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Abstract

Executive function (EF) performance in older adults has been linked with functional and structural 

profiles within the executive control network (ECN) and default mode network (DMN), white 

matter hyperintensities (WMH) burden and levels of Alzheimer’s disease (AD) pathology. Here, 

we simultaneously explored the unique contributions of these factors to baseline and longitudinal 

EF performance in older adults. Thirty-two cognitively normal (CN) older adults underwent 

neuropsychological testing at baseline and annually for three years. Neuroimaging and AD 

pathology measures were collected at baseline. Separate linear regression models were used to 

determine which of these variables predicted composite EF scores at baseline and/or average 

annual change in composite ΔEF scores over the three-year follow-up period. Results 

demonstrated that low DMN deactivation, high ECN activation and WMH burden were the main 

predictors of EF scores at baseline. In contrast, poor DMN and ECN WM microstructure and 

higher AD pathology predicted greater annual decline in EF scores. Subsequent mediation analysis 

demonstrated that DMN WM microstructure uniquely mediated the relationship between AD 

pathology and ΔEF. These results suggest that functional activation patterns within the DMN and 

ECN and WMHs contribute to baseline EF while structural connectivity within these networks 

impact longitudinal EF performance in older adults.
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1. Introduction

Executive function (EF) describes the human capacity for flexible and adaptive thought 

processes, such as working memory, task switching, and inhibitory control (Miller and 

Cohen, 2001). Cognitively normal (CN) older adults show significant declines in EF 

compared to younger adults (Zelazo et al., 2004). Furthermore, decline in EF is associated 

with poorer quality of life and decreased functional independence in older adults (Bell-

McGinty et al., 2002; Pathy et al., 2006). However, the mechanisms contributing to 

decreased EF in CN older adults are poorly understood. These mechanisms may include 

alterations in brain function and structure, accumulating white matter hyperintensities 

(WMH) and/or Alzheimer’s disease (AD) pathology.

Much of the research seeking to identify functional mechanisms contributing to EF declines 

in older adults have focused on regions belonging to the executive-control network (ECN). 

The majority of studies have demonstrated that functional brain activity within portions of 

the ECN increase with age (Grady, 2012; Spreng et al., 2010). However, studies examining 

how these age-related increases in activity are associated with EF performance have been 

equivocal, with some finding no relationship (Grady, 2012) and others finding that increased 

activity is associated with poorer task performance (Stern, 2009; Zhu et al., 2015). This has 

led researchers to view this activity as either a sign of reduced efficiency (Stern, 2009; Zhu 

et al., 2015) or a failed attempt at compensation (Grady, 2012; Park and Reuter-Lorenz, 

2009).

More recent research suggests that other networks may also play an important role in EF in 

older adults. In particular, the default mode network (DMN) may be an important 

contributor to EF performance in older adults. The DMN is a set of regions that are most 

active at rest and decrease in activity during externally-directed tasks. The DMN is thought 

to be primarily responsible for internally-focused thought processes, such as 

autobiographical memory and experience of the self, which must be decreased during 

externally-directed tasks (Andrews-Hanna et al., 2014; Buckner et al., 2008; Raichle et al., 

2001). However, the ability to decrease activity in the DMN during tasks, termed 

deactivation, decreases linearly across the adult lifespan (Grady et al., 2006). Due to its role 

in autobiographical memory, much of the research examining the DMN’s role in cognition 

has focused on memory (Buckner et al., 2005; Gould et al., 2006; Lustig et al., 2003; 

Vannini et al., 2012), while fewer have explored associations with EF. However, there is 

some evidence that age-related reduction in DMN deactivation is associated with poorer EF 

task performance (Brown et al., 2015; Persson et al., 2007).

In addition to functional activation patterns, alterations in ECN and DMN structural 

connectivity (i.e., white matter microstructure) may contribute to reduced EF in older adults. 

White matter (WM) microstructure refers to the organizational coherence and density of 

WM and can be assessed in vivo through the use of diffusion tensor imaging (DTI). Declines 

in microstructural properties of WM are consistently observed in aging and are thought to 

reflect decreased myelin and/or axonal density (Bartzokis et al., 2004; Beaulieu, 2002; Salat 

et al., 2005). Early work examining DTI and EF relationships primarily focused on frontal 

WM and fronto-parietal association tracts belonging to the ECN, such as the superior 
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longitudinal fasciculus (Gold et al., 2010; Madden et al., 2004), but recent work has also 

demonstrated relationships between microstructure in WM pathways connecting DMN 

regions and EF performance (Brown et al., 2015).

Finally, EF performance in older adults may also be influenced by the accumulation of 

neuropathology. The most prevalent neuropathology in aging is AD pathology, which 

consists of amyloid plaques made up of β-amyloid (Aβ) and neurofibrillary tangles made up 

of tau (Glenner and Wong, 1984; Grundke-Iqbal et al., 1986). Importantly, AD pathology is 

present in approximately 30% of CN older adults over the age of 65, representing a 

prolonged preclinical disease stage during which pathology accumulates but no clinical 

signs are present (Morris et al., 1996; Price et al., 2009; Sperling et al., 2011). The most 

sensitive and specific marker of AD pathology is the CSF tau/Aβ42 ratio (Shaw et al., 2009), 

and several studies have demonstrated that higher CSF tau/Aβ42 ratios predict future decline 

(Fagan et al., 2007; Vos et al., 2013). While AD is typically thought of as primarily affecting 

memory in early disease stages, several studies have demonstrated poorer performance on 

tests of EF during preclinical disease stages (Albert et al., 2001; Almkvist, 1996; Blacker et 

al., 2007).

In addition to AD pathology, many older adults also harbor significant levels of 

cerebrovascular disease (CVD) pathology. The most commonly used in vivo marker of CVD 

pathology is the presence of WMH assessed using fluid attenuated inversion recovery 

(FLAIR) imaging (Breteler et al., 1994; COHEN et al., 2002). These areas of WMH 

correspond with areas of axonal and myelin loss post-mortem and often occur in areas with 

reduced vascular integrity and increased inflammatory infiltrate (Grafton et al., 1991; Young 

et al., 2008). WMHs are seen in approximately 90% of CN older adults aged 60-90 (de 

Leeuw, 2001) and have been associated with poorer EF during preclinical disease stages 

(COHEN et al., 2002; Stephanie Debette and Markus, 2010).

It is relevant to note that the functional, structural, and pathological mechanisms described 

above frequently overlap, and, in fact, are themselves associated with each other. For 

example, previous studies have demonstrated associations between neuropathology and 

functional activity (Hedden et al., 2012; Oh et al., 2015; Sperling et al., 2009), between 

neuropathology and WM microstructure (Gold et al., 2014; Kantarci et al., 2014; Taylor et 

al., 2007), and between WM microstructure and functional activity (Brown et al., 2015; 

Daselaar et al., 2013; Zhu et al., 2015). Despite this fact, a majority studies examining how 

each of these measures impact EF in aging have focused on only functional, structural or 

pathological mechanisms.

In the present study, we sought to explore the relative contributions of both DMN and ECN 

functional and structural profiles and measures of neuropathology to EF in cognitively 

normal (CN) older adults. We first sought to explore how these measures associate with 

standardized neuropsychological measures cross-sectionally. Second, we examined how 

these DMN and ECN measures may predict longitudinal EF neuropsychological 

performance over-and-above effects of neuropathology. We hypothesized that both DMN 

and ECN function/structure would be associated with cross-sectional EF performance on 

standardized neuropsychological measures. Further, we predicted that baseline DMN and 
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ECN function and/or structure may mediate the effects of neuropathology on change in EF 

neuropsychological performance over time.

2. Methods

2.1. Participants:

Written informed consent was obtained from each participant under an approved University 

of Kentucky Institutional Review Board protocol. Thirty-two CN older adults (age at 

baseline: 66-93 years old) were selected from one of our previous neuroimaging studies 

(Brown et al., 2018) of 39 CN older adults (ages 65-93) based on availability of longitudinal 

neuropsychological testing and quality baseline neuroimaging data. The original cohort was 

recruited from a larger cohort of CN older adults followed by the University of Kentucky 

Sanders-Brown Center on Aging (SBCoA), which has been described previously (Schmitt et 

al., 2012). Exclusion criteria for all participants were significant head injury (operationally 

defined as loss of consciousness for greater than five minutes), heart disease, psychiatric or 

neurological disorder, claustrophobia, pacemakers, or presence of metal fragments and/or 

metallic implants contraindicated for MRI. Seven participants from the original cohort were 

excluded from the current study due to: poor neuroimaging data quality (n = 4, see (Brown 

et al., 2018) for details), decision not to enroll in neuropsychological testing portion of the 

study (n = 2) or loss to followup after baseline visit (n = 1). Neuropsychological data was 

available for 32 participants at baseline and this data was used in the cross-sectional 

analyses. Neuropsychological data was available for 31 participants at one-year follow-up, 

for 29 participants at two-year follow-up, and 28 participants at three-year follow-up. The 

average number of annual visits (including baseline) available per participant was 3.75 

± 0.51 (range = 2 – 4, median = 4). Three individuals were identified as outliers in average 

ΔEF score (>3 SD from mean) and were not included in the regression analyses. Therefore, 

a total of 29 participants were included in longitudinal analyses. Baseline demographics and 

mean outcome measures are reported for the initial group of 32 participants and the 

subgroup of 29 participants used in longitudinal analyses in Table 1 (all values represent 

baseline data except for the average annual change in EF). At baseline, 7/32 participants 

were Aβ42 +, of which 4/7 participants were tau/Aβ42 + based on established thresholds

2.2. Evaluation of EF:

All participants underwent the standard battery of neuropsychological tests included in the 

UDS-2 at baseline. Individuals returned annually to undergo the UDS battery (Weintraub et 

al., 2002). At follow-up testing sessions, participants completed the UDS-3. The UDS-2 and 

UDS-3 are not identical. Thus, EF-related tests common to the UDS-2 and UDS-3 were 

selected for use in the present study: Trailmaking Part A (TM-A), Trailmaking Part B (TM-

B), and the Digit Symbol test from the Wechsler Adult Intelligence Scale-IV (WAIS-DS). 

