRI data and each 

method generate a within-group activation map. Table 6 lists details of each method and 

corresponding AUCs computed from the modified ROC curves. As shown in Fig. 4(B) and 
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Table 6, we obtain a Pearson correlation of 0.92 (p-value=0.001) between sequence of AUCs 

computed from the simulated data at the noise fraction 0.85 and sequence of AUCs 

computed from the real fMRI data. This high positive correlation demonstrates the linear 

dependence between the performance of the proposed method in analyzing real fMRI data 

and simulated pseudo-real data, further validating the simulation method and the proposed 

analysis method.

Fig. 4. (A) Modified ROC curves for real fMRI data and (B) correlation between the 

sequences of AUCs computed from simulated and real data.

Table 6. Area under the modified ROC curve, integrated over FPR ∈ [0, 0.1] for 

eachanalysis method.

Fig. 5 shows the between-group difference maps (NC v/s MCI) for the contrast encoding v/s 
control, computed for univariate summary statistics (SV+SV and SVGS+SV,) and proposed 

multivariate group-level methods (SV+cCCA and cCCA+cCCA). T-statistics maps, 

thresholded at p<0.01(uncorrected) with at least 15 voxels in each cluster, are shown. 

Activation percentages for each AAL region at the same thresholds are listed in Table 7. 

Larger between-group differences are seen in hippocampus and fusiform gyrus (Table 7) 

using the multivariate group-level analysis method, as compared to the univariate methods. 

The statistical values are also higher in the multivariate group-level methods (see red arrows 

in Fig. 5), as compared to the univariate methods.

Fig. 5. Between-group difference map (NC v/s MCI) for contrast encoding v/s control, 
computed with different analysis methods.

Table 7. Top 20 AAL regions with the largest between-group difference (in percent), 

computed for the between-group difference maps of contrast encoding v/s control with 

different analysis methods.

4. Discussion

This study introduces a constrained multivariate model for group-level analysis and shows 

that it provides improved detection of activations. The proposed method incorporates local 

neighboring voxels with optimal spatial weights to determine group activations. The 

proposed method simultaneously estimates spatial weights and group-level effect and 

variance using numerical optimization techniques. The group-level cCCA model is validated 

by both simulation studies (Fig. 1, 2, Table 3 and 4) and real episodic memory fMRI data for 

8 aMCI subjects and 8 NCs (Fig. 3, 4 and Table 5, 6 and 7). Results demonstrate superior 

performance of the group-level cCCA model over univariate analysis methods.

4.1 Performance of group-level cCCA model.

The proposed cCCA model is compared to two widely used group analysis methods, namely 

the univariate summary statistics (Friston et al., 2005; Holmes and Friston, 1998) and 

Fisher’s data fusion method (Fisher, 1992).
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4.1.1 Simulated data.—The comparison is first done using unsmoothed simulated data 

where the ground truth is known. Specifically, the univariate GLM analysis is performed at 

subject-level using unsmoothed time series. The effect and its variance map were then input 

to the group analysis and the group-level activation status of the center voxel within each 

simulated 5×5 neighborhood were computed with different analysis methods. We computed 

the area under the ROC curves (AUC), integrated over false positive rate (FPR) ∊ [0, 0.1], 

which is a range that is most important in fMRI activation detection to provide a quantitative 

measurement of the overall model performance for method SV+SV, SV+cCCA and SV

+Fisher. As shown by the solid blue (SV+SV), solid yellow (SV+cCCA) and dashed 

brown(SV+Fisher) curves in Fig. 1(C), all three methods show decent performance with 

AUC close to 0.1 for high SNRs (f <0.6, Fig. 1(C)). Incorporating neighboring voxels in this 

case would not provide much additional improvements because the SNR is already high. As 

the noise level increases in the simulated data (f >0.8), univariate methods (SV+SV) lose 

sensitivity in activation detection, as indicated by a decreasing AUC (solid blue curve in Fig. 

