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Abstract

The thalamus and its nuclei are largely indistinguishable on standard T1 or T2 weighted MRI. 

While diffusion tensor imaging based methods have been proposed to segment the thalamic nuclei 

based on the angular orientation of the principal diffusion tensor, these are based on echo planar 

imaging which is inherently limited in spatial resolution and suffers from distortion. We present a 

multi-atlas segmentation technique based on white-matter-nulled MP-RAGE imaging that 

segments the thalamus into 12 nuclei with computation times on the order of 10 minutes on a 

desktop PC; we call this method THOMAS (THalamus Optimized Multi Atlas Segmentation). 

THOMAS was rigorously evaluated on 7T MRI data acquired from healthy volunteers and 

patients with multiple sclerosis by comparing against manual segmentations delineated by a 

neuroradiologist, guided by the Morel atlas. Segmentation accuracy was very high, with uniformly 

high Dice indices: at least 0.85 for large nuclei like the pulvinar and mediodorsal nuclei and at 

least 0.7 even for small structures such as the habenular, centromedian, and lateral and medial 

geniculate nuclei. Volume similarity indices ranged from 0.82 for the smaller nuclei to 0.97 for the 

larger nuclei. Volumetry revealed that the volumes of the right anteroventral, right ventral posterior 

lateral, and both right and left pulvinar nuclei were significantly lower in MS patients compared to 

controls, after adjusting for age, sex and intracranial volume. Lastly, we evaluated the potential of 

this method for targeting the Vim nucleus for deep brain surgery and focused ultrasound 

thalamotomy by overlaying the Vim nucleus segmented from pre-operative data on post-operative 

*Corresponding author Manojkumar Saranathan Ph.D., Dept. of Medical Imaging, 1501 N Campbell Avenue, Tucson AZ 85724, 
manojsar@email.arizona.edu. 

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of 
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be 
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2020 July 01.

Published in final edited form as:
Neuroimage. 2019 July 01; 194: 272–282. doi:10.1016/j.neuroimage.2019.03.021.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



data. The locations of the ablated region and active DBS contact corresponded well with the 

segmented Vim nucleus. Our fast, direct structural MRI based segmentation method opens the 

door for MRI guided intra-operative procedures like thalamotomy and asleep DBS electrode 

placement as well as for accurate quantification of thalamic nuclear volumes to follow progression 

of neurological disorders.
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1. Introduction

The thalamus is a relay organ that has been implicated in a number of higher level 

neurological functions, including relaying of sensory and motor signals to the cerebral 

cortex, and regulation of consciousness, sleep, and alertness. It is a walnut-shaped bilateral 

structure, spanning an anterior-posterior length of 30mm and transverse length of 20mm on 

each side. Each thalamus can be subdivided broadly into anterior, lateral, medial, and 

posterior groups demarcated by bundles of white matter fibers called internal medullary 

laminae. Each of these groups can further be subdivided into smaller nuclei based on 

cytohistological differences, with the exact terminology and subdivision being dependent on 

the specific atlas used (Morel et al., 1997; Niemann et al., 1994).

The thalamus has been implicated in Alzheimer’s disease (Braak and Braak, 1991), 

schizophrenia (Andreasen, 1997; Parnaudeau et al., 2018) , essential tremor (Benabid et al., 

1996), alcohol use disorder (Arts et al., 2017; Fama et al., 2014), multiple sclerosis (Minagar 

et al., 2013) and many other brain pathologies (Maggioni et al., 2017). These pathologies 

may differentially impact individual nuclei; hence, accurate volumetry of thalamic nuclei 

could be very useful in understanding the progression and effect of these neurological/

neuropsychiatric disorders, as some preliminary studies seem to indicate (Braak and Braak, 

1991; Coscia et al., 2009; Lee et al., 2016). Furthermore, accurate and patient-tailored 

localization of specific nuclei can minimize surgical targeting errors such as with the 

ventralis intermedius (Vim) nucleus for treatment of essential tremor using deep brain 

surgery (DBS). Fast and direct targeting can also improve the accuracy and efficacy of newer 

thalamus ablation methods like focused ultrasound thalamotomy (Elias et al., 2013). 

Accurate volumetry of thalamic nuclei would also be valuable for further understanding 

normal development and aging, given the critical role of the thalamus across a wide 

spectrum of brain functions.

Individual thalamic nuclei are not clearly visible on standard T1 or T2 weighted MRI 

sequences like Magnetization Prepared Rapid Gradient Echo (MP-RAGE) or Fast/Turbo 

Spin Echo (FSE/TSE), in part due to poor intra-thalamic nuclear contrast. As a result, 

clinical applications such as DBS and more recently, focused ultrasound thalamotomy, have 

relied on standard atlases as well as awake physiologic confirmation of nuclei localization. 

While there have been a few attempts at using T1 and T2 based discrimination of thalamic 

nuclei (Deoni et al., 2007; Traynor et al., 2011), most thalamic segmentation methods 
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reported in literature to date (Battistella et al., 2017; Kumar et al., 2015; Mang et al., 2012; 

Wiegell et al., 2003; Ziyan et al., 2006) are based on diffusion tensor imaging (DTI), which 

provides voxel-level information on white matter anisotropy. Since DTI uses echo-planar 

imaging (EPI) for acquisition, its spatial resolution is restricted (typically 2×2×2 mm3) in 

order to reduce distortion, limit scan time, and improve signal-to-noise ratio (SNR). DTI-

based methods are also suboptimal due to the predominance of grey matter in the thalamus, 

which results in low anisotropy and imprecise localization. Direct thalamic imaging methods 

based on susceptibility weighted imaging (SWI) (Abosch et al., 2010; Xiao et al., 2016) 

have been proposed for 7T MRI. However, these methods have only been useful in 

delineating a limited number of thalamic nuclei, mainly the Vim nucleus. Variants of MP-

RAGE, where cortical grey matter (GM) or white matter (WM) are suppressed, have been 

proposed to visualize and target the Vim nucleus (Magnotta et al., 2000; Spiegelmann et al., 

2006; Sudhyadhom et al., 2009; Vassal et al., 2012). These have mostly been used for DBS 

planning using manual segmentation and there has been no method developed for systematic 

and automated segmentation of all major thalamic nuclei based solely on structural MRI.