Raw scores were first standardized based on age, sex, and education using scores generated 

from the larger SBCoA cohort, as previously described (Kryscio et al., 2016). Age, sex, and 

education-standardized scores for TM-A were then regressed out of TM-B and WAIS-DS 

standardized scores in order to exclude components of raw processing and motor speed 

common to all tests (Salthouse, 2011). The resulting residuals were then combined to form a 

composite EF score by subtracting the TM-B residuals (higher scores = worse performance) 
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from the WAIS-DS residuals (higher scores = better performance) and dividing by 2. 

Therefore, higher EF composite scores reflected better performance.

The EF composite was calculated for each participant at each visit. One-year change 

between each visit was calculated by subtracting the EF score of the current visit from the 

previous visit (i.e. EF composite at Year 1 visit – EF composite at baseline visit). Our study 

focused on average annual EF change rates. Thus, each participant’s average annual change 

in EF was calculated by averaging all of that individual’s available one-year change scores 

(average the change from year 0 to year 1, year 1 to year 2, and year 2 to year 3).

2.3. CSF Sampling and Analysis:

Lumbar puncture was performed following an overnight fast, as previously described (Gold 

et al., 2014). Samples were shipped on dry ice to the Biomarker Research Laboratory at the 

University of Pennsylvania Medical Center, where the xMAP Luminex Platform (Luminex 

Corp, Austin TX) with Innogenetics (INNO-BIA, AlzBio3; Ghent, Belgium) immunoassay 

kit was used to measure CSF concentrations of Aβ42 and total tau as previously described 

(Shaw et al., 2009). The CSF tau/Aβ42 was then calculated and used in analyses due to its 

high sensitivity and specificity for AD pathology (Shaw et al., 2009). The CSF tau/Aβ42 

ratios were log-transformed before statistical analyses due to their skewed distribution.

2.4. fMRI Paradigm:

Participants performed a visual working memory paradigm during fMRI scanning. The 

paradigm was a modified delayed-match-to-sample task with multiple targets and repeating 

intervening distractors, which increases demands on executive processes (Jiang, 2000; Kane 

and Engle, 2002). The task paradigm has been described in detail previously (Brown et al., 

2018; Gold et al., 2017). Briefly, participants were asked to ‘hold in mind’ two target images 

and indicate whether or not each of 12 serially presented sample images represented a match 

with either target image. These sample images were one of four repeating images that were 

either one of the two target images or one of two repeating distractor images. Each fMRI run 

consisted of 8 working memory task blocks (28s each) and 9 visual baseline blocks (10s 

each), which occurred between task blocks and at the start and end of each run. Participants 

performed two fMRI runs. Relationships between fMRI activation/deactivation patterns and 

working memory task performance in the present participants have been reported previously 

(Brown et al., 2018; Gold et al., 2017). In the present study, we focused on the relationships 

between activation/deactivation magnitudes and neuropsychological performance.

2.5. Image Acquisition:

All images were collected using a Siemens Trio TIM 3 Tesla scanner with a 32-channel head 

coil at the University of Kentucky Magnetic Resonance Imaging and Spectroscopy Center 

(MRISC). The protocol consisted of the following sequences collected in the order in which 

they are listed: 1) High-resolution T1-weighted anatomical image, 2) Two task-fMRI blood-

oxygen level dependent (BOLD) T2*-weighted functional imaging runs, 3) one resting state 

(rs)-fMRI BOLD T2*-weighted functional imaging run, 4) diffusion tensor imaging (DTI), 

5) fluid-attenuated inversion recovery (FLAIR) imaging.
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The high-resolution T1-weighted image was acquired using magnetization-prepared rapid 

echo gradient-echo (MPRAGE) sequence [Repetition time (TR) = 2530ms, Echo time (TE) 

= 2.26ms, inversion time (TI) = 1100ms, Flip angle = 7°, acquisition matrix = 256 × 256 × 

176, field of view (FOV) = 256 × 256 mm, 1mm isotropic voxels]. Task- and rs-fMRI were 

acquired using gradient-echo echo-planar imaging (EPI) [TR = 2000ms, TE = 27ms, Flip 

angle = 83°, acquisition matrix = 64 × 64, FOV = 243 × 243 mm, 3.8mm isotropic voxels, 

36 interleaved slices]. DTI was acquired using a double-spin echo EPI sequence [TR = 

8000ms, TE = 96ms, Flip angle = 90°, FOV = 224 × 224 mm, 2mm isotropic voxels, 52 

contiguous slices] with 60 non-collinear encoding directions (b = 1000 sec/mm2) plus 8 

images without diffusion weighting (b0). FLAIR images were collected using a fat-

saturated, turbo-spin echo (TSE) sequence [TR = 9000ms, TE = 89ms, TI = 2500ms, Flip 

Angle = 90°, Refocusing Angle = 130°, acquisition matrix = 256 × 174 × 34, 1 × 1 × 4mm 

voxels].

2.6. Functional Imaging Analysis:

Analyses focused on participant’s mean functional activation/deactivation magnitude within 

two network templates: the DMN and ECN. The templates were developed in our previous 

studies that involved both younger and older adults (Brown et al., 2018; Gold et al., 2017). 

These templates were utilized instead of using a standard rs-fMRI template, such as Stanford 

rs-fMRI atlases, as they incorporate data from older adults, and are thus more appropriate for 

the study of older adults. The template development has been described in full detail 

elsewhere (Brown et al., 2018). Briefly, the functional templates were developed using the 

following steps. The FMRIB software library (FSL) version 5.0.9 (Jenkinson et al., 2012; 

Smith et al., 2004) was used for pre-processing and analysis of neuroimaging data. 

Following motion correction and non-linear registration to the MNI152 T1 2mm3, both task- 

and rs-fMRI data were scrubbed for motion with both regression of motion parameters and 

removal of motion outliers using a frame-wise displacement threshold of > 0.5mm (Power et 

al., 2012). Further nuisance regression removed signal of white matter and CSF (Brown et 

al., 2018). The residuals from these pre-processing steps were then used for time-series 

analyses.

The templates were formed by performing independent component analysis separately for 

each task- and rs-fMRI run, averaging DMN/ECN components from task-based runs, and 

masking them with the DMN/ECN component from rs-fMRI in order to include regions 

showing activation/deactivation during the task and connectivity at rest (Brown et al., 2018). 

Using this approach, only regions showing task-related activity that were part of the 

canonical resting-state networks were included our final templates (Figure 1). Subsequent 

analyses focused on BOLD magnitude within the functional templates.

Time-series were extracted from the functional templates (Figure 1). BOLD signal during 

baseline was computed by averaging the middle 6s of all baseline blocks (in order to avoid 

the upshoot and downshoot associated with the onset/offset of blocks). BOLD signal during 

the task was computed by averaging the middle 6s of all working memory blocks (to parallel 

sampling of baseline blocks). Activation/deactivation within the functional templates was 

then computed as percent signal change by subtracting the BOLD signal during the baseline 
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from BOLD signal during the task and multiplying by 100. For ease of interpretation, 

deactivation magnitude within the functional DMN template is reported by inverting the sign 

of % signal change (i.e. more negative % signal change is represented as more positive 

deactivation magnitude).

2.7. FLAIR Analysis:

FLAIR images were used to measure WMH volume and aid the development of a DTI-

based microstructural templates within normal appearing white matter (naWM) with the 

same participants (Brown et al., 2018). A semi-automated process was used to identify 

WMH as previously described (Gold et al., 2017; Smith et al., 2016). Briefly, T1 structural 

images and FLAIR images were both corrected for inhomogeneities using the N3 correction 

in MIPAV (http://mipav.cit.nih.gov), and T1 images were then segmented using FreeSurfer 

(Dale et al., 1999; Fischl et al., 2002) to create a WM template. The resulting WM template 

was linearly registered to the FLAIR image using FLIRT, then dilated once in 2.5 days using 

MIPAV, and finally underwent a 1mm Gaussian blur using FSL’s SUSAN. The resulting 

mask was then applied to the FLAIR image, and a histogram of voxel-intensities for the 

FLAIR-WM image was generated. After applying a two-Gaussian model in order to identify 

the mean and standard deviation of the dominant fit, the FLAIR-WM image was thresholded 

to include only voxels > 2.33 SD above this mean to form a WMH mask. This mask was 

manually edited to remove artefactual voxels in regions between lateral ventricles and in 

inferior slices (Smith et al., 2016). WMH volume was then calculated using fslstats and 

normalized to intracranial volume (ICV). Normalized WMH volumes were log-transformed 

prior to inclusion in statistical analyses.

The WMH mask was further used in the creation of DTI-based microstructural templates 

within naWM. Specifically, the WMH mask was registered to the average b0 image from 

DTI to restrict subsequent DTI analyses (described in section 2.8) to regions of naWM. The 

TBSS non-FA pipeline was used to register WMH masks in diffusion space to the FMRIB58 

1mm template (Smith et al., 2006), which were then used to determine naWM for each 

participant (described in section 2.8).

2.8. DTI Analysis:

Analyses focused on participant’s mean FA values within DMN and ECN naWM templates 

developed using data from our previous study that included both younger and older adults. 

Mean FA was selected as it provides a summary measure of overall WM organization and is 

the most common DTI metric used for correlations with cognition in the literature. Mean 

diffusivity was not analyzed in this study as it is strongly negatively correlated with FA. The 

DTI analysis procedures used to develop the WM templates is described in detail elsewhere 

(Brown et al., 2018). Previous work from our laboratory has shown that including data from 

both younger and older adults in development of white matter templates provides a more 

accurate template for use in aging populations than using data from younger or older adults 

only (Brown et al., 2017). In order to allow for easier reproducibility of these data, all 

templates used in this study have been made available on publicly accessible websites. 

Briefly, the WM templates were developed using the following steps. The templates were 
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generated from individual tractography results in our previous study after data had 

undergone the standard pre-processing described below.