1(C)). On the contrary, the proposed multivariate method still shows high AUC (solid yellow 

curve in Fig. 1(C)) since incorporating local neighboring information increases the 

sensitivity of activation detection while the constraint in the model preserves the specificity 

of activation detection. This improvement in AUC of SV+cCCA method is significant as 

compared to the SV+SV (p<0.005), as plotted in Fig. 2. Furthermore, Fisher’s data fusion 

starts performing poorly at lower noise levels (f>0.65, dashed brown curve in Fig. 1(C)), 

mainly due to the way independent tests for each subject are combined. The null hypothesis 

of no effect in all subjects in this case could be easily rejected on the basis of a nonzero 

effect in just one subject (Lazar et al., 2002). More specifically, if the p-value is large (near 

1) for some subjects, then the combined tF is close to zero and the value of the statistic is 

nearly unchanged. If the p-value is small (close to 0) on the other hand, a small change of p-

value in a single subject will affect the combined statistics potentially leading to false 

positives.

We next compare the proposed multivariate group analysis method (SV+cCCA) with the 

univariate methods using smoothed simulated time series (SVGS+SV). Specifically, for 

SVGS+SV, neighboring voxels were incorporated at subject-level with an isotropic Gaussian 

smoothing kernel. Multiple kernel sizes were used in our analysis to conduct a thorough 

comparison. As shown in Fig. 1(C), applying Gaussian smoothing with proper kernel sizes 

(FWHM=2mm and 4mm) at subject-level analysis can improve the AUC of the group-level 

univariate method at high noise levels (f>0.8, dashed purple curve). Furthermore, an 

extended isotropic smoothing kernel (FWHM=6mm) may decrease the activation detection 

power at medium to high noise levels (0.55<f<0.95), as indicated by the dashed dark blue 

curve in Fig. 1(C)). The proposed constrained multivariate method optimizes the weights of 

incorporated neighboring voxels at group-level so that a common neighborhood 

configuration that matches actual spatial activation patterns among all subjects can be 

determined, especially for fMRI data with high noise fractions. Therefore, as shown by the 

solid yellow curve in Fig. 1(C), the proposed method improves the group-level activation 

detection performance at high noise levels (f>0.8), as compared to SVGS+SV.
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We further compare the performance of SVGS+cCCA and SVGS+SV using simulated data 

with the noise fraction of 0.85. As listed in Table 4, with effect and variance maps from the 

same subject-level analysis method as inputs, multivariate group-level analysis method (last 

column) always outperforms univariate methods (3rd and 4th columns) since incorporating 

neighboring voxels in this case improves the sensitivity in group-level activation detection. 

At the same time, the constraint put in the multivariate method guarantees the dominance of 

the center voxel in each local neighborhood so that the smoothing artifact is limited.

Previous studies have shown that in subject-level activation detection, the local cCCA 

method optimizes weights of incorporated neighboring voxels and therefore outperforms 

univariate methods with or without Gaussian smoothing (Cordes et al., 2012; Zhuang et al., 

2017). The optimum performance of the subject-level cCCA has also been demonstrated in 

our analysis using group-level activation detection. As shown by the orange curve in Fig. 

1(C), applying constrained multivariate method at subject-level (cCCA+SV) also improves 

the group-level activation detection performance, as compared to SV+SV and SVGS+SV. 

Furthermore, applying both level constrained multivariate analysis methods (cCCA+cCCA) 

will further increase the AUC at high noise levels (f >0.8, solid grey curve in Fig. 1(C)), 

since subject-level cCCA optimizes weights of neighboring voxels to match subject-specific 

activation patterns and group-level constrained multivariate method determines an optimum 

neighborhood configuration that matches common activation patterns among all subjects.

In summary, applying constrained multivariate methods at group-level analysis will 

incorporate the local spatial activation information while keep the appropriate dominance of 

the center voxel; therefore are able to more accurately detect activations in noisy data, as 

compared to the univariate analysis methods with the same subject-level inputs.

