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Abstract

Branched chain amino acids (BCAAs) are building blocks for all life-forms. We review here the 

fundamentals of BCAA metabolism in mammalian physiology. Decades of studies have elicited a 

deep understanding of biochemical reactions involved in BCAA catabolism. In addition, BCAAs 

and various catabolic products act as signaling molecules, activating programs ranging from 

protein synthesis to insulin secretion. How these processes are integrated at an organismal level is 

less clear. Inborn errors of metabolism highlight the importance of organismal regulation of 

BCAA physiology. More recently, subtle alterations of BCAA metabolism have been suggested to 

contribute to numerous prevalent diseases, including diabetes, cancer, and heart failure. 

Understanding the mechanisms underlying altered BCAA metabolism and how they contribute to 

disease pathophysiology will keep researchers busy for the foreseeable future.
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THE BIOCHEMISTRY OF BRANCHED CHAIN AMINO ACIDS

Branched chain amino acids (BCAAs) cannot be synthesized by metazoans. Despite this, 

they are abundant components of animals, constituting approximately 35% of essential 

amino acids in most mammals (1–3). The functional R groups of all three BCAAs are 

branched (hence their name), small, and hydrophobic, rendering them critical components of 

most protein (4, 5). Together, BCAAs account for about 18% of amino acids and 63% of 

hydrophobic amino acids in protein across many life-forms (1–3, 6). The molar relative 

abundance of BCAAs to each other is nearly always approximately 1.6:2.2:1.0 Val:Leu:Ile, 

reflecting the linked nature of their synthesis and oxidation (see below). The three BCAAs 

are thus almost always eaten and combusted together (7, 8), and as such are also almost 

always studied as one entity, despite significant differences in their biological effects as 

outlined below. This tendency has often led to erroneous assumptions.
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Synthesis

BCAAs are synthesized in bacteria, plants, and fungi, but not in animals. The synthesis of 

valine and isoleucine is carried out by the same enzymes, and leucine is created from α-

ketoisovalerate, a transamination precursor of valine (Figure 1) (9). The carbons in valine 

(and leucine) are derived from the readily available and abundant pyruvate, but isoleucine 

carbons are derived from the relatively rare threonine, again reflecting the conserved ratio of 

abundance in protein. Because it does not occur in animals, BCAA synthesis has been 

successfully targeted for antimicrobials, herbicides, and antifungal agents (10).

Catabolism

All life-forms catabolize BCAAs in a similarly linked process (Figure 1). In mammals, all 

three BCAAs are initially transaminated by branched chain amino transferases (BCATs) to 

form branched chain α-ketoacids (BCKAs) (11). The most common nitrogen acceptor is α-

ketoglutarate (αKG), yielding glutamate (12). This reaction is rapid with a low free energy 

change and is thus likely in equilibrium in most cases. There is, however, a preference for 

the reverse reaction because (a) the Km for BCKAs is in the 100-μM range, while that for 

BCAAs is in the 1-mM range (somewhat higher for valine) (12, 13); and (b) the 

concentration of intracellular glutamate is typically relatively high (14). Two genes encode 

BCATs: BCAT1 (or cBCAT) encodes a cytoplasmic protein and is primarily expressed in the 

brain, whereas BCAT2 (or mBCAT) encodes a mitochondrial protein and is ubiquitously 

expressed (12, 15).

Irreversible initiation of BCKA oxidation occurs in the branched chain amino acid 

dehydrogenase (BCKDH) complex. The BCKDH complex is found on the inner surface of 

the inner membrane of mitochondria and shares many attributes with the pyruvate 

dehydrogenase (PDH) complex (16, 17). Like the PDH complex, BCKDH catalyzes an 

oxidative decarboxylation, releasing CO2 and covalently adding a coenzyme A (CoA) group 

to the oxidized BCKA product (18). CoA, a bulky and hydrophilic prosthetic moiety, traps 

all subsequent intermediates inside the mitochondria with one exemption: 3-

hydroxyisobutyrate (3-HIB) in the valine catabolic pathway. The BCKDH complex has three 

components (19, 20): a thiamin-dependent decarboxylase, existing as an alpha2/beta2 

heterotetramer (21), encoded by the BCKDHA and BCKDHB genes, respectively; a lipoate-

dependent dihydrolipoyl transacylase that transfers the acyl groups to CoA, encoded by the 

DBT gene; and a FAD-dependent dihydrolipoyl dehydrogenase that transfers the released 

electrons to NAD+ and is encoded by the DLD gene (18). DLD also participates in other 

complexes, including the PDH complex, and may have moonlighting proteolytic functions 

(22). The rate of oxidation by the BCKDH complex is thought to be largely proportional to 

intracellular concentrations of BCKAs, as these are typically well below their Km for the 

BCKDH complex (~15–30 μM). Also similar to PDH, the BCKDH complex is tightly 

regulated by phosphory lation/dephosphorylation (16, 19). BCKDH kinase (BCKDK) adds 

phosphate on three residues of BCKDHA, thereby suppressing BCKDH activity (23–27). 

The complementary activating dephosphorylation is carried out by the recently identified 

phosphatase, PP2Cm (28, 29). BCKDK is allosterically suppressed by BCKAs [its greatest 

affinity is for α-ketoisocaproic acid (α-KIC)], thus allowing elevations in BCKAs to 
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promote their own oxidation (30–33). Efficient product inhibition of BCKDH also occurs by 

nicotinamide adenine dinucleotide hydrate (NADH) and acyl-CoAs.