Tractography was performed using BEDPOSTX and PROBTRACKX2 in network mode 

with the regions identified in each functional template (DMN or ECN) as seed regions 

(Behrens et al., 2007). Successful streamlines were those that started in one seed region from 

the functional template and ended in another seed region from the functional template 

without violating standard curvature, distance, and FA thresholds. Individual tractography 

results were corrected for total streamlines attempted and waytotal, registered to standard 

space using transformations from tract-based spatial statistics (TBSS), and then averaged 

and thresholded to form group templates of DMN and ECN WM pathways.

FMRIB’s Diffusion Toolbox (FDT) v.3.0 was used for processing and analyses as previously 

described (Brown et al., 2018). Initial pre-processing included use of EDDY for motion and 

eddy-current correction with automatic replacement of outliers (Andersson et al., 2016; 

Andersson and Sotiropoulos, 2016), brain extraction using the average b0 image, and 

generation of a voxel-wise tensor model using DTIFIT. The voxel-wise tensor model was 

used to generate an FA image, which was then registered to the FMRIB58 FA 1mm template 

using the tract-based spatial statistics (TBSS) pipeline (Smith et al., 2006). A group skeleton 

was formed using a threshold of FA > 0.2 and individual participant data was projected onto 

this skeleton in order to minimize partial volume effects and correct for residual 

misalignments. The group templates were then masked by the mean FA skeleton to form 

skeletonized WM templates. FA was then measured within individualized DMN-naWM and 

ECN-naWM masks. These individualized naWM masks were formed by masking the group 

skeleton templates by each participant’s WMH image in FMRIB58 1mm space (described 

above) and including only voxels that were not part of the WMHs (i.e. naWM). The average 

FA within each participant’s DMN-naWM and ECN-naWM skeleton masks was then 

calculated using fslstats.

2.9. Statistical Analyses:

SPSS 24 (IBM, Chicago, IL) was used for all statistical analyses. Cross-sectional 

relationships between potential correlates of EF were first explored using bivariate 

correlations between our independent variables: DMN deactivation, FA in DMN-naWM, 

ECN activation, FA in ECN-naWM, WMH volume, and CSF tau/Aβ42 ratio. Multiple linear 

regression was then used to explore the relationship between these predictors and baseline 

EF with a backward selection step to identify only the significant predictors (elimination 

criteria of p > .10). Due to high co-linearity between FA in DMN-naWM and ECN-naWM, 

regressions were initially run separately for each network. In cases where multiple measures 

remained in the final model, mediation models were used to explore how these measures 

contribute to baseline EF.

Longitudinal analyses examined whether any neuroimaging or neuropathology measures 

could predict average annual change in EF (ΔEF) scores after controlling for baseline EF 

scores. Similar to baseline analyses, multiple linear regression analyses were performed 

separately for each network (DMN or ECN) with a backward selection step to identify only 

the significant predictors (elimination criteria of p > .10). In cases where multiple measures 
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remained in the final model, mediation models were used to explore how these measures 

contribute to ΔEF scores.

Due to the presence of multivariate relationships, Preacher and Hayes mediation analyses 

(Hayes, 2013) were used to determine if any variables mediated the relationships between 

another variable and EF scores. This analysis seeks to examine whether the total effect (c) of 

some predictor (X) on the outcome measure (Y) is due to a significant direct effect (c’) of X 

on Y or instead is explained by an indirect effect (ab) of X on Y through a mediator variable 

(M). Significance was tested using 5000 bootstrap samples to calculate bias-corrected 95% 

confidence intervals. Indirect effects with bootstrapped 95% confidence intervals not 

crossing 0 were considered significant.

2.10. Supplemental Analysis:

A supplementary analyses utilized linear mixed modeling rather than the average yearly 

change in EF to evaluate the impact of each baseline measure on longitudinal change in EF. 

In these analyses, time was used as a continuous variable in years with the baseline visit as 

year 0. Additional predictors included FA in DMN-naWM, FA in ECN-naWM, DMN 

deactivation magnitude, ECN activation magnitude, WMH volume and CSF tau/Aβ42. Both 

main effects and the time × predictor interaction were assessed for each model. For all 

models, REML was used for estimation and a compound symmetry variance structure was 

used for repeated effects. As six separate primary models were run, those interactions with p 
< .05/6 = .0083 were considered significant. A final model was run using those predictors 

found to have a significant predictor × time interaction in the primary models.

3. Results

3.1. Functional and WM templates:

The DMN and ECN functional templates created from data from our previous study with 

younger and older adults (Brown et al., 2018) are shown in Figure 1. The functional DMN 

template includes bilateral medial prefrontal, posterior cingulate, dorsomedial prefrontal, 

lateral parietal/occipital, and lateral parietal cortices, as well as the left parahippocampal 

gyrus and right hippocampus (Figure 1a). The ECN template includes portions of the 

dorsolateral prefrontal cortex, dorsal parietal cortices, and lateral temporal cortices (Figure 

1b). The DMN regions are consistent with those described as canonical DMN regions 

(Buckner et al., 2005), while the ECN regions are most consistent with the superordinate 

cognitive control network (Cole and Schneider, 2007; Niendam et al., 2012).

The structural DMN and ECN WM templates are shown in Figure 2. The DMN-WM 

template consists of WM pathways connecting DMN functional regions (i.e. deactivations) 

within the same participants including portions of the cingulum, superior longitudinal 

fasciculus, inferior longitudinal fasciculus, fornix, corpus callosum genu, and corpus 

callosum splenium. The ECN template consists of WM pathways connecting ECN 

functional regions (i.e. activations) within the same participants including portions of the 

superior longitudinal fasciculus, corpus callosum genu, corpus callosum splenium, and 

inferior fronto-occipital fasciculus.
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3.2. Baseline relationships:

There was a strong correlation between both accuracy (r = 0.43, p = .014) and reaction time 

(r = −0.54, p = .001) on the fMRI task used to generate the functional templates and baseline 

EF scores in the present sample. At baseline, many of the neuroimaging and neuropathology 

measures were correlated (Table 2). Results of multiple linear regression indicated that 

baseline EF was predicted by the full DMN model (F4,27 = 3.83, p = .014). In this model, 

DMN deactivation was the only significant predictor (β = 0.45, t = 2.55, p = .012), while FA 

in DMN-naWM (β = 0.09, t = 0.53, p = .602), CSF tau/Aβ42 (β = 0.129, t = 0.74, p = .465), 

and WMH volume (β = −0.32, t = −1.99, p = .057) were not significant predictors. The first 

step of backward selection (F3,28 = 5.15, p = .006) removed FA in DMN-naWM, and the 

final step removed CSF tau/Aβ42, leaving both DMN deactivation (β = 0.43, t = 2.84, p = .

008) and WMH volume (β = −0.35, t = −2.33, p = .027) as predictors in the final model 

(F2,29 = 7.68, p = .002) (Figure 3a). Similarly, results indicated that baseline EF was also 

predicted by the full ECN model (F4,27 = 2.90, p = .040). In this model, ECN activation 

approached significance (β = −0.38, t = −2.03, p = .052), while FA in ECN-WM (β = 0.06, t 
= 0.33, p = .742), CSF tau/Aβ42 (β = 0.094, t = 0.52, p = .609), and WMH volume (β = 

−0.31, t = −1.85, p = .075) were not significant predictors. The first step of backward 

selection (F3,28 = 3.96, p = .018) removed FA in ECN-WM, and the final step removed CSF 

tau/Aβ42, leaving both ECN activation (β = −0.365, t = −2.29, p = .030) and WMH volume 

(β = −0.33, t = −2.08, p = .047) as predictors in the final model (F2,29 = 5.92, p = .007) 

(Figure 3b).

Several mediation models were then run to explore the potential mediation effects. The first 

model explored whether DMN deactivation and/or ECN activation mediated the effect of 

WMH volume on EF (Figure 4a). Results of this model demonstrated that neither the 

combined (ab = −0.08 [−0.33, 0.03]) or individual indirect effects of ECN activation (ab = 

−0.04 [−0.35, 0.03]) and DMN deactivation (ab = −0.04 [−0.16, 0.01]) mediated the 

significant direct effect (c’ = −0.32 [−0.63, −0.01]) of WMH volume on baseline EF. The 

second model explored whether DMN deactivation and/or WMH volume mediated the 

relationship between ECN activation and EF (Figure 4b). Results demonstrated that the 

combined indirect effect of DMN deactivation and WMH volume (ab = −0.23 [−0.66, 

−0.002]) mediated the relationship between ECN activation and EF (c’ = −0.21 [−0.56, 

0.15]), but neither the individual indirect effect of WMH volume (ab = −0.07 [−0.23, 0.007]) 

nor of DMN deactivation (ab = −0.16 [−0.58, 0.009]) was significant. The final model 

explored whether ECN activation and/or WMH volume mediated the relationship between 

DMN deactivation and EF (Figure 4c). Results demonstrated that while neither the 

combined indirect effect (ab = 0.14 [−0.002, 0.42] nor the indirect effect of WMH volume 

(ab = 0.04 [−0.05, 0.20] mediated the relationship between DMN deactivation and EF, the 

indirect effect of ECN activation (ab = 0.099 [0.001, 0.322]) did significantly mediate this 

relationship (c’ = 0.33 [−0.02, 0.68]).

3.3. Predicting Longitudinal Change in EF scores:

All participants remained cognitively normal at follow-up with MMSE > 27 and CDR-SB = 

0 at all time points. EF declined −0.04 ± 0.228 units annually over the 3-year follow-up 

period. Higher baseline EF scores were associated with more negative ΔEF scores (r = 
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−0.46, p = .011). Separate linear regression analyses were performed for the DMN and ECN 

to determine whether imaging and neuropathology measures could predict ΔEF scores after 

controlling for baseline EF. Results indicated that ΔEF scores were predicted by the full 

DMN model (F5,23 = 6.61, p = .001) after first entering baseline EF into the model (F-
change4,23 = 5.24, p = .004). In this model, the only significant predictor other than baseline 

EF was FA in DMN-naWM (β = 0.38, t = 2.35, p = .027), while DMN deactivation (β = 

0.14, t = 0.99, p = .385), CSF tau/Aβ42 (β = −0.23, t = −1.45, p = .161), and WMH volume 

(β = −0.15, t = −1.02, p = .320) all failed to reach significance. The first step of backward 

selection (F4,24 = 6.61, p < .001) removed DMN deactivation, and the final step removed 

WMH volume, leaving both FA in DMN-naWM (β = 0.44, t = 2.80, p = .010) and CSF tau/

Aβ42 (β = −0.26, t = −1.75, p = .093) as predictors in the final model (F3,25 = 10.59, p < .