The thalamic nuclear segmentation methods that have been developed are specific to the 

acquisition methods described above. DTI-based methods involve clustering at a voxel level 

using properties like angular orientation of the principal diffusion tensor or information from 

the whole tensor. Small nuclei are difficult or impossible to resolve, probably because of the 

limited spatial resolution of EPI based methods. Many of these clustering methods also 

require good initialization parameters to perform optimally. Multiple contiguous nuclei such 

as those found in the ventrolateral complex could have similar diffusion tensor orientations 

while projecting to different cortical areas. As a result, DTI-based methods have been 

limited to resolving 4-7 clusters, loosely correlated to the 4 broad anatomical divisions of the 

thalamus (anterior, posterior, medial, and lateral), rather than specific nuclei within these 

groups, and almost none of these DTI-based methods report segmentation of important but 

small nuclei such as the centromedian (CM) and the habenular (Hb) nuclei. While some 

methods have reported parcellation of larger clusters of nuclei (e.g. 21 in (Kumar et al., 

2015)), they do not appear to be consistent across multiple individuals. Stough et al. (Stough 

et al., 2013) used a multimodal approach which combined features derived from DTI with 

those from T1 and T2 MRI and a hierarchical random forest classifier to generate lateral 

geniculate nucleus (LGN) and medial geniculate nucleus (MGN) in addition to the 4 main 

nuclear groups, albeit with poor accuracy for the smaller nuclei compared to manual 

segmentation. Tractography based approaches (Schlaier et al., 2015; Sedrak et al., 2011; 

Yamada et al., 2010) have been clinically useful for DBS targeting as they directly map the 

fiber tracts running from the motor cortex via the Vim nucleus to the cerebellum. 

Generalization of this method to other nuclei requires prior knowledge of structural 

connectivity networks of the thalamic nuclei to different parts of the cortex as well as prior 

segmentation of those cortical regions, on a subject-specific basis. This has not been very 

successful in characterizing small nuclei (Behrens et al., 2003; Johansen-Berg et al., 2005). 

Liu et al. (Liu et al., 2015) used statistical shape models built on high contrast multi modal 

7T MRI datasets to segment 3T MRI data. The 7T MRI included SWI and a series of MP-

RAGE datasets acquired with different inversion times to generate a mosaic of intra-

thalamic contrast. One common drawback of most current methods is lack of quantitative 
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comparisons to a ground truth, such as segmentation based on an established anatomic atlas. 

Typically, validation has used qualitative comparisons to comparable slices from the Morel 

atlas, making rigorous evaluation of accuracy difficult.

Intra thalamic contrast is inherently low and any successful structural MRI segmentation 

method should be based on an acquisition technique that is able to generate sufficiently high 

contrast. We used a white-matter-nulled (WMn) variant of the commonly available MP-

RAGE sequence (Saranathan et al., 2015; Tourdias et al., 2014a) for data acquisition, which 

maximizes the inter-thalamic nuclear contrast at 7T as well as provides excellent WM-

thalamus contrast for delineation of the thalamic boundaries. We have previously 

demonstrated (Tourdias et al., 2014a) that such an acquisition could be used to uniquely 

identify boundaries between individual nuclei using manual segmentation, a laborious 

process, taking several hours and also requiring very specific domain expertise. In the 

present work, we leverage manual delineations that were derived from WMn MP-RAGE to 

fine tune an automatic pipeline. By combining information from a library of multiple WMn 

MP-RAGE datasets with prior manual segmentation by an expert guided by the Morel 

histological atlas, the thalamus is automatically segmented into 12 nuclei per side on the 

order of 10 minutes on a desktop PC. We call this method THalamus Optimized Multi Atlas 

Segmentation (THOMAS). THOMAS was quantitatively evaluated on WMn MP-RAGE 

data obtained from healthy volunteers and patients with multiple sclerosis (MS) using 

manual segmentation by an expert as ground truth. Volumetric analyses were performed to 

test for differences in thalamic nuclear volumes between MS patients and healthy controls 

after adjusting for age, sex, and intracranial volume (ICV) differences. In a small subset, the 

performance of THOMAS was compared to that of the very recently introduced thalamic 

segmentation module of FreeSurfer, which uses conventional MP-RAGE data to segment the 

thalamic nuclei. Finally, we illustrate, using example datasets, THOMAS applied 

retrospectively to targeting the Vim nucleus for treatment of essential tremor; one 

application being focused ultrasound ablation and the other being DBS electrode placement. 

These two examples demonstrate the potential prospective utility of our segmentation 

technique for precise targeting of thalamic nuclei in intraoperative MRI-based procedures.

2. Methods

2.1 Multi-atlas segmentation

While multi-atlas segmentation methods have been used for segmentation of hippocampal 

subfields (Yushkevich et al., 2010) and amygdala (Hanson et al., 2012), they have not been 

reported for segmentation of thalamic nuclei, presumably due to the lack of clear manually 

delineated thalamic nuclei. We have developed a multi-atlas segmentation method called 

THalamus Optimized Multi-Atlas Segmentation (THOMAS) which uses a multi-atlas prior 

dataset, comprising 20 WMn MP-RAGE datasets acquired with high contrast and spatial 

resolution, whose thalamic nuclei were manually segmented by an expert neuroradiologist, 

guided by the Morel atlas. THOMAS uses a template, created by registering and averaging 

the 20 prior datasets as an intermediate step, to reduce the number of computationally 

expensive nonlinear registration steps from 20 to 1, and thereby reducing the total 

processing time. Further reduction in processing times is achieved by automatically cropping 
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the template and the input image, significantly speeding up the nonlinear registration step. 