4.1.2 Episodic memory activation.

Within-group activation detection.: We compared the selected univariate and multivariate 

methods using real fMRI data of an episodic memory task, namely: SV+SV, SVGS+SV, SV

+cCCA and cCCA+cCCA. We set the size of the isotropic Gaussian smoothing kernel 

during preprocessing for SVGS+SV method to be FWHM=2mm for our episodic memory 

task data. We choose this conservative smoothing kernel size because 1) simulation results 

have demonstrated an optimum performance of SVGS2+SV, as compared to SV+SV; and 2) 

the targeted activated medial temporal regions are with thin cortical thicknesses and folded 

grey-matter structures; therefore an extended isotropic smoothing kernel may contaminate 

activated voxels in this area with nearby non-grey matter structures and further eliminate the 

detection of activation or produce false positives in nearby non-grey matter regions. 

Furthermore, we set the window-size for multivariate group-level analysis to be 3×3×3 

based on the fMRI resolution and to incorporate only the nearest neighbors. This 3D 3×3×3 

window-size is also comparable with the Gaussian smoothing kernel size (FWHM=2mm) in 

SVGS2+SV. In addition, an optimum cCCA model determined in (Zhuang et al., 2017) is 

used for subject-level analysis in cCCA+cCCA.

We have repeated the group-level multivariate method with a 3D 5×5×5 spatial 

neighborhood using real fMRI data. We would like to test if a 3D 5×5×5 spatial 

neighborhood could further improve the model performance on real fMRI data and 
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therefore, the first level analysis remains the constrained cCCA method. The computation 

time doubled with this larger neighborhood (will be further discussed in section 4.3). Greater 

activations have been observed in the targeted medial temporal lobe, as compared to the 

analysis with cCCA+cCCA method with 3×3×3 neighborhood. The area under the modified 

ROC curve, integrated from FPR 0 to 0.1, is 0.0886, which shows a further increase of 2%, 

as compared to cCCA+cCCA method with 3×3×3 neighborhood. Therefore, in joint 

consideration of model performance improvement and computation time increase, we have 

reported results of cCCA+cCCA method with 3×3×3 neighborhood on real fMRI data in this 

manuscript.

Episodic memory is a type of declarative memory that involves conscious recollection of 

previous experiences together with their context in terms of time, place, and associated 

emotions (https://en.wikipedia.org/wiki/Episodic memory). Previous studies have shown that 

episodic memory is facilitated by neural pathways in the medial temporal lobe (MTL), 

which includes hippocampus, para-hippocampal areas and other nearby regions (Squire et 

al., 2004; Zeineh et al., 2003a). In particular, using a face-name encoding and retrieval task, 

Zeineh et al. (2003) have shown that strong activation can be detected in hippocampal sub-

regions including Cornu Ammonis (CA) fields and Dentate Gyrus (DG) during encoding 

while fusiform is active regardless of encoding and retrieval. Therefore, regions of activation 

during a face-occupation memory task should involve bilateral hippocampus, para-

hippocampal areas and fusiform gyrus (pointed to in Fig. 3 and highlighted in red in Table 

5). However, activation detection in these regions is often complicated due to the low SNR 

caused by susceptibility artifacts and the anatomically small size of hippocampal subfields. 

As can be seen from Fig. 3 and Table 5, univariate summary statistics (SV+SV) detects less 

active voxels and misses part of the activations in hippocampus or para-hippocampal areas at 

a significance level of p<0.05 (FWE corrected). SVGS+SV detects large activations in 

bilateral hippocampus, bilateral fusiform gyrus, but misses part of the activations in para-

hippocampal area. Both SV+cCCA and cCCA+cCCA find bilateral hippocampus, bilateral 

fusiform gyrus and bilateral para-hippocampal areas within the top 20 activated regions, 

which is more accurate and as expected in our memory task. In addition, activations in other 

brain regions such as occipital areas involved in visual processes and frontal areas involved 

in cognitive process are also better detected with the proposed method (column 3 and 4 in 

Table 5), as compared to univariate methods (column 1 and 2 in Table 5).

Furthermore, the modified ROC curve provides a more comprehensive way to make 

comparisons among all analysis methods at multiple sensitivity and specificity levels. The 

multivariate method incorporates multiple time series with optimal weights in each local 

neighborhood and is thus more sensitive to detect activations. On the other hand, the 

constraint term in the cCCA model reduces the extra degrees of freedom introduced by the 

multivariate method and therefore preserves specificity at the same time. In this case, as 

shown in Fig. 4(A), applying both level multivariate analysis methods (cCCA+cCCA) 

improves the sensitivity (TPR) extensively at a given specificity (1-FPR), as compared to SV

+SV and SVGS+SV.