001) (Figure 5a). Similarly, results indicated that ΔEF scores were predicted by the full ECN 

model (F5,23 = 7.01, p < .001) after first entering baseline EF into the model (F-change4,23 = 

5.63, p = .003). In this model, both FA in ECN-naWM (β = 0.41, t = 2.71, p = .013), CSF 

tau/Aβ42 (β = −0.41, t = −2.63, p = .015) were significant, while neither ECN activation (β = 

0.23, t = 1.46, p = .159) nor WMH volume (β = −0.17, t = −1.18, p = .249) were significant 

predictors. The first step of backward selection (F4,24 = 8.28, p < .001) removed WMH 

volume, and the final step removed ECN activation, leaving both FA in ECN-WM (β = 0.39, 

t = 2.60, p = .016) and CSF tau/Aβ42 (β = −0.31, t = −2.08, p = .048) as predictors in the 

final model (F3,25 = 9.96, p < .001) (Figure 5b).

As FA in DMN-WM and FA in ECN-WM were highly correlated, mediation models were 

run with only one of the variables entered at a time. Therefore, 4 mediation models were 

run: 1) CSF tau/Aβ42 as a mediator of the FA in DMN-naWM and ΔEF score relationship, 

2) CSF tau/Aβ42 as a mediator of the FA in ECN-naWM and ΔEF score relationship, 3) FA 

in DMN-naWM as a mediator of the CSF tau/Aβ42- and ΔEF score relationship, and 4) FA 

in ECN-naWM as a mediator of the CSF tau/Aβ42 and ΔEF score relationship. In all models, 

baseline EF was used as a covariate on ΔEF scores. Results of the first two mediation 

analyses (Figure 6c-d) found that CSF tau/Aβ42 did not mediate the effect of FA in DMN-

naWM (c’ = 0.44 [0.11, 0.76], ab = 0.11 [−0.01, 0.35]), nor did it mediate the effect of FA in 

ECN-naWM (c’ = 0.39 [0.08, 0.71], ab = 0.11 [−0.02, 0.41]) on ΔEF scores. Results of the 

third model (Figure 6a) demonstrated that FA in DMN-naWM fully mediated the 

relationship between CSF tau/Aβ42 and ΔEF scores (ab = −0.19 [−0.53, −0.01], c’ = −0.26 

[−0.57, 0.047]). Finally, the results of the fourth model (Figure 6b) demonstrated that FA in 

ECN-WM partially mediated (ab = −0.15 [−0.405, −0.01]) the significant effect of CSF tau/

Aβ42 on ΔEF scores (c’ = −0.30 [−0.61, −0.002]).

3.4. Linear mixed modeling

Linear-mixed models were used to assess how baseline measures predicted the change in EF 

over time. For each model, time was input as a continuous variable in years, with the 

baseline visit as year 0. DMN deactivation magnitude, FA in DMN-naWM, ECN activation 

magnitude, FA in ECN-naWM, WMH volume, and CSF tau/Aβ42 were entered in separate 

models as main effects, along with a time × baseline predictor interaction. Results of these 

models are shown in Table 3 and found that the only two predictors with a significant 

interaction with time were FA in DMN-naWM and FA in ECN-naWM. An additional model 
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was run using both FA in DMN-naWM and FA in ECN-naWM along with their interactions 

with time, but no predictor other than time was significant (Table 4). A final full model was 

run using the addition of FA in DMN-naWM × FA in ECN-naWM and FA in DMN-naWM 

× FA in ECN-naWM × time interactions. Results are provided in Table 4 and demonstrated 

significant FA in DMN-naWM × time, FA in ECN-naWM × time, and FA in DMN-naWM × 

FA in ECN-naWM × time interactions.

4. Discussion

We explored the relative contributions of functional and structural brain profiles, WMH 

burden and AD pathology to baseline and longitudinal EF performance in older adults. 

Results indicated that baseline EF was best predicted by ECN activation and DMN 

deactivation magnitudes and WMH volume. In contrast, ΔEF was predicted by DMN-WM 

and ECN-WM microstructure and AD pathological markers. However, DMN WM 

microstructure mediated the relationship between AD pathology and ΔEF. Together, our 

findings suggest that WMH volume and DMN/ECN functional patterns contribute to current 

EF performance of older adults, while measures of DMN and ECN WM microstructure 

appear to be better predictors their future EF performance.

4.1. Baseline EF is Associated with WMH Volume, ECN Activation, and DMN Deactivation

In the present study, WMH volume, ECN activation, and DMN deactivation magnitude 

predicted baseline EF performance. These findings are consistent with separate studies 

which have demonstrated that greater WMH volume (COHEN et al., 2002; Stephanie 

Debette and Markus, 2010), higher ECN activity (Rypma et al., 2006; Stern, 2009; Zhu et 

al., 2015), and less DMN deactivation (Brown et al., 2015; Persson et al., 2007; Prakash et 

al., 2012) are all associated with poorer performance during tasks placing high demands on 

EF in older adults. This study extends findings in previous studies concerning ECN and 

DMN activity to more broadly used clinical measures of EF (as has been shown with 

previous studies concerning WMHs). Further, the composite measure of EF utilized in the 

present study provides a global estimate of EF that is less tied to potentially idiosyncratic 

single measure results (Crane et al., 2008).

Moreover, our results from multivariate analyses suggest, that among a number of potential 

predictors, functional activation in the ECN, deactivation in the DMN and WMH burden 

contributed to baseline EF performance in older adults. The finding that the association 

between ECN activation and EF was mediated by the indirect effects of WMH volume and 

DMN deactivation suggests that increased ECN activity may represent a compensatory 

response to greater levels of structural lesions in the form of WMHs and greater levels of 

ongoing activity in the DMN during the task. Notably, ECN activation was negatively 

correlated with EF performance. Therefore, increased ECN activity may represent a failed 

attempt at compensation and/or a sign of reduced efficiency (Barulli and Stern, 2013; Zhu et 

al., 2015).

In addition, greater levels of ongoing activity in the DMN during the task would be expected 

to negatively affect EF performance because it would result in greater ongoing internally-

focused processes (Brown et al., 2015; Persson et al., 2007). Therefore, greater EF resources 
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may be needed to suppress interference from ongoing DMN processes, possibly leaving 

fewer EF resources to devote to the task-at-hand. In contrast, those who successfully 

deactivate the DMN appear to be able to “free-up” neural resources for use in EF processes 

required by the task-at-hand.

As noted, WMH volume was also a significant predictor of baseline EF performance. This 

suggests that other factors outside of the observed functional alterations may serve as the 

mechanism by which WMHs contribute to poorer EF. Previous studies have suggested that 

WMHs may contribute to poor EF directly through disconnection of neural networks or 

indirectly through neurodegeneration secondary to vascular compromise (Brown et al., 

2007; Stéphanie Debette and Markus, 2010). The latter is more consistent with our current 

results as WM microstructure did not predict baseline EF performance in the present study.

4.2. Longitudinal change in EF is predicted by baseline DMN and ECN WM microstructure

Our results indicated that baseline WM microstructure predicted longitudinal decline in EF 

over a three-year follow-up period. Previous results have shown that baseline WM 

microstructure (averaged across the entire brain) predicts longitudinal change in working 

memory (Charlton et al., 2010), and WM microstructure (averaged across several major 

tracts including the cingulum and corpus callosum) predicts fluid intelligence (Ritchie et al., 

2015) over a period of years. In the current study, both microstructure within DMN WM 

pathways and within ECN WM pathways predicted longitudinal decline in EF in separate 

regression analyses.

Furthermore, results of linear mixed-modelling indicated that DMN and ECN WM 

microstructure appear to both independently and synergistically predict longitudinal change 

in EF. Together these results provide new evidence that WM microstructure within the ECN 

and DMN are strong predictors of longitudinal decline in performance on standardized 

neuropsychological tests of EF. These standardized neuropsychological EF tests are used as 

part of the diagnostic criteria for mild cognitive impairment (MCI)(Albert et al., 2011) and 

have been found to predict development of MCI and AD (Albert et al., 2001; Blacker et al., 

2007; Gibbons et al., 2012). Therefore, with further refinement, the present DMN and ECN 

naWM templates may aid prediction of future cognitive decline and clinical diagnosis.

4.3. Longitudinal change in EF is predicted by AD pathology

The present study found that baseline CSF tau/Aβ42 ratios also predicted change in EF over 

the three-year follow-up period. A large body of work has focused on the use of AD markers 

to predict memory decline (Hedden et al., 2013), as well as prediction of clinical progression 

(Fagan et al., 2007; Vos et al., 2013). In contrast, less work has examined if AD pathology is 

predictive of EF performance declines. Several studies have demonstrated that increased AD 

pathology is associated with poorer EF performance cross-sectionally (Hedden et al., 2013; 

Oh et al., 2012), and one study demonstrated that higher CSF tau/Aβ42 ratios predict 

longitudinal decline in EF in CN older adults and those with MCI (van Harten et al., 2013). 