These are described in detail in the following sections.

2.1.1 Building a library of prior atlases—To generate a library of 20 priors with 

labels, the whole thalamus and 12 thalamic nuclei were manually traced on 20 WMn MP-

RAGE datasets acquired at 7T using the Morel atlas for guidance by an expert 

neuroradiologist (author XX). A reproducible manual segmentation delineation protocol was 

developed for this task with excellent intra-rater reliability as measured by intraclass 

correlation coefficient (ICC) and mean distance discrepancy between centers of mass 

ΔCoMs) at initial and repeat tracings 3 weeks later, yielding ICC = 0.997 (95% confidence 

interval 0.996-0.998) and ΔCoM = 0.69±0.38mm respectively (Tourdias et al., 2014b). 

Tracings were performed in 3D Slicer (http://www.slicer.org; Fedorov et al., 2012) using 

freehand drawing tools to build 3D models of each structure. More details of the manual 

segmentation procedure can be found here (Tourdias et al., 2014a).

2.1.2 THOMAS pipeline

a. Registration.: Image registration between the prior datasets and input dataset is the first 

major step in multi-atlas segmentation prior to warping of the labels from prior space to 

input space. We used Advanced Normalization Tools ANTs (Avants et al. 2008) and its 

Symmetric Normalization algorithm as the tool of choice for all nonlinear registration in our 

work. A mean brain template was first created from the library of 20 WMN MP-RAGE prior 

datasets. This was done using the buildtemplate feature available as part of ANTs, which 

iteratively registers each prior to an average of the priors and then generates a mean brain 

template by averaging the registered priors. This resulting template, which includes both 

normal and diseased brain states, has very high signal-to-noise ratio (SNR) and image 

contrast, making it useful as an “intermediate space” for registration between the priors and 

input images (Artaechevarria et al., 2008). The library of prior atlases was registered to an 

input target volume by first pre-computing and storing the warps from each prior subject to 

the mean brain template. The target volume was then diffeomorphically registered to the 

template using ANTs. The full transformation from each prior to the input target was formed 

by combing the pre-computed prior subject’s warp to the template with the inverse of the 

target-to-template warp using ComposeMultiTransform in ANTS. Crucially, the use of an 

intermediate template enabled the use of pre-computed warps and cut the number of 

nonlinear registration steps from 20 to 1, dramatically reducing the registration time from 60 

hours to 3 hours on an 8-core dual Xeon processor Dell desktop.

b. Cropping.: To further reduce processing times, we used a cropped version of both the 

template and the input target image. Planar cropping was performed manually on the 

template to generate a cropped template and a mask. This only needed to be performed once. 

To automatically crop the input image, we first linearly registered the full uncropped input 

and template images, warped the crop mask from template space to the input space, and 

finally cropped the input image with the desired crop mask. The use of cropping eliminates 

the need for pre-processing steps such as skull stripping, often used when processing whole 

volumes. We experimented with various crop sizes ranging from the full template size 

(256×256×440) to a tight crop encompassing either one (61×91×62) or both thalami 
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(93×187×68), systematically spanning the sizes in all dimensions, with the crop ratio 

(defined as ratio of total pixels in the cropped template to the full uncropped template) 

ranging from 0.01 to 1. A small validation study was performed using 5 subjects to evaluate 

accuracy and processing times as a function of crop size to select a crop size that achieves 

the best combination of accuracy and processing times.

c. Label fusion.: After the cropping and registration steps, the 20 sets of candidate labels 

generated, one from each prior in the library, were fused to create a single set of labels for 

the target input image, which is the desired thalamic segmentation. We used PICSL MALF 

(Wang et al., 2013) for label fusion which has been shown to be superior to simplistic but 

fast approaches such as majority voting (Rohlfing et al., 2004). PICSL MALF has tunable 

hyper-parameters which were optimized for the task of thalamic segmentation from WMn 

MP-RAGE data. For each label, we implemented a grid search over a range of reasonable 

values to determine the best choice. This was run with leave-one-out cross-validation over 

the 20 priors, producing 20 cases for each hyper-parameter choice as described in (Wang et 

al., 2013). Our reward function was the Dice coefficient trimean over the validation cases, an 

efficient estimator of average segmentation performance. We searched over a 5×6×8 grid 

with ranges rp=[1, 5], rs=[0, 5], and β=[0.1, 10], making 39,000 executions.

Figure 1 shows a flowchart of THOMAS. The automated cropping step for THOMAS is 

shown in Figure 2 along with four example crop sizes for the template.

2.2 MRI acquisition and datasets

2.2.1 White-matter-nulled MP-RAGE sequence—The inversion time of an MP-

RAGE sequence can, in theory, be adjusted to null any one of three species-WM, GM, or 

CSF. Conventional MP-RAGE uses CSF suppression which results in good WM and GM 

signal but poor intra-thalamic contrast. On the other hand, WM nulling produces the best 

intra-thalamic (i.e. inter-nuclear) as well as thalamic-WM contrast (Tourdias et al., 2014a) 

with excellent signal-to-noise characteristics. Hence, WM nulling was chosen for our 

acquisition sequence. The WMn MP-RAGE sequence was further optimized to maximize 

SNR efficiency and contrast while minimizing blurring as described in (Tourdias et al., 

2014a). Table 1 lists the optimized WMn MP-RAGE sequence parameters used at different 

field strengths.