We further computed the area under the ROC curves (AUC) by integrating FPR from 0 to 

0.1, as a quantitative measurement to compare different methods. As shown in Fig. 4(B), a 
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significant linear dependency (p=0.001) between sequences of AUCs computed from 

simulated data and real fMRI data has been observed, which validates the conclusion we 

draw from the comparisons using simulated data. Based on our observations, we expect that 

the proposed method will detect group-level activations more accurately in noisy fMRI data.

We included all 16 subjects (8 NC and 8 MCI) for within-group activation detection to 

obtain a larger sample size with increased power of activation detection. We also computed 

the within-group activation maps for all three analysis methods for the NC group and the 

aMCI group separately. For both groups, we observe more activations in hippocampus, para-

hippocampal areas and other medial temporal lobe regions using the proposed method when 

compared to the univariate summary statistics method.

Between-group difference detection.: Previous studies on MTL functional changes in MCI 

subjects reported diverse results, with either increased MTL activation found during 

encoding and retrieval phases (Dickerson et al., 2005; Selkoe et al., 2006) or hypoactivation 

in MTL regions reported (Machulda et al., 2003) in MCI subjects. In this study, we observe 

less activation in MTL regions for the contrast encoding v/s control during the episodic 

memory task in MCI subjects, as compared to the normal subjects. These observations are 

consistent with results in Jin et al. (2012), where functional abnormalities in the same set of 

amnestic MCI subjects during three different episodic memory tasks (word-name, picture-

name and face-occupation) are reported. More importantly, in this study, a between-group 

analysis is conducted to compare performances in cross-group difference detection between 

the proposed method and univariate methods. As shown in Fig. 5 and Table 7, greater 

between-group differences are found in MTL regions with the proposed multivariate 

method, as compared to univariate methods.

4.2 Other multivariate modeling methods in group analysis.

In the past decade, multivariate pattern analysis (MVPA) has become one of the most 

popular multivariate modeling methods in fMRI analysis (Allefeld and Haynes, 2014; 

Haxby, 2012; Haxby et al., 2001). MVPA examines several voxels simultaneously but the 

signs of the contrast for each individual subject are neglected. A classification process is 

then carried out for multiple subjects. Therefore, MVPA is different from the methods 

proposed and described in this study since our proposed method can detect both within-
group activations and between-group differences.

Gilron et al. (2017) proposed a directional MVPA to detect similar multivariate spatial 

patterns of activity over subjects. In their method, the Srivastava-Du (2008) statistic is used 

for directional analysis at the group-level and common differences between two effects are 

being detected. Both directional MVPA and the proposed multivariate model are related to 

searchlight (Allefeld and Haynes, 2014; Kriegeskorte et al., 2006) methods that incorporates 

local neighborhood information in the group-level analysis. The statistics in the directional 

MVPA is not adjusted by the variance at the single subject-level and may suffer from power 

losses (Gilron et al., 2017). We applied the directional MVPA method to simulated data (SV

+MVPA) at noise fraction of 0.85 and obtained an AUC of 0.0718 by integrating FPR from 

0 to 0.1. MVPA in group-level analysis (SV+MVPA) slightly improves the performance in 
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activation detection, as compared to SV+SV (with AUC of 0.0712) but is still less accurate 

than proposed multivariate methods (SV+cCCA, with AUC of 0.0790). Furthermore, the 

statistic used in the proposed cCCA model is easier to compute and statistically significant 

levels in the proposed method are determined non-parametrically, which are more accurate 

and easier to interpret.