Our results are consistent with these findings in suggesting that baseline AD pathology 

impacts subsequent EF functioning.
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4.4. DMN WM microstructure mediates the relationship between the tau/Aβ42 ratio and 
ΔEF

A key finding of the present study was that DMN WM microstructure mediated the 

relationship between the tau/Aβ42 ratio and ΔEF. Our mediation results provide the first 

evidence to our knowledge that AD pathology is associated with change in EF over time, in 

part, through its relationship with DMN WM microstructure. In addition, ECN WM 

microstructure partially mediated the relationship between the tau/Aβ42 ratio and ΔEF. This 

may represent the stronger association between AD pathology and the DMN at these early 

disease stages, and indicates the importance of WM microstructure in the AD pathological 

process. It is thus worth considering how Aβ42 and tau may negatively affect WM 

microstructure. Aβ42 has been show to disrupt myelin sheath formation and is toxic to 

oligodendrocytes responsible for maintenance and repair of myelin (Horiuchi et al., 2012; 

Lee et al., 2004; Xu et al., 2001). Further, abnormal aggregation of tau contributes to 

microtubule destabilization due to the loss of normal tau function (Alonso et al., 1994). 

Finally, tau and Aβ42 interact to disrupt fast axonal transport (FAT), which in turn 

contributes to decline in axonal, myelin, and synaptic integrity (Bartzokis, 2011; Vossel et 

al., 2015, 2010).

The direct effect of both DMN and ECN WM microstructure on change in EF suggests that 

additional, non-AD-related pathological changes in EF are also predicted by WM 

microstructure. Of relevance, we used FLAIR imaging to identify and mask out areas of 

WMH in order to study normal appearing WM (Brown et al., 2018). WMHs are ubiquitous 

in aging (de Leeuw, 2001) and are thought to primarily reflect areas of cerebrovascular 

pathology resulting from a breakdown in vascular integrity (Young et al., 2008). In contrast, 

declines in naWM are thought to reflect subtler declines in the microstructural organization 

of WM (van Norden et al., 2012). These changes may be the result of age-related declines in 

synapses, axonal loss, or myelin breakdown, all of which would reduce WM microstructure 

through loss of membrane density and organizational coherence (Bartzokis et al., 2004; 

Marner et al., 2003; Masliah et al., 1993; Tang et al., 1990). In addition, these changes may 

also reflect distal effects in tracts negatively impacted by cerebrovascular pathology (van 

Norden et al., 2012). Therefore, WM microstructure appears to be a sensitive marker that 

likely reflects a combination of age-related, AD pathology-related, and cerebrovascular 

pathology-related processes that each contribute to poorer EF outcomes.

4.5. Baseline and Longitudinal EF are predicted by different functional/structural network 
measures

The DMN and ECN were found to be predictors of both baseline EF and ΔEF. However, 

baseline EF was only predicted by DMN and ECN functional patterns, while DMN and 

ECN WM microstructure were the most direct predictors of ΔEF. It is unclear what may 

cause this shift, but one possibility may be that functional brain measures reflect more 

dynamic processes that undergo greater day-to-day fluctuations and brain function may thus 

be a better predictor of more proximal EF performance. In contrast, measures of brain 

structure, which are often considered measures of ‘brain reserve’, likely show less 

fluctuation over short periods of time and would thus be expected to be more stable 

predictors of future cognitive performance than functional measures. While speculative, this 
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possibility is generally in-line with a view that compensatory functional mechanisms 

become less effective in the context of increasing disruption of the structural network over 

time, thus aspects of brain reserve become more important (Barulli and Stern, 2013).

4.6. Limitations

The current study has several limitations. First, while baseline measures predicted ΔEF, 

causality cannot be directly inferred from the present results. For example, it is possible that 

some other unmeasured variable may be responsible for the observed relationships and 

mediation effects as these analyses are all hypothesis-driven correlational approaches. In 

addition, the present study had a limited sample size and may have been underpowered to 

detect smaller effects on EF cross-sectionally and longitudinally. Future work should use 

larger cohorts in order to better detect subtler effects. Further, we examine only CN older 

adults. It is unclear whether these relationships are maintained in states of mild cognitive 

impairment and clinical dementia. Future studies should seek to investigate the role of DMN 

WM and deactivation predicting EF in these later clinical stages. Finally, we treated AD 

pathology as a continuous variable, but it is unclear whether the relationship between AD 

pathology and other measures may be different above and below certain thresholds. Future 

studies should be performed with large enough samples to assess the effects of AD 

pathology on brain structure/function and EF both within sub- and supra-threshold groups 

and across all participants.

4.7. Conclusions

The current study provides evidence for relationships between multiple functional and 

structural factors in the DMN and ECN and EF performance on standardized 

neuropsychological measures. Further, our results provide novel evidence that baseline AD 

pathology negatively impacts subsequent EF performance, in part, through its association 

with poorer WM microstructure within the DMN. Measures of WM microstructure may thus 

aid the monitoring and assessment of future therapeutic interventions aimed at preventing 

longitudinal EF declines.

Acknowledgments:

This study was supported by the National Institute on Aging and National Center for Advancing Translational 
Sciences of the National Institutes of Health (grant numbers R01AG033036, R01AG055449, P30AG028383, 
P01AG030128, TL1TR001997). The content is solely the responsibility of the authors and does not necessarily 
represent the official views of these granting agencies. The authors declare no competing financial interests. The 
authors thank, Dr. Gregory Jicha for performing some of the lumbar punctures, Drs. Jon Trojanowski and Leslie 
Shaw for CSF analysis, Beverly Meacham for conducting some of the MRI scans, and Drs. Erin Abner and Richard 
Kryscio for providing biostatistics consultation.

References

Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, 
Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH, 2011 The diagnosis of mild 
cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on 
Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. 
Alzheimers. Dement 7, 270–9. doi:10.1016/j.jalz.2011.03.008 [PubMed: 21514249] 

Albert MS, Moss MB, Tanzi R, Jones K, 2001 Preclinical prediction of AD using neuropsychological 
tests. J. Int. Neuropsychol. Soc 7, 631–639. [PubMed: 11459114] 

Brown et al. Page 15

Neuroimage. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K, 1994 Role of abnormally phosphorylated tau in the 
breakdown of microtubules in Alzheimer disease. Proc. Natl. Acad. Sci. U. S. A 91, 5562–6. 
[PubMed: 8202528] 

Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN, 2016 Incorporating outlier detection and 
replacement into a non-parametric framework for movement and distortion correction of diffusion 
MR images. Neuroimage 141, 556–572. doi:10.1016/j.neuroimage.2016.06.058 [PubMed: 
27393418] 

Andersson JLR, Sotiropoulos SN, 2016 An integrated approach to correction for off-resonance effects 
and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078. doi:10.1016/
j.neuroimage.2015.10.019 [PubMed: 26481672] 

Bartzokis G, 2011 Alzheimer’s disease as homeostatic responses to age-related myelin breakdown. 
Neurobiol. Aging 32, 1341–71. doi:10.1016/j.neurobiolaging.2009.08.007 [PubMed: 19775776] 

Bartzokis G, Sultzer D, Lu PH, Nuechterlein KH, Mintz J, Cummings JL, 2004 Heterogeneous age-
related breakdown of white matter structural integrity: implications for cortical “disconnection” in 
aging and Alzheimer’s disease. Neurobiol. Aging 25, 843–51. doi:10.1016/j.neurobiolaging.
2003.09.005 [PubMed: 15212838] 

Barulli D, Stern Y, 2013 Efficiency, capacity, compensation, maintenance, plasticity: emerging 
concepts in cognitive reserve. Trends Cogn. Sci 17, 502–9. doi:10.1016/j.tics.2013.08.012 
[PubMed: 24018144] 

Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW, 2007 Probabilistic diffusion 
tractography with multiple fibre orientations: What can we gain? Neuroimage 34, 144–55. doi: 
10.1016/j.neuroimage.2006.09.018 [PubMed: 17070705] 

Blacker D, Lee H, Muzikansky A, Martin EC, Tanzi R, McArdle JJ, Moss M, Albert M, 2007 
Neuropsychological Measures in Normal Individuals That Predict Subsequent Cognitive Decline. 
Arch. Neurol 64, 862. doi:10.1001/archneur.64.6.862 [PubMed: 17562935] 

Breteler MM, van Swieten JC, Bots ML, Grobbee DE, Claus JJ, van den Hout JH, van Harskamp F, 
Tanghe HL, de Jong PT, van Gijn J, 1994 Cerebral white matter lesions, vascular risk factors, and 
cognitive function in a population-based study: the Rotterdam Study. Neurology 44, 1246–52. doi:
10.1212/wnl.56.7.921 [PubMed: 8035924] 

Brown C. a., Hakun JG, Zhu Z, Johnson NF, Gold BT, 2015 White matter microstructure contributes to 
age-related declines in task-induced deactivation of the default mode network. Front. Aging 
Neurosci 7. doi:10.3389/fnagi.2015.00194

Brown CA, Jiang Y, Smith CD, Gold BT, 2018 Age and Alzheimer’s pathology disrupt default mode 
network functioning via alterations in white matter microstructure but not hyperintensities. Cortex. 
doi:10.1016/J.C0RTEX.2018.04.006

Brown CA, Johnson NF, Anderson-Mooney AJ, Jicha GA, Shaw LM, Trojanowski JQ, Van Eldik LJ, 
Schmitt FA, Smith CD, Gold BT, 2017 Development, validation and application of a new fornix 
template for studies of aging and preclinical Alzheimer’s disease. Neuroimage Clin. 13, 106–115. 
doi:10.1016/j.nicl.2016.11.024 [PubMed: 27942453] 

Brown WR, Moody DM, Thore CR, Challa VR, Anstrom JA, 2007 Vascular dementia in leukoaraiosis 
may be a consequence of capillary loss not only in the lesions, but in normal-appearing white 
matter and cortex as well. J. Neurol. Sci 257, 62–66. doi:10.1016/j.jns.2007.01.015 [PubMed: 
17320909] 

Buckner RL, Snyder AZ, Shannon BJ, LaRossa G, Sachs R, Fotenos AF, Sheline YI, Klunk WE, 
Mathis CA, Morris JC, Mintun MA, 2005 Molecular, structural, and functional characterization of 
Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J. 
Neurosci 25, 7709–17. doi:10.1523/JNEUROSCI.2177-05.2005 [PubMed: 16120771] 

Charlton RA, Schiavone F, Barrick TR, Morris RG, Markus HS, 2010 Diffusion tensor imaging detects 
age related white matter change over a 2 year follow-up which is associated with working memory 
decline. J. Neurol. Neurosurg. Psychiatry 81, 13–9. doi: 10.1136/jnnp.2008.167288 [PubMed: 
19710050] 

COHEN RA, PAUL RH, OTT BR, MOSER DJ, ZAWACKI TM, STONE W, GORDON N, 2002 The 
relationship of subcortical MRI hyperintensities and brain volume to cognitive function in vascular 
dementia. J. Int. Neuropsychol. Soc 8, S1355617702860027. doi:10.1017/S1355617702860027

Brown et al. Page 16

Neuroimage. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cole MW, Schneider W, 2007 The cognitive control network: Integrated cortical regions with 
dissociable functions. Neuroimage 37, 343–360. doi:10.1016/J.NEUROIMAGE.2007.03.071 
[PubMed: 17553704] 

Craik FIM, Salthouse TA, 2011 The handbook of aging and cognition. Psychology Press.