The datasets used to create the template and the atlas, as well as the data sets used for 

training and testing, were all acquired on a GE 7T MRI scanner (Discovery MR950, GE 

Healthcare) using a 32 channel head coil (Nova Medical), after obtaining informed consent. 

The 20 subjects that make up the prior library consisted of 9 healthy volunteers and 11 MS 

patients, chosen randomly from a larger set of 28 cases. We refer to this group as the training 

dataset. The remaining 8 subjects (4 healthy volunteers, 4 MS patients) were manually 

segmented and reserved for independent testing of our segmentation method. We refer to 

this group as the test dataset. The datasets were apportioned to roughly balance the number 

of controls and patients in each group. For volumetric analyses comparing MS patients and 

control subjects, we used 7 additional control subjects recruited to improve the balance 

between these two groups, resulting in a total of 15 MS patients and 20 healthy control 
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subjects. We used multiple linear regression (MLR) analysis to determine whether there was 

a significant association between volume and disease state for each of the 26 volumes (12 

thalamic nuclei plus whole thalamus on each of right and left sides), and report those 

significant associations that survived Bonferroni correction for 26 multiple comparisons.

The patient undergoing FUS thalamotomy was scanned pre-operatively on a GE 7T MRI 

scanner using a 32 receive-channel head coil (Nova Medical) and then post-operatively on a 

GE 3T MRI scanner (Discovery MR750, GE Healthcare) using an 8 receive-channel head 

coil. Patients undergoing DBS electrode placement were first scanned pre-operatively on a 

3T Siemens MRI scanner (Skyra, Siemens Healthcare) using a 24 receive-channel head coil. 

Following the DBS surgery, these patients were scanned on a 1.5T GE MRI scanner using a 

8 receive-channel head coil. The sequence used for thalamic segmentation was WMn MP-

RAGE, although conventional T1 and T2 sequences were also acquired for lead 

visualization and routine clinical evaluation.

2.3 Image metrics

Accuracy was evaluated using two metrics: Dice coefficient and volume similarity index 

(VSI). They are defined as follows-

Dice = 2 ∣ X ∩ Y ∣
∣ X ∣ + ∣ Y ∣ and VSI = 1 − abs( ∣ X ∣ − ∣ Y ∣ )

∣ X ∣ + ∣ Y ∣ (1)

where X and Y refer to the two segmentation labels compared, with one being the ground 

truth and ∣X∣ and ∣Y∣ refers to the number of pixels in X and Y respectively.

To evaluate the performance of THOMAS, we first used images from the prior library as 

training cases by performing a leave-one-out cross validation. Each of the 20 prior images 

was segmented using THOMAS and compared with the ground truth manual segmentations. 

In this cross-validation, only 19 prior images (20 minus the prior image being analyzed) 

were used for label fusion for each prior being segmented, to eliminate bias.

Imaging data from eight subjects (test dataset) which were not part of the template or the 

library of twenty priors (training dataset) were then used as an unbiased test sample to assess 

the performance of THOMAS, also by evaluating against manual segmentation ground truth. 

A subset of 5 cases from this test dataset was used to compare the performance of THOMAS 

with the recently released thalamic segmentation module of FreeSurfer (Iglesias et al., 

2018). Conventional T1 MP-RAGE data as well as both T1 MP-RAGE and WMn MP-

RAGE were used as inputs to the thalamic segmentation module of FreeSurfer to generate 

two sets of thalamic nuclei labels; these labels were then compared both qualitatively and 

quantitatively to the corresponding labels produced by THOMAS.

2.4 Applications to FUS ablation and DBS planning

To illustrate the utility of THOMAS, we used it on a patient who was scheduled for FUS 

ablation of the Vim nucleus for treatment of essential tremor. This patient was scanned pre-

operatively on a 7T MRI scanner and post-operatively after the FUS ablation procedure on a 
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3T MRI scanner, including the WMn MP-RAGE sequence in both exams. Targeting was 

based on standard indirect coordinates, adjusted at the time of surgery based on 

intraoperative test lesioning. The pre- and post-operative WMn MP-RAGE images were 

registered using affine registration while masking out the ablated region. The Vim label was 

then transferred from pre-op 7T to post-op 3T images and overlaid to visualize the location 

of the Vim relative to the ablated region.

To illustrate another application of THOMAS, we evaluated its performance on a patient 

who was scheduled for DBS implantation in the Vim nucleus for treatment of essential 

tremor. This patient had DBS electrodes implanted using a standard stereotactic frame and 

initial indirect coordinates, adjusted using awake microelectrode recording and physiologic 

mapping, followed by post-operative MRI. THOMAS was first used to segment the Vim 

nucleus from the pre-operative 3T WMn MP-RAGE images. The pre-operative and post-

operative WMn MP-RAGE images were then registered using ANTS nonlinear registration 

to minimize the effect of distortion caused by the metal artifacts from the electrode. The Vim 

label was then warped to the post-operative image space and overlaid on T2 Cube to 

minimize the effects of dephasing from metal, prominent on gradient echo based sequences 

like MP-RAGE. The DBS electrode was manually segmented on post-operative T2 Cube 

showing the final lead position relative to the Vim segmentation.