Like many sequential metabolic enzymes, BCAT2 and the BCKDH complex can be found 

physically associated in organized supramolecular complexes, often termed metabolons, 

allowing for substrate channeling from one enzyme to another. The association of BCKDHA 

with BCAT2 and the phosphorylation by BCKDK compete for the same loop on BCKDHA, 

such that BCAT2 binding increases BCKDH activity, while conversely, phosphorylation of 

BCKDHA destabilizes the interaction with BCAT2 (34).

After BCKDH decarboxylation, subsequent catabolism of BCAAs resembles fatty acid 

oxidation, and indeed, these two processes share a number of enzymatic subunits. Each set 

of reactions is mostly unique to each BCAA, and all occur inside the mitochondrial matrix. 

Ultimately, BCAA carbons are either lost as CO2 or enter the tricarboxylic acid (TCA) 

cycle. Specifically, valine (5C) loses 2 carbons to CO2 and contributes 3 carbons to the TCA 

as succinyl-CoA; leucine (6C) loses 1 carbon to CO2 and contributes 5 to the TCA in acetyl-

CoAs; and isoleucine (6C) loses 1 carbon to CO2 and contributes 5 to the TCA as acetyl-

CoA and succinyl-CoA (see 35 for a carbon tracing diagram). As a consequence, valine is 

considered glucogenic (i.e., succinyl-CoA is anaplerotic), whereas leucine is considered 

ketogenic, and isoleucine is mixed.

Catabolic Intermediates and By-Products

As noted above, all of these reactions occur in the mitochondrial matrix, and essentially all 

intermediate metabolites are trapped within the matrix by the CoA adduct. The main 

exception is 3-HIB, an intermediate in the valine catabolic pathway. The CoA adduct is 

removed in the preceding reaction and re-added after the generation of methylmalonic 

semialdehyde. As a result, 3-HIB can be secreted and is detected in plasma at 10–40-μM 

concentrations. Another possible exception is the last step of leucine oxidation, which yields 

acetyl-CoA plus acetoacetate, the latter of which could escape the matrix prior to ketone 

oxidation. In addition, some alternative metabolites can emanate from BCAA catabolism, 

although they are poorly studied and likely represent a small fraction of overall BCAA 

catabolic flux. Prior to oxidation by BCKDH, α-ketoacids can be reduced at the α-carbon to 

form branched chain α-hydroxy ketoacids (36, 37). These are present in healthy adult urine 

at very low levels (often below detection) and are directly degraded by α-hydroxyacid 

oxidases, probably in the liver (38). Additionally, a cytosolic dioxygenase converts a small 

percentage of α-KIC to beta-hydroxy-beta-methylbutyrate (HMB), which is present in 

human serum at approximately 2 μM (39). After oxidation by BCKDH, and prior to entry 

into propionyl-CoA or HMG-CoA, species that are normally bound to CoA can be released 

as 3-hydroxy acids (3-hydroxy-2-methylbutyric acid, 3-hydroxy-2-ethylpropionic acid, and 

3-hydroxyisovaleric acid) (36). In healthy adults, keto-genesis is associated with urinary 

excretion of these 3-hydroxy acids, although in small amounts. Several intermediates of 

BCAA oxidation may also contribute to acylation of mitochondrial enzymes, but the 

biological significance of these side products of BCAA catabolism remains unclear (37).

BCAAs also contribute to the synthesis of several unique lipid species, broadly categorized 

as N-acyl amino acids, branched chain fatty acids, and odd-chain fatty acids. Mammals 
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appear to be capable of synthesizing all three types. In mammals, at least some N-acyl 

amino acids are synthesized by the secreted enzyme PM20D1, which covalently couples 

fatty acids to amino acids by an amide bond (40). Adipocytes and perhaps other cell types 

can synthesize odd-chain fatty acids by combining propionyl-CoA (with carbons derived 

from valine or isoleucine) and malonyl-CoA, followed by fatty acid chain extension via fatty 

acid synthase (35, 41). Fatty acid synthase can also elongate isobutyryl-CoA, isovaleryl-

CoA, or 2-methylbutyryl-CoA to form branched chain fatty acids (42). These unique fatty 

acids are mostly synthesized in brown adipocytes, but their role remains unclear. All of these 

particular lipid species are present in normal serum but at low concentrations (43). 

Strikingly, branched chain fatty acids are found at very high levels in vernix caseosa, the 

white waxy substance found on newborn human skin, constituting 30% of fatty acid content 

(44).

SIGNALING BY BRANCHED CHAIN AMINO ACIDS AND THEIR 

CATABOLITES

mTOR

In addition to their structural and metabolic roles, BCAAs and many of their metabolites 

also have important allosteric regulatory and signaling effects. The best studied of these is 

the regulation of the mechanistic target of rapamycin (mTOR) pathway by leucine. 

Numerous cellular processes, including most notably protein synthesis and cellular growth, 

are controlled by the ubiquitous multiunit mTORC1 complex, and leucine is a potent 

activator of mTORC1 activity. The role of leucine as a growth-regulatory signal was first 

established in early experiments demonstrating that leucine stimulates muscle protein 

synthesis in vitro (45–47) and in perfused skeletal muscle preparations (47). Leucine (but 

not valine, isoleucine, or the BCKAs) promotes mTORC1 activation by directly binding 

Sestrin2 a negative regulator of mTORC1 activity (48) (Figure 2a). In the absence of 

leucine, Sestrin2 binds and inhibits GATOR2, a positive regulator of mTORC1 activity. 

When leucine is available at physiologically relevant concentrations, Sestrin2 releases 

GATOR2, promoting full mTORC1 activation (49). Upon activation, