Skip to main content
. Author manuscript; available in PMC: 2020 Jul 1.
Published in final edited form as: Neuroimage. 2019 Mar 17;194:25–41. doi: 10.1016/j.neuroimage.2019.03.030

Table 2.

Maximum log-likelihood formulations of both univariate and multivariate methods applied in the group-level analysis.

Univariate Multivariate
Group analysis model βu^=XGβGu+η˜Gu B^αG=XGβG+ηG˜
Inputs to group level analysis Subject-level effects from N subjects (βu^); Within-subject variances of the effect (1st part of VGu); Subject-level effects of m voxels in a local neighborhood from N subjects (B^); Within-subject variances of the effect (1st part of VGu);
Estimated parameters Univariate group inference (βGu); Between-subject variance of the effect (2nd part of VGu) Group inference assigned to the center voxel (βG); Between-subject variance of the effect (2nd part of VG)
Objective function maxβGu,σ2 L(βu^;βGu,VGu)=n2ln(2π)12ln(|VGu|)12(βu^XGβGu)TVGu1(βu^XGβGu) maxαG,βC,σG2 L(B^αG;βG,VG)=n2ln(2π)12ln(|VG|)12(B^αGXGβG)TVG1(B^αGXGβG), w.r.t{α(1)Km=2Mα(m)α(1)0,,α(M)0B^αG2=1