Kriegeskorte et al. (2006) introduced a searchlight based MVPA method, which is known as 

information-based functional brain mapping method, to determine the subject-level center 

voxel activation status by incorporating information from the local neighborhood. We 

applied the Kriegeskorte’s searchlight method to group-level analysis using the Mahalanobis 

distance defined as: 
Δ2 = B  cov B

−1
 B

T

B =  mean (B)
, where B ∈ ℝ

Nsub × q
 represents estimated 

subject-level effects of a local neighborhood (with q voxels) from Nsub subjects, and 

B ∈ ℝ1 × q = mean B  represents the average estimated effects (over subjects) of this local 

neighborhood. Applying the Kriegeskorte’s searchlight method to simulated data (SV

+Kriegeskorte’s MVPA) at noise fraction of 0.85 with a 3×3 window gives an AUC of 

0.0738 by integrating FPR from 0 to 0.1. Kriegeskorte’s searchlight in group-level analysis 

(SV+Kriegeskorte’s MVPA) improves the performance in activation detection, as compared 

to SV+SV (with AUC of 0.0712); and is comparable to the performance of SVGS2+SV 

(with AUC of 0.0745); but is still less accurate than the proposed multivariate method (SV

+cCCA, with AUC of 0.0790). Both MVPA methods in Gilron et al. (2017) and 

Kriegeskorte et al. (2006) incorporate neighboring voxels with equal weights. Therefore, for 

an active center, both inactive neighbors and active neighbors are treated equivalently. In this 

case, the effect of incorporating neighboring voxels is similar to apply a smoothing kernel 

but adjusted for the spatial noise covariance. In the proposed cCCA method, however, 

neighboring voxels are incorporated with optimum weights, so that active neighboring 

voxels could contribute greater to the statistics of the active center voxel, as compared to the 

inactive neighbors. Therefore, the proposed method outperforms both searchlight-based 

MVPAs.

Correa et al. (2010) proposed a multiset-CCA (mCCA) method to analyze multiple data set 

for a single modality for group inferences. In their method, similar to widely used 

independent component analysis (ICA, Calhoun et al., 2001) method, fMRI time series from 

all subjects are stacked together and blind-source-separation based on mCCA is performed. 

The resulting group inferences are group source components with the maximal between-set 

correlation values. In this case, the mCCA model is a data decomposition method whereas 

the proposed cCCA model is a data modeling technique.

4.3 Technical aspects of multivariate group-level analysis.

Group-level multivariate analysis is different from subject-level cCCA.—In this 

study, we modeled and solved the group-level multivariate problem based on the maximum 

log likelihood method by considering the joint distribution of all unknowns, which is 

different from the traditional CCA (Friman et al., 2001; Hotelling, 1936) that maximizes the 

correlation between two canonical variables (ρ(Yα,Xβ) in Eq. (15)). The design matrix in 
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group-level cCCA (Xg) is a constant vector with all ones for within-group activation 

detection, which is rank deficient and leads to a covariance of zero. In this case, maximizing 

ρ(Yα,Xβ) is not possible. Cordes et al.(2012) proves that the CCA model can be converted 

into an equivalent multivariate multiple regression problem under proper normalization 

terms (var(Yα) = 1). In this study, we utilized the same concept by forming a multiple 

regression problem and introduced α as an unknown multivariate vector that incorporates 

neighboring voxels in the model. In this case, the estimated group-inference is not scale 

invariant among different voxel configurations and therefore, a proper normalization term is 

necessary. Group-level activation status, optimum weights of neighboring voxels (α) and the 

group-level variance are estimated simultaneously.

Computational time.—All calculations are performed in MATLAB (The Mathworks, 

Inc., version R2018b) on a Dell-workstation with Intel Xeon E5–2687W architecture 

running at a clock speed of 3.4GHz and equipped with 96GB of memory. Under this 

hardware setting, the average computational time for SV+cCCA method with a 2D 3×3 

window to detect the group-level whole brain activation is around 600 seconds. Extending 

the window-size to 3D 3×3×3 takes around 1000 seconds to finish a whole brain multivariate 

group-level analysis. Further increasing the window-size to a 3D 5×5×5 neighborhood 

doubles the computation time, as compared to the 3×3×3 neighborhood size. Applying both 

level multivariate methods (cCCA+cCCA) requires a longer computational time since the 

subject-level cCCA model takes about 600 seconds (1000 seconds for 3D window) per 

subject. In this case, cCCA+cCCA needs 600 × (Nsub + 1) seconds to compute one group 

activation map. The computational time of cCCA+cCCA needs to be taken into 

consideration when selecting the analysis method, because the statistical significance needs 

to be determined non-parametrically.

4.4 Future directions.

In this study, we have tested the performance of a local cCCA model using 3×3×3 in-plane 

neighborhoods for group-level analysis. CCA can link multiple datasets by maximizing the 

correlation among canonical components. We have not tested these algorithms in multiple 

groups. In the future, performance of combining cCCA modeling technique and a mCCA 

data fusion method will also be evaluated for group-level analysis.

Furthermore, as we stated above, the group-level design matrix Xg for within-group 

activation detection is rank deficient, which limits the usage of kernel based cCCA methods 

(Yang et al., 2018) in group-level analysis. In the future, for within-group activation 

detection, we could form a second group using wavelet resampled resting-state time series. 

In that case, the null hypothesis will be to detect the differences between the real task group 

and the null group and the design matrix will be a binary matrix with two columns of input. 

Therefore, kernel CCA could also be applied.

5. Conclusion.

We have introduced a constrained multivariate method to incorporate local neighboring 

voxels for fMRI group-level analysis. Using simulation, we have demonstrated better 

performance for activation detection of the proposed method over univariate techniques with 
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the same subject-level inputs. Applying the proposed method to real fMRI episodic memory 

data, larger within-group activation in hippocampus, fusiform gyrus, para-hippocampal areas 

and stronger between-group differences in hippocampus and fusiform gyrus have been 

found. Furthermore, we have shown that applying both level constrained multivariate 

methods further increases the power of group-level activation detection, but also 

significantly increases the computational time.
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Figure 1. 
Simulation: Within-group activation detection. (A). Examples of simulated 5×5 

neighborhoods with an active (top) or inactive (bottom) center voxel. (B). The distribution of 

number of active neighbors with an active (top) or inactive (bottom) center voxel in both real 

data (filled) and simulated data. (C). Area under the ROC curves (AUC), integrated over 

FPR ∊ [0, 0.1] for different analysis methods applied to simulated data with different noise 

levels. (D). ROC curves for different analysis methods applied to simulated data with a noise 

fraction of 0.85 (SNR = 0.18) which is close to the real fMRI data (dotted red ellipse in (C)). 

Areas under ROC curves, integrated over FPR ∊ [0, 0.1] for each method are listed in the 

legend.

Zhuang et al. Page 31

Neuroimage. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Significance analysis between multivariate (SV+cCCA) and univariate (SV+SV) group-level 

analysis methods using simulated data with a noise fraction of 0.85. Areas under the ROC 

curves (AUCs), integrating over false positive rate (FPR) from 0 to 0.1, are plotted for 

multivariate (left) and univariate (right) group-level analysis methods. Significant between-

group difference is observed (p=0.0023).
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Figure 3. 
Within-group activation map of contrast encoding v/s control, computed for different 

analysis methods. Selected slices with hippocampus, para-hippocampal areas and fusiform 

gyrus are shown.
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Figure 4. 
(A). Modified ROC curves for different analysis methods. Areas under modified ROC 

curves, integrated over FPR ∊ [0, 0.1] for each method are listed in the legend. (B). 

Correlation between the sequence of AUC computed from simulated data and real fMRI 

data.
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Figure 5. 
Between-group difference map (NC v/s MCI) for contrast encoding v/s control, computed 

for different analysis methods. Selected slices with hippocampus, para-hippocampal area 

and fusiform gyrus are shown.
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Table 1.

Subject demographics. Abbreviations: CDR: Clinical Dementia Rating; MMSE: Mini- Mental State 

Examination.

NC aMCI Group difference

Number of subjects 8 (5 Males) 8 (4 Males) Not significant

Age (years) 60.6±8.3 60.9±3.2 Not significant

Years of education (years) 16.9±2.1 16.9±1.9 Not significant

CDR 0±0 0.5±0 p=0

MMSE 29.6±0.5 28.1±1.1 p=0.0041
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