2.5 Processing

All experiments were conducted on a dual-CPU 4-core 3 GHz Intel Xeon E5-2623 v3 Dell 

workstation with the exception of template creation which was on a 12-core 2.66 GHz Intel 

Xeon Mac workstation and hyperparameter optimization, which was performed on the 

Stanford Sherlock High Performance Cluster (HPC). A Wilcoxon signed-rank test was used 

to determine statistical significance. ANTs was used for all image registration using the 

Symmetric Normalization option for diffeomorphic nonlinear registration and affine option 

for linear registration. For multi-atlas label fusion, Python code from Wang et al. (Wang et 

al., 2013) was used. All pipelines were coded using Python. Brainlab was used for 

visualization of the DBS electrode on post-operative scans for the DBS cases.

3. Results

Figure 3b is a representative WMn MP-RAGE image showing the excellent inter-nuclear 

contrast achieved using the optimized pulse sequence parameters. Note also the clear 

depiction of the boundaries of the whole thalamus, which is not seen on conventional MP-

RAGE imaging where CSF is nulled (Fig. 3a). The averaged mean brain template is shown 

in Figure 3c. The significantly improved SNR and contrast as well as the conspicuity of 

small features like the mammillo-thalamic tract (MTT) can be easily appreciated (white 

arrow), attesting to the quality of the registration steps involved in the template creation.

Figure 4 shows the effect of crop size fraction on mean processing times (a) and mean Dice 

coefficients (b) in comparison with the manual segmentation ground truth, shown for a 

subset of thalamic nuclei spanning a range of sizes from small nuclei like AV to the whole 

thalamus (THALAMUS) and averaged over 5 subjects. It can be seen that the mean Dice 

coefficients are fairly constant while the mean processing times increase exponentially with 
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increasing crop size fraction, reaching its maximum for no cropping. The two smallest crop 

sizes (0.01 and 0.04) which represent unilateral and bilateral thalamic cropping both perform 

under 15 minutes and are ideal for minimizing processing times for applications such as 

DBS targeting. Since we are mostly interested in bilateral thalamic segmentation and since 

there is not a significant increase in processing time from unilateral to bilateral 

segmentation, the bilateral crop size 93×187×68 (red arrows) was chosen as the crop size for 

all subsequent experiments using THOMAS.

Table 2 shows mean Dice coefficients for the whole thalamus and 12 thalamic nuclei 

including the MTT segmented using THOMAS compared against manual segmentation 

ground truth on the 20 priors processed using leave-one-out cross validation (training 

dataset) as well as the test dataset (8 subjects that were not part of the 20 priors training 

dataset). The nuclei are listed in descending size order. It can be seen that there is virtually 

no loss of accuracy while the processing time reduces by factor of 10 when going from full 

size to the cropped THOMAS. Note the high Dice values of 0.7 or higher for most nuclei 

including very small structures like the Hb and CM and reaching 0.85 or higher for larger 

nuclei such as the Pul and MD-Pf for both the training and test datasets. For the test dataset, 

the VSI ranges from a low of 0.82 (MGN) to a high of 0.98 (THALAMUS), indicating 

excellent accuracy in volume estimation. There were no statistically significant differences 

between the Dice of control subjects and MS patients for any of the thalamic nuclei, 

attesting to the ability of THOMAS to perform equally well on both healthy subjects and 

MS patients. Volumetric analyses using multiple linear regression which allowed us to adjust 

for age, sex and ICV, revealed significantly reduced volumes associated with MS for the 

following nuclei: Right AV, Right VPL, Left Pulvinar and Right Pulvinar (p<0.0019 prior to 

Bonferroni correction meaning these findings were significant even after conservative 

correction for multiple comparisons).

Figure 5 shows an example of the segmentation results from a 7T WMn MP-RAGE dataset 

processed using THOMAS. An axial slice is shown for reference in the top left and zoomed 

insets of the three orthogonal planes are shown on the top right with the segmented nuclei 

(solid color) overlaid on the zoomed insets in the bottom right panels. The manual 

segmentation ground truth data is depicted as yellow outlines. The close matching of the 

yellow boundaries to the automatic segmentation can be appreciated even for small nuclei 

despite the errors caused by digitization of the manual segmentation ground truth. A 3D 

rendering of all the segmented nuclei is also shown on the bottom left panel.

Table 3 shows a comparison of the performance of THOMAS and FreeSurfer using Dice and 

VSI metrics, evaluated against manual segmentation ground truth. It can be seen that 

THOMAS performs consistently well even in small nuclei. Figure 6 shows, on an example 

case, a comparison of the two segmentation schemes. Unlabeled WMn MP-RAGE images in 

axial (top) and coronal (bottom) planes are shown in the left column while the middle and 

right columns show overlays of thalamic nuclei produced by THOMAS and FreeSurfer 

respectively, with the ground truth manual segmentations showing in gold color in both 

cases. It can be seen that THOMAS follows the contours of the WMn MPRAGE contrast 

more closely as seen in the pulvinar and mediodorsal nuclei, and better matches the gold 

standard manual segmentations.
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Figure 7 shows orthogonal planes of thalamic anatomy segmented from pre-operative 7T 

WMn MP-RAGE images (top panel) overlaid on top of post-op 3T WMn-MP-RAGE images 

(bottom panel). Note that the segmentation boundaries have been interpolated for display 

purposes. The dotted line is the AC-PC plane and the red cross marks the FUS ablation 

target inside the Vim nucleus (orange outline). The colored circles are additional targeting 

adjustments points that were explored during treatment before reaching the final treatment 

location at the cross. We can see that the target falls well within the segmentation of Vim. 

Note that the Vim was generated as the inferior half of the VLP nucleus.

Figure 8 shows an example of Vim targeting on a patient treated for essential tremor using 

DBS electrode placement. The top left panel shows a pre-operative 3T WMn MP-RAGE 

axial slice overlaid with THOMAS segmented thalamic nuclei (Vim nucleus in ochre). An 

“electrode” view showing the path of the electrode is shown in the bottom left panel for 

reference. Axial and coronal views depicting the DBS electrode (pink) and a 3D volume 

rendering of the THOMAS segmented Vim nucleus (blue) overlaid on the post-operative T2 

Cube data are depicted in the top and bottom right panels. The active contact point (second 

from the end) determined from post-surgical clinical follow-up is consistent with its location 

in the inferior edge of the Vim nucleus (white arrow).

4. Discussion

We have developed and validated a fully automated method for segmentation of 12 thalamic 

nuclei including the MTT in addition to the whole thalamus based entirely on anatomic 

imaging using the WMn MP-RAGE sequence. This is the first work to demonstrate multi-

atlas-based thalamic nuclei segmentation based solely on structural MRI images. We 

rigorously evaluated the accuracy of our segmentation by comparison with manual ground 

truth segmentation based on the Morel atlas performed by an expert neuroradiologist on data 

acquired from healthy subjects as well as patients with MS. This comparison is missing in 

most published methods, especially those using DTI based methods. A high degree of 

accuracy was achieved even for small nuclei such as Hb and CM as evidenced by the high 

Dice coefficient values (>0.7) evaluating against manually segmented ground truth. The VSI 

indices were also very high, making the method potentially useful in assessment of small 

localized volumetric changes associated with neurological or neuropsychiatric diseases. 

Even on a small cohort of 15 MS patients and 20 healthy control subjects and using a very 

conservative Bonferroni correction, THOMAS was able to detect atrophy in specific nuclei 

in MS patients, adjusting for age, sex, and intracranial volumes.

Segmentation of the entire thalamus was achieved in approximately 10 minutes, opening the 

door for use in intra-operative procedures that involve direct MRI-based targeting such as 

Vim for treatment of essential tremor and ultrasound based thalamotomy. We have illustrated 

two example applications of our segmentation methods for targeting the Vim nucleus for 

treatment of essential tremor. The first application uses 7T pre-operative data to 

retrospectively delineate the Vim nucleus on 3T post-operative images on a patient 

undergoing FUS thalamotomy. The second uses 3T pre-operative data to retrospectively 

delineate the Vim nucleus in 1.5T post-operative images on a patient who underwent awake 

DBS lead placement using electrophysiological guidance. This shows the feasibility of using 
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a combination of pre-operative 3T WMN MP-RAGE imaging and THOMAS combined with 

intra-operative 1.5T MRI to perform accurate, fast, direct and patient-specific targeting. 

While these results are qualitative, they demonstrate initial proof-of-concept that our 

methods can be of use to the neurosurgeon in prospective targeting of thalamic nuclei in near 

realtime even at clinical strength 3T MRI.

Our implementation of WMn MP-RAGE uses a radial fan beam k-space ordering scheme 

(Saranathan et al., 2015) which is inherently robust to motion due to the smearing of motion 

artifacts similar to other radial k-space MRI schemes and also helps achieve improved image 

contrast. However, our segmentation could also work with more easily available vendor 

supplied sequential or centric k-space encoding variants of MP-RAGE. In these cases, the 

use of navigator gating could further reduce the effect of motion and improve image quality 

as demonstrated for conventional MP-RAGE (van der Kouwe et al., 2008).

Liu et al. (Liu et al., 2015) segmented thalamic nuclei from 3T images using shape models 

estimated from 7T. They used conventional CSF-nulled MP-RAGE, which has poor thalamic 

contrast, and observed poor shape fidelity when performing label fusion from 7T to 3T. Our 

use of white-matter nulled MP-RAGE provided excellent boundaries, obviating the need for 

complicated shape models and enabling accurate label fusion and transfer learning from 7T 

prior data.

Most methods developed to date have used a DTI-based acquisition which inherits the 

limitations of EPI i.e. image distortion and limited spatial resolution (typically 2×2×2 

mm^3). Battistella et al. (Battistella et al., 2017) reported a new clustering method based on 

the orientation distribution function (ODF) instead of angular direction, which seems to be 

much more stable and reliable compared to methods relying on diffusion direction 

orientation or angular direction. However, they used a data-driven method involving 5000 

iterations of seeding to perform the clustering, making it time consuming. Furthermore their 

method produced 7 clusters, 6 of which correlated to histologically segmented nuclei and the 

seventh a composite. In future, methods like THOMAS (or even the average template we 

have created) may also be used to provide good initial conditions for seeding clusters to 

speed up the process. The whole thalamus mask used for many methods involve complicated 

preprocessing and minutes to hours of processing time (e.g. Battistella uses FreeSurfer 

reconstruction which takes 3-5 hours on desktop PC) which can be significantly shortened 

using the whole thalamus mask from our segmentation method.

Very recently, Iglesias et al. (Iglesias et al., 2018) introduced a Bayesian probabilistic atlas 

based segmentation technique (additional module in FreeSurfer) that works primarily on 

conventional MP-RAGE images to generate thalamic nuclei labels. This technique allows 

for provision of additional contrast images to help improve the thalamic segmentation. In 

our preliminary comparison study, THOMAS outperformed FreeSurfer using Dice as a 

metric especially for smaller nuclei like CM and VLa. While some of the performance can 

be attributed to the fact that THOMAS was developed using manual segmentations of WMn 

MP-RAGE data, guided by the Morel atlas, we believe that the main reason for THOMAS’s 

superior performance is the improved intra-thalamic contrast provided by the WMn MP-

RAGE sequence, combined with the multi-atlas derived from those WMn volumes and the 
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label fusion method used for segmentation. While the addition of WMn MP-RAGE to 

conventional MP-RAGE as an input to the thalamic segmentation module of FreeSurfer 

improved the Dice in most nuclei (Table 3), the performance of FreeSurfer is still largely 

determined by conventional MP-RAGE and is limited by the poor intrathalamic contrast of 

that sequence, an observation also reported by Iglesias et al. (Iglesias et al., 2018)

While we used single-echo WMN MP-RAGE magnitude images for segmentation, the use 

of susceptibility maps from a multi-echo variant of this sequence could further improve the 

accuracy and robustness of this technique similar to what has been reported for conventional 

MP-RAGE (van der Kouwe et al., 2008). Future work could improve the accuracy and speed 

of the label fusion step by using better models to combine the registered prior labels such as 

convolutional neural networks (CNN) as demonstrated by Yang et al. (arXiv https://

arxiv.org/abs/1709.09641) for segmentation of cardiac data. We believe that the presence of 

sharp boundaries in WMn MP-RAGE will also help these methods converge well compared 

to conventional T1 or T2 imaging, where these boundaries are blurry or often non-existent.

One limitation of our study is the lack of direct comparisons to DTI based methods. Such 

direct comparisons were not possible due to the fact that DTI data was not acquired as part 

of our study. Comparing against Dice coefficients for thalamic nuclei segmentation reported 

in two state of the art methods reported in literature, our method performs comparably for 

the larger nuclei and significantly better for smaller nuclei like AV, MGN, and LGN. The 

first method (Liu et al., 2015) used shape models derived from 7T MP-RAGE and SWI data 

applied to 3T MP-RAGE data acquired with 1mm isotropic resolution while the second 

method (Glaister et al., 2016) used multi modal DTI data acquired at 3T with 2.2 mm 

isotropic resolution.

Another limitation common to all registration-based methods is suboptimal performance or 

even failure in the presence of large lesions or artifacts due to metal electrodes. This can be 

mitigated by masking those regions prior to the registration process, although this is usually 

tedious as it has to be done manually on a slice-by-slice basis. The composition of our 

library of prior images is limited to healthy subjects and multiple sclerosis patients. Other 

pathologies which can potentially affect the thalamus should be added to this library to 

provide more robust segmentation. The paucity of manually segmented prior datasets is a 

limitation for both our method and CNN-based methods. The combination of manual and 

automatically segmented data in the prior library as proposed by Pipitone et al. (Pipitone et 

al., 2014) could be used to widen the prior library to multiple pathologies. Finally, we used a 

mean brain template as an intermediate to achieve 20x speed-up. While this method has 

been shown to perform well (Artaechevarria et al., 2008), it can also be subject to 

registration errors. A method which directly registers each of the priors to the input would 

presumably be more accurate. The speed-up provided by cropping, as detailed in this paper, 

could reduce the computation burden significantly, allowing practical multi-atlas label-

fusion segmentation that directly registers each of the priors to the input. Future 

improvements could incorporate 3D CNNs to perform segmentation and label fusion directly 

on the input data, significantly improving computational speeds as well as reducing errors 

due to the obviation of direct registration. However, the performance of these algorithms will 

be limited by the amount of available manually segmented prior data.

Su et al. Page 12

Neuroimage. Author manuscript; available in PMC 2020 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://arxiv.org/abs/1709.09641
https://arxiv.org/abs/1709.09641


In conclusion, we have presented a fast fully automated segmentation method that uses 

structural 7T MRI data to segment 12 thalamic nuclei, requiring on the order of 10 minutes 

computation time on a relatively inexpensive desktop computer. THOMAS provides the 

highest accuracy for thalamic nuclear segmentation and volume estimation demonstrated to 

date. This method can be used to provide accurate volumes of nuclei which could be 

significant in understanding disease progression in Alzheimer’s disease, Parkinson’s disease, 

multiple sclerosis, and other pathologies. It can also be used for MRI guided procedures 

such as FUS and DBS for essential tremor, where fast, accurate, and direct targeting and 

segmentation is critical.
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Abbreviations

AV Anterior ventral nucleus

CM Centromedian nucleus

CSF Cerebrospinal fluid

CSFn Cerebrospinal fluid nulled

DBS Deep brain stimulation

DTI Diffusion tensor imaging

EPI Echo planar imaging

FUS Focused ultrasound

GM Grey matter

Hb Habenular nucleus

LGN Lateral geniculate nucleus

MD Mediodorsal nucleus

MGN Medial geniculate nucleus

MP-RAGE Magnetization-prepared rapidly acquired gradient echo

MTT Mammillothalamic tract

Pul Pulvinar nucleus

SNR Signal-to-noise ratio

VA Ventral anterior nucleus
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Vim Ventralis intermedius nucleus

VLa Ventral lateral anterior nucleus

VLp Ventral lateral posterior nucleus

VPL Ventral posterior lateral nucleus

WM White matter

WMn White matter nulled
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Figure 1. 
THOMAS workflow- The input image is nonlinearly registered to the average brain 

template. Precomputed warps from each of the 20 priors to the template is then combined 

with the template-input warp (R−1) to generate 20 candidate labels, which are then fused to 

get the final parcellation.
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Figure 2. 
Automated cropping scheme for THOMAS- the mean template is cropped manually with a 

desired crop mask (ranging in size from unilateral and bilateral thalamus to the whole brain). 

An affine registration between the template and the input is performed and the crop mask 

warped to the input space to crop generate a cropped input image.
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Figure 3. 
Comparable slices from a conventional CSF-nulled MP-RAGE sequence (left), a white-

matter-nulled MP-RAGE sequence (middle) and the mean brain template (right) generated 

from the white-matter-nulled MP-RAGE prior datasets. Note the lack of boundaries and 

poor inter nuclear contrast in the conventional MP-RAGE compared to the white-matter-

nulled MP-RAGE sequence. Note also the improved SNR of the mean template as well as 

preservation of fine structures such as the MTT (white arrows).
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Figure 4. 
Processing times and Dice coefficients as a function of crop size fraction for THOMAS 

obtained from a small subset of 5 datasets. While the crop size fractions of 0.01 and 0.04 are 

both ideal from a processing time standpoint, 0.04 corresponds to a bilateral thalamus crop 

and was chosen. See Figure 2 for the visualization. Note the relative insensitivity of Dice to 

crop fraction while the processing time increases exponentially with size.
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Figure 5. 
A representative slice from a WMn MP-RAGE dataset (top left) along with the zoomed 

insets in three orthogonal planes (top right panels). THOMAS segmentation results (solid 

color) are shown in the bottom right panels with the manual segmentation shown as yellow 

outlines. A 3D rendering of the segmentation is shown in the bottom left panel. Note that 

even small structures like the MTT (yellow) are clearly visualized.
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Figure 6. 
Comparison of THOMAS (middle column) and FreeSurfer (right column) segmentation 

results on a representative slice shown in axial (top row) and coronal (bottom row) planes 

with the manual segmentation based on the Morel atlas overlaid as gold outline. Native 

WMn MP-RAGE images are shown in the left column. Note that the THOMAS 

segmentation clearly follows the thalamic boundaries demarcated in the WMn MP-RAGE 

images. FreeSurfer used both conventional and WMn MP-RAGE images for this 

segmentation.
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Figure 7. 
Application of THOMAS to focused ultrasound thalamotomy- the top 3 panels show 

orthogonal planes of post-operative 3T WMn MP-RAGE images obtained on a patient 

undergoing ablation of the Vim nucleus for treatment of essential tremor. Pre-operative 7T 

WMn MP-RAGE data acquired on the patient was segmented using THOMAS and warped 

to the post-operative space along with the labels. The lower panels show zoomed insets with 

thalamic nuclei boundaries overlaid on top. The ablation region (white edematous region) is 

clearly within the Vim nucleus (yellow). The red cross is the targeted ablation hot spot and 

the dotted line is the AC-PC axis.
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Figure 8. 
Application to DBS electrode placement- pre-operative 3T WMn MP-RAGE images 

acquired on a patient who underwent traditional DBS surgery using awake physiologic 

guidance were segmented using THOMAS (top left). The right top and bottom panels show 

axial and coronal planes of post-operative 1.5T T2 Cube images with the volume rendered 

Vim label overlaid after registration (blue). The segmented DBS electrode is shown in pink 

with the bottom left image showing the full path (“electrode” view). The active contact point 

(second from the end) is depicted using the white arrow and is at the inferior margin of the 

Vim.
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Table 1.

White-matter-nulled MP-RAGE sequence parameters

1.5T (GE) 3T (GE) 3T (Siemens) 7T (GE)

TR/TS (ms) 10.4/3000 10/4500 10/4000 10/6000

TI (ms) 350 500 500 680

Flip (deg) 10 9 7 4

Matrix 224×224×124 180×180×200 256×256×160 180×180×200

Slice thickness (mm) 1.2 1 1.1 1

Parallel imaging None None 2×1 1.5×1.5

Scan time (min) 7.5 10 5.5

Coil 8-channel GE 8-channel GE 24-channel Nova 32-channel Nova
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Table 2.

Comparison of Dice coefficients for THOMAS with no cropping and THOMAS (bilateral thalamus crop) for 

the whole thalamus and 12 thalamic nuclei for the training dataset computed using leave-one-out cross 

validation (n=20) as well as for the test dataset (n=8). The last column shows VSI for the test dataset. For each 

case, Dice coefficients were computed by comparison with the manually segmented ground truth.

Method and
Dataset

THOMAS
no cropping

n=20
training set

THOMAS
cropped

n=20 training
set

THOMAS
cropped

n=8 test set

THOMAS
cropped

n=8 test set

Metric Volume Dice Dice Dice VSI

THAL 6064.00 0.92 0.92 0.93 0.98

Pul 1700.00 0.86 0.86 0.86 0.96

VLP 915.00 0.77 0.79 0.79 0.97

MD-Pf 743.00 0.85 0.85 0.89 0.93

VPL 372.00 0.68 0.69 0.71 0.92

VA 315.00 0.71 0.71 0.70 0.91

AV 180.00 0.79 0.80 0.77 0.89

CM 147.00 0.75 0.75 0.78 0.88

LGN 142.00 0.74 0.75 0.70 0.91

VLa 135.00 0.68 0.67 0.64 0.83

MGN 102.00 0.72 0.74 0.71 0.82

MTT 55.00 0.69 0.70 0.69 0.92

Hb 32.00 0.73 0.73 0.79 0.93
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Table 3.

Comparison of Dice coefficients and VSI for THOMAS, FreeSurfer using just T1 MP-RAGE, and FreeSurfer 

using T1 MP-RAGE and WMn MP-RAGE data, evaluated by comparison with the manual segmentation 

ground truth for representative nuclei and the whole thalalamus.

THOMAS
Dice

FS (T1)
Dice

FS (T1+WMn)
Dice

THOMAS
VSI

FS (T1)
VSI

FS (T1+WMn)
VSI

THAL 0.92 0.75 0.78 0.98 0.90 0.93

Pul 0.85 0.55 0.55 0.97 0.78 0.84

VLP 0.79 0.37 0.46 0.96 0.88 0.88

MD-Pf 0.86 0.52 0.55 0.92 0.87 0.81

VPL 0.71 0.27 0.37 0.92 0.62 0.60

VA 0.67 0.34 0.35 0.94 0.80 0.90

AV 0.75 0.26 0.18 0.83 0.76 0.61

CM 0.77 0.28 0.43 0.92 0.71 0.76
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