Crane PK, Narasimhalu K, Gibbons LE, Pedraza O, Mehta KM, Tang Y, Manly JJ, Reed BR, Mungas 
DM, 2008 Composite scores for executive function items: demographic heterogeneity and 
relationships with quantitative magnetic resonance imaging. J. Int. Neuropsychol. Soc. 14, 746–59. 
doi:10.1017/S1355617708081162 [PubMed: 18764970] 

Dale AM, Fischl B, Sereno MI, 1999 Cortical Surface-Based Analysis: I. Segmentation and Surface 
Reconstruction. Neuroimage 9, 179–194. doi:10.1006/nimg.1998.0395 [PubMed: 9931268] 

Daselaar SM, Iyengar V, Davis SW, Eklund K, Hayes SM, Cabeza RE, 2013 Less Wiring, More 
Firing: Low-Performing Older Adults Compensate for Impaired White Matter with Greater Neural 
Activity. Cereb. Cortex bht289-. doi:10.1093/cercor/bht289

de Leeuw F-E, 2001 Prevalence of cerebral white matter lesions in elderly people: a population based 
magnetic resonance imaging study. The Rotterdam Scan Study. J. Neurol. Neurosurg. Psychiatry 
70, 9–14. doi:10.1136/jnnp.70.1.9 [PubMed: 11118240] 

Debette S, Markus HS, 2010 The clinical importance of white matter hyperintensities on brain 
magnetic resonance imaging: systematic review and meta-analysis. BMJ 341, c3666. [PubMed: 
20660506] 

Debette S, Markus HS, 2010 The clinical importance of white matter hyperintensities on brain 
magnetic resonance imaging: systematic review and meta-analysis. BMJ 341, c3666. doi:10.1136/
bmj.c3666 [PubMed: 20660506] 

Fagan AM, Roe CM, Xiong C, Mintun MA, Morris JC, Holtzman DM, 2007 Cerebrospinal fluid tau/
beta-amyloid(42) ratio as a prediction of cognitive decline in nondemented older adults. Arch. 
Neurol 64, 343–9. doi:10.1001/archneur.64.3.noc60123 [PubMed: 17210801] 

Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, 
Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM, 2002 Whole Brain 
Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. Neuron 
33, 341–355. doi:10.1016/S0896-6273(02)00569-X [PubMed: 11832223] 

Gibbons LE, Carle AC, Mackin RS, Harvey D, Mukherjee S, Insel P, Curtis SM, Mungas D, Crane PK, 
2012 A composite score for executive functioning, validated in Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain 
Imaging Behav. 6, 517–27. doi:10.1007/s11682-012-9176-1 [PubMed: 22644789] 

Gold BT, Brown CA, Hakun JG, Shaw LM, Trojanowski JQ, Smith CD, 2017 Clinically silent 
Alzheimer’s and vascular pathologies influence brain networks supporting executive function in 
healthy older adults. Neurobiol. Aging 58, 102–111. doi:10.1016/J.NEUR0BI0LAGING.
2017.06.012 [PubMed: 28719854] 

Gold BT, Zhu Z, Brown CA, Andersen AH, LaDu MJ, Tai L, Jicha GA, Kryscio RJ, Estus S, Nelson 
PT, Scheff SW, Abner E, Schmitt FA, Van Eldik LJ, Smith CD, 2014 White matter integrity is 
associated with cerebrospinal fluid markers of Alzheimer’s disease in normal adults. Neurobiol. 
Aging 35, 2263–71. doi:10.1016/j.neurobiolaging.2014.04.030 [PubMed: 24866404] 

Gould RL, Brown RG, Owen AM, Bullmore ET, Howard RJ, 2006 Task-induced deactivations during 
successful paired associates learning: an effect of age but not Alzheimer’s disease. Neuroimage 31, 
818–31. doi:10.1016/j.neuroimage.2005.12.045 [PubMed: 16497521] 

Grady C, 2012 The cognitive neuroscience of ageing. Nat. Rev. Neurosci. 13, 491–505. doi: 10.1038/
nrn3256 [PubMed: 22714020] 

Grafton ST, Sumi SM, Stimac GK, Alvord EC, Shaw CM, Nochlin D, 1991 Comparison of 
postmortem magnetic resonance imaging and neuropathologic findings in the cerebral white 
matter. Arch. Neurol 48, 293–8. [PubMed: 1705796] 

Hayes AF, 2013 An introduction to mediation, moderation, and conditional process analysis: A 
regression-based approach, 3rd ed. Guilford Press, New York, NY.

Hedden T, Oh H, Younger AP, Patel TA, 2013 Meta-analysis of amyloid-cognition relations in 
cognitively normal older adults. Neurology 80, 1341–1348. doi:10.1212/WNL.0b013e31828ab35d 
[PubMed: 23547267] 

Brown et al. Page 17

Neuroimage. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hedden T, Van Dijk KRA, Shire EH, Sperling RA, Johnson KA, Buckner RL, 2012 Failure to 
modulate attentional control in advanced aging linked to white matter pathology. Cereb. Cortex 22, 
1038–1051. doi:10.1093/cercor/bhr172 [PubMed: 21765181] 

Horiuchi M, Maezawa I, Itoh A, Wakayama K, Jin LW, Itoh T, DeCarli C, 2012 Amyloid β1-42 
oligomer inhibits myelin sheet formation in vitro. Neurobiol. Aging 33, 499–509. doi:10.1016/
j.neurobiolaging.2010.05.007 [PubMed: 20594620] 

Jenkinson M, Beckmann CF, Behrens TEJ, Woolrich MW, Smith SM, 2012 FSL. Neuroimage 62, 
782–90. doi:10.1016/j.neuroimage.2011.09.015 [PubMed: 21979382] 

Jiang Y, 2000 Complementary Neural Mechanisms for Tracking Items in Human Working Memory. 
Science (80-. ). 287, 643–646. doi:10.1126/science.287.5453.643

Kane MJ, Engle RW, 2002 The role of prefrontal cortex in working-memory capacity, executive 
attention, and general fluid intelligence: An individual-differences perspective. Psychon. Bull. Rev 
9, 637–671. doi:10.3758/BF03196323 [PubMed: 12613671] 

Kantarci K, Schwarz CG, Reid RI, Przybelski SA, Lesnick TG, Zuk SM, Senjem ML, Gunter JL, 
Lowe V, Machulda MM, Knopman DS, Petersen RC, Jack CR, 2014 White matter integrity 
determined with diffusion tensor imaging in older adults without dementia: influence of amyloid 
load and neurodegeneration. JAMA Neurol. 71, 1547–54. doi:10.1001/jamaneurol.2014.1482 
[PubMed: 25347157] 

Kryscio RJ, Abner EL, Jicha GA, Nelson PT, Smith CD, Van Eldik LJ, Lou W, Fardo DW, Cooper GE, 
Schmitt FA, 2016 Self-reported memory complaints: a comparison of demented and unimpaired 
outcomes. J. Prev. Alzheimer’s Dis

Lee JT, Xu J, Lee JM, Ku G, Han X, Yang DI, Chen S, Hsu CY, 2004 Amyloid-β peptide induces 
oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J. Cell Biol 
164, 123–131. doi:10.1083/jcb.200307017 [PubMed: 14709545] 

Lustig C, Snyder AZ, Bhakta M, O’Brien KC, McAvoy M, Raichle ME, Morris JC, Buckner RL, 2003 
Functional deactivations: change with age and dementia of the Alzheimer type. Proc. Natl. Acad. 
Sci. U. S. A 100, 14504–9. doi: 10.1073/pnas.2235925100 [PubMed: 14608034] 

Marner L, Nyengaard JR, Tang Y, Pakkenberg B, 2003 Marked loss of myelinated nerve fibers in the 
human brain with age. J. Comp. Neurol 462, 144–152. doi:10.1002/cne.10714 [PubMed: 
12794739] 

Masliah E, Mallory M, Hansen L, DeTeresa R, Terry RD, 1993 Quantitative synaptic alterations in the 
human neocortex during normal aging. Neurology 43, 192–192. doi: 10.1212/WNL.
43.1_Part_1.192 [PubMed: 8423884] 

Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS, 2012 Meta-analytic evidence for a 
superordinate cognitive control network subserving diverse executive functions. Cogn. Affect. 
Behav. Neurosci 12, 241–268. doi:10.3758/s13415-011-0083-5 [PubMed: 22282036] 

Oh H, Madison C, Haight TJ, Markley C, Jagust WJ, 2012 Effects of age and β-amyloid on cognitive 
changes in normal elderly people. Neurobiol. Aging 33, 2746–55. doi:10.1016/j.neurobiolaging.
2012.02.008 [PubMed: 22429886] 

Oh H, Steffener J, Razlighi QR, Habeck C, Liu D, Gazes Y, Janicki S, Stern Y, 2015 Aβ-related 
hyperactivation in frontoparietal control regions in cognitively normal elderly. Neurobiol. Aging 
36, 3247–54. doi:10.1016/j.neurobiolaging.2015.08.016 [PubMed: 26382734] 

Park DC, Reuter-Lorenz P, 2009 The adaptive brain: aging and neurocognitive scaffolding. Annu. Rev. 
Psychol 60, 173–96. doi:10.1146/annurev.psych.59.103006.093656 [PubMed: 19035823] 

Persson J, Lustig C, Nelson JK, Reuter-Lorenz PA, 2007 Age differences in deactivation: a link to 
cognitive control? J. Cogn. Neurosci 19, 1021–32. doi:10.1162/jocn.2007.19.6.1021 [PubMed: 
17536972] 

Power JD, Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE, 2012 Spurious but systematic 
correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 
2142–54. doi:10.1016/j.neuroimage.2011.10.018 [PubMed: 22019881] 

Prakash RS, Heo S, Voss MW, Patterson B, Kramer AF, 2012 Age-related differences in cortical 
recruitment and suppression: implications for cognitive performance. Behav. Brain Res 230, 192–
200. doi:10.1016/j.bbr.2012.01.058 [PubMed: 22348896] 

Brown et al. Page 18

Neuroimage. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Ritchie SJ, Bastin ME, Tucker-Drob EM, Maniega SM, Engelhardt LE, Cox SR, Royle NA, Gow AJ, 
Corley J, Pattie A, Taylor AM, Valdes Hernandez M. del C., Starr JM, Wardlaw JM, Deary IJ, 
2015 Coupled Changes in Brain White Matter Microstructure and Fluid Intelligence in Later Life. 
J. Neurosci 35, 8672–8682. doi:10.1523/JNEUROSCI.0862-15.2015 [PubMed: 26041932] 

Rypma B, Berger JS, Prabhakaran V, Bly BM, Kimberg DY, Biswal BB, D’Esposito M, 2006 Neural 
correlates of cognitive efficiency. Neuroimage 33, 969–79. doi:10.1016/j.neuroimage.2006.05.065 
[PubMed: 17010646] 

Salthouse TA, 2011 What cognitive abilities are involved in trail-making performance? Intelligence 39, 
222–232. doi:10.1016/j.intell.2011.03.001 [PubMed: 21789028] 

Schmitt FA, Nelson PT, Abner E, Scheff S, Jicha GA, Smith C, Cooper G, Mendiondo M, Danner DD, 
Van Eldik LJ, Caban-Holt A, Lovell MA, Kryscio RJ, 2012 University of Kentucky Sanders-
Brown healthy brain aging volunteers: donor characteristics, procedures and neuropathology. Curr. 
Alzheimer Res 9, 724–33. [PubMed: 22471862] 

Shaw LM, Vanderstichele H, Knapik-Czajka M, Clark CM, Aisen PS, Petersen RC, Blennow K, 
Soares H, Simon A, Lewczuk P, Dean R, Siemers E, Potter W, Lee VM-Y, Trojanowski JQ, 2009 
Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. 
Ann. Neurol 65, 403–13. doi:10.1002/ana.21610 [PubMed: 19296504] 

Smith CD, Johnson ES, Van Eldik LJ, Jicha GA, Schmitt FA, Nelson PT, Kryscio RJ, Murphy RR, 
Wellnitz CV, 2016 Peripheral (deep) but not periventricular MRI white matter hyperintensities are 
increased in clinical vascular dementia compared to Alzheimer’s disease. Brain Behav. 6, e00438. 
doi:10.1002/brb3.438 [PubMed: 26925303] 

Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE, 
Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ, 2006 Tract-based spatial statistics: 
voxelwise analysis of multi-subject diffusion data. Neuroimage 31, 1487–505. doi: 10.1016/
j.neuroimage.2006.02.024 [PubMed: 16624579] 

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister PR, 
De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano N, 
Brady JM, Matthews PM, 2004 Advances in functional and structural MR image analysis and 
implementation as FSL. Neuroimage 23 Suppl 1, S208–19. doi:10.1016/j.neuroimage.2004.07.051 
[PubMed: 15501092] 

Sperling RA, Laviolette PS, O’Keefe K, O’Brien J, Rentz DM, Pihlajamaki M, Marshall G, Hyman 
BT, Selkoe DJ, Hedden T, Buckner RL, Becker JA, Johnson KA, 2009 Amyloid deposition is 
associated with impaired default network function in older persons without dementia. Neuron 63, 
178–88. doi:10.1016/j.neuron.2009.07.003 [PubMed: 19640477] 

Stern Y, 2009 Cognitive reserve. Neuropsychologia 47, 2015–28. doi: 10.1016/j.neuropsychologia.
2009.03.004 [PubMed: 19467352] 

Tang Y, Nyengaard JR, Pakkenberg B, Gundersen HJ, Schweizer A, Groot de J, 1990 Age-induced 
white matter changes in the human brain: a stereological investigation. Neurobiol. Aging 18, 609–
15. doi:10.1016/S0197-4580(97)00155-3

Taylor WD, Bae JN, MacFall JR, Payne ME, Provenzale JM, Steffens DC, Krishnan KRR, 2007 
Widespread Effects of Hyperintense Lesions on Cerebral White Matter Structure. Am. J. 
Roentgenol 188, 1695–1704. doi:10.2214/AJR.06.1163 [PubMed: 17515396] 

van Harten AC, Smits LL, Teunissen CE, Visser PJ, Koene T, Blankenstein MA, Scheltens P, van der 
Flier WM, 2013 Preclinical AD predicts decline in memory and executive functions in subjective 
complaints. Neurology 81, 1409–16. doi: 10.1212/WNL.0b013e3182a8418b [PubMed: 24049134] 

van Norden AGW, de Laat KF, van Dijk EJ, van Uden IWM, van Oudheusden LJB, Gons RAR, Norris 
DG, Zwiers MP, de Leeuw F-E, 2012 Diffusion tensor imaging and cognition in cerebral small 
vessel disease. Biochim. Biophys. Acta - Mol. Basis Dis 1822, 401–407. doi:10.1016/j.bbadis.
2011.04.008

Vannini P, Hedden T, Becker JA, Sullivan C, Putcha D, Rentz D, Johnson KA, Sperling RA, 2012 Age 
and amyloid-related alterations in default network habituation to stimulus repetition. Neurobiol. 
Aging 33, 1237–52. doi:10.1016/j.neurobiolaging.2011.01.003 [PubMed: 21334099] 

Vos SJ, Xiong C, Visser PJ, Jasielec MS, Hassenstab J, Grant EA, Cairns NJ, Morris JC, Holtzman 
DM, Fagan AM, 2013 Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort 
study. Lancet Neurol. 12, 957–65. doi:10.1016/S1474-4422(13)70194-7 [PubMed: 24012374] 

Brown et al. Page 19

Neuroimage. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vossel KA, Xu JC, Fomenko V, Miyamoto T, Suberbielle E, Knox JA, Ho K, Kim DH, Yu GQ, Mucke 
L, 2015 Tau reduction prevents Aβ-induced axonal transport deficits by blocking activation of 
GSK3β. J. Cell Biol 209, 419–433. doi:10.1083/jcb.201407065 [PubMed: 25963821] 

Vossel KA, Zhang K, Brodbeck J, Daub AC, Sharma P, Finkbeiner S, Cui B, Mucke L, 2010 Tau 
reduction prevents Abeta-induced defects in axonal transport. Science (80-.). 330, 198. doi:
10.1126/science.1194653

Weintraub S, Salmon D, Mercaldo N, Ferris S, Graff-Radford NR, Chui H, Cummings J, DeCarli C, 
Foster NL, Galasko D, Peskind E, Dietrich W, Beekly DL, Kukull WA, Morris JC, 2009 The 
Alzheimer’s Disease Centers’ Uniform Data Set (UDS): the neuropsychologic test battery. 
Alzheimer Dis. Assoc. Disord 23, 91–101. doi: 10.1097/WAD.0b013e318191c7dd [PubMed: 
19474567] 

Xu J, Chen S, Ahmed SH, Chen H, Ku G, Goldberg MP, Hsu CY, 2001 Amyloid-beta peptides are 
cytotoxic to oligodendrocytes. J. Neurosci. 21, RC118. [PubMed: 11150354] 

Young VG, Halliday GM, Kril JJ, 2008 Neuropathologic correlates of white matter hyperintensities. 
Neurology 71, 804–11. doi:10.1212/01.wnl.0000319691.50117.54 [PubMed: 18685136] 

Zhu Z, Johnson NF, Kim C, Gold BT, 2015 Reduced frontal cortex efficiency is associated with lower 
white matter integrity in aging. Cereb. Cortex 25, 138–46. doi: 10.1093/cercor/bht212 [PubMed: 
23960206] 

Brown et al. Page 20

Neuroimage. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. DMN and ECN Functional Templates.
DMN and ECN regions identified using ICA on both task- and rs-fMRI. The task-fMRI 

components were masked by the corresponding rs-fMRI components to create a template of 

regions showing activation/deactivation during the task and connectivity at rest. A: The 

DMN functional template includes the posterior cingulate cortex/precuneus (PCC/pC), 

ventromedial prefrontal cortex (vMPFC), dorsomedial prefrontal cortex (dMPFC), lateral 

temporal cortices (LTC), lateral parietal/occipital cortices (LPC/LOC), and portions of the 

hippocampus and parahippocampal gyrus (HC/PHG). B: The ECN functional template 

includes bilateral dorsolateral prefrontal cortex (DLPFC), frontal eye fields (FEF), lateral 

parietal cortices (LPC), and middle temporal gyri (MTG). Both: These regions were used to 

extract time-series for functional analyses and as seeds for probabilistic tractography. Surf 

Ice (https://www.nitrc.org/projects/surfice/) was used to create this display of the DMN 

template on the surface of the MNI152 T1 brain.

Brown et al. Page 21

Neuroimage. Author manuscript; available in PMC 2020 July 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nitrc.org/projects/surfice/


Figure 2. DMN and ECN WM Templates.
A: WM pathways connecting the DMN (blue) and ECN (green) with areas connecting both 

shown in red. B: WM pathways unique to the DMN include portions of the corpus callosum 

(CC) splenium and genu, cingulum, superior longitudinal fasciculus (SLF), and inferior 

longitudinal fasciculus (ILF). C: WM pathways unique to the ECN include portions of the 

SLF, CC-genu, and ILF. D: WM pathways that connected both DMN and ECN regions 

included portions of the CC genu and splenium and ILF. A-D: WM pathways were 

identified using probabilistic tractography and averaging individual results to form a single 

group template. The regions identified in the functional templates (Figure 1) were used as 

seeds for tractography. Superior-lateral view on left and lateral view on right.
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Figure 3. Prediction of EF at Baseline by WMH volume, DMN deactivation, and ECN activation.
A-B: Partial regression plots of baseline EF against WMH volume (A) and DMN 

deactivation (B) simultaneously. C-D: Partial regression plots of EF against WMH volume 

(C) and ECN activation (D) simultaneously. A-D: All values are mean-centered. The thick 

dashed line represents the linear best-fit and thin dashed lines are the 95% confidence 

interval for the predicted response. Includes all baseline participants (n = 32). The three 

participants not included in the longitudinal analyses are indicated by arrows.
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Figure 4. Results of mediation models for baseline EF.
A-C: Results of Preacher and Hayes mediation analyses with significant direct or indirect 

effects indicated by solid arrows with non-significant direct or indirect effects are shown by 

dashed arrows. Standardized β-coefficients are shown next to the corresponding path with 

significant effects shown in bold and non-significant effects in italics. For all models, the 

total effect of X on Y (c) is shown above the horizontal arrow, while the direct effect of X on 

Y (c’) after accounting for indirect effects is shown below the horizontal arrow. A: Results 

indicated that the indirect effects of DMN deactivation and ECN activation did not mediate 

the significant direct effect of WMH volume on baseline EF. B: Results indicated that the 

effect of ECN activation on baseline EF was mediated by the total indirect effects of DMN 

deactivation and WMH volume, but not by either individual indirect effect. C: Results 
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indicated that the effect of DMN deactivation on baseline EF was mediated by the indirect 

effect of ECN activation but not of WMH volume.
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Figure 5. Prediction of longitudinal ΔEF by baseline measures.
A-B: Partial regression plots of average annual ΔEF against CSF tau/Aβ42 (A) and FA in 

DMN-naWM (B) simultaneously. C-D: Partial regression plots of average annual ΔEF 

against CSF tau/Aβ42 (C) and FA in ECN-naWM (D). A-D: All values are demeaned. The 

thick dashed lines represent the linear best-fit and thin dashed lines are the 95% confidence 

intervals for the predicted response. Includes subset of participants included in longitudinal 

analyses (n = 29).
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Figure 6. Results of longitudinal mediation analyses.
A-D: Results of Preacher and Hayes mediation analyses with significant direct or indirect 

effects indicated by solid arrows with non-significant direct or indirect effects are shown by 

dashed arrows. Standardized β-coefficients are shown next to the corresponding path with 

significant effects shown in bold and non-significant effects in italics. For all models, the 

total effect of X on Y (c) is shown above the horizontal arrow, while the direct effect of X on 

Y (c’) after accounting for indirect effects is shown below the horizontal arrow. All models 

included the subset of participants used in longitudinal analyses (n = 29). A: Results 

indicated that the relationship between CSF Tau/Aβ42 ratio and average annual ΔEF was 

mediated by FA in DMN-naWM. B: Results indicated that the relationship between CSF 

Tau/Aβ42 ratio and average annual ΔEF was partially mediated by FA in ECN-naWM. C-D: 
Results indicated that CSF Tau/Aβ42 did not mediate the relationship between FA in DMN-

naWM and average annual ΔEF (C) or the relationship between FA in ECN-naWM and ΔEF 

(D).
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Table 1.

Demographic and Outcome Measures

Baseline Group
(n = 32)

Longitudinal Subgroup
(n = 29)

Age 77.7 (6.57) 77.8 (6.82)

Sex (M:F) 14:18 13:16

Education 16.5 (2.41) 16.7 (2.44)

DMN-naWM FA 0.58 (0.026) 0.58 (0.027)

DMN Deactivation Magnitude (% signal change) 0.10 (0.119) 0.11 (0.109)

ECN-naWM FA 0.57 (0.028) 0.57 (0.029)

ECN Activation Magnitude (% signal change) 0.20 (0.212) 0.18 (0.215)

CSF Aβ42 (pg/mL) 271.4 (79.21) 270.2 (79.11)

CSF Tau (pg/mL) 56.9 (16.29) 57.2 (16.75)

CSF Tau/Aβ42 0.24 (0.140) 0.24 (0.142)

WMH Volume/ICV 0.011 (0.007) 0.011 (.007)

MMSE* 30 (27-30) 30 (27-30)

CDR-SB* 0 (0-0) 0 (0-0)

Baseline EF Composite −0.12 (0.907) 0.08 (0.621)

Average Annual ΔEF -- −0.04 (0.228)

Mean (S.D.) for individuals included in baseline analyses (left) and longitudinal analyses (right). All measures reflect values at baseline except for 
the Average Annual ΔEF.

*
Median (range) are provided for MMSE and CDR-SB scores.
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Table 2.

Baseline relationships between imaging and CSF measures

DMN
Deactivation
magnitude

FA in
DMN-
naWM

ECN
Activation
Magnitude

FA in
ECN-

naWM

WMH
Volume

CSF
tau/Aβ42

DMN Deactivation magnitude -- 0.40 (.025) −0.48 (.005) 0.33 (.062) −0.13 (.494) −0.39 (.029)

FA in DMN-naWM -- −0.38 (.032) 0.91 (.000) −0.26 (.152) −0.35 (.047)

ECN Activation Magnitude -- −0.40 (.022) 0.20 (.262) 0.39 (.026)

FA in ECN-naWM -- −0.22 (.231) −0.32 (.071)

WMH Volume -- −0.04 (.827)

CSF tau/Aβ42 --

Values are Pearson-r with p-values in parentheses. Significant (p < .05) relationships are shown in bold. All analyses had n = 32.
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Table 3.

Linear mixed-modeling results

Predictor Model Fit Year Predictor Predictor × Year

FA in DMN-naWM AIC = 179.57 F1,78.9 = 9.97 (p = .002)
β = −2.75 [−4.50, −1.02]

F1,47.8 = 2.77 (p = .103)
β = 6.75 [−1.41, 14.91]

F1,78.9 = 9.27 (p = .003)
β = 4.58 [1.59, 7.57]

DMN deactivation AIC = 200.41 F1,78.4 = 7.64 (p = .007)
β = −0.16 [−0.28, −0.05]

F1,43.5 = 0.73 (p = .396)
β = −0.16 [−1.32, 3.28]

F1,77.9 = 2.13 (p = .149)
β = 0.54 [−0.20, 1.27]

FA in ECN-naWM AIC = 178.55 F1,78.9 = 13.83 (p < .001)
β = −3.03 [−4.66, −1.41]

F1,81.2 = 0.26 (p = .871)
β = −0.76 [−10.13, 8.60]

F1,79.0 = 12.96 (p = .001)
β = 5.16 [2.31, 8.01]

ECN Activation AIC = 203.89 F1,78.9 = 5.14 (p = .026)
β = −0.13 [−0.23, −.02]

F1,76.0 = 3.78 (p = .056)
β = −1.35 [−2.74, 0.03]

F1,79.1 = 0.54 (p = .464)
β = 0.15 [−0.25, 0.54]

WMH Volume AIC = 206.17 F1,78.2 = 0.78 (p = .781)
β = 0.16 [−0.99, 1.32]

F1,79.1 = 2.55 (p = .114)
β = −0.34 [−0.77, 0.08]

F1,78.1 = 0.20 (p = .655)
β = −0.03 [−0.15, 0.09]

CSF tau/Aβ42 AIC = 205.70 F1,78.3 = 3.99 (p = .049)
β = −0.29 [−0.57, −0.001]

F1,41.6 =0.002 (p = .97)
β = 0.27 [−1.27, 1.30]

F1,78.2 = 1.83 (p = .181)
β = −0.27 [−0.68, 0.13]

Results of separate linear mixed-models are shown in each row above. The model-fit is described by AIC, where lower values indicate a better fit. 
For each fixed-effect the fit statistic and un-standardized β co-efficient estimates are provided with the p-value and [95% CI], respectively. 
Significant effects with p < .008 are indicated in bold. All models included an intercept term.
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Table 4.

Linear Mixed Model Results using FA in DMN and FPCN naWM

Predictor Model 1
AIC = 164.65

Model 2
AIC = 137.49

Time F1,78.0 = 12.40 (p = .001)
β = −2.93 [−4.58,−1.27]

F1.77.9 = 5.50 (p = .022)
β = −41.1 [−76.0,−6.20]

FA in DMN-naWM F1,46.8 = 3.09 (p = .085)
β = 17.24 [−2.49,36.97]

F1,45.3 = 3.18 (p = .081)
β = −149.2 [−317.7,19.27]

FA in FPCN-naWM F1,47.3 = 1.28 (p = .263)
β = −10.5 [−29.2,8.16]

F1,45.4 = 4.55 (p = .038)
β = −168.5 [−327.7,−9.37]

FA in DMN-naWM x Time F1,79.6 = 0.175 (p = .677)
β = −1.56 [−9.01,5.88]

F1,77.6 = 4.52 (p = .037)
β = 68.2 [4.31,132.2]

FA in FPCN-naWM x Time F1,80.1 = 3.072 (p = .083)
β = 6.49 [−0.88, 13.86]

F1,78.2 = 5.60 (p = .020)
β = 74.27 [11.78, 136.8]

FA in DMN-naWM x FA in
FPCN-naWM

N/A F1,45.4 = 4.03 (p = .051)
β = 292.0 [−0.97,585.0]

FA in DMN-naWM x FA in
FPCN-naWM x Time

N/A F1,77.9 = 4.76 (p = .032)
β = −123.6 [−236.4,−10.83]

Results of separate linear mixed-models are shown in each column above. The model-fit is described by AIC, where lower values indicate a better 
fit. For each fixed-effect the fit statistic and un-standardized β co-efficient estimates are provided with the p-value and [95% CI], respectively. Both 
models included an intercept term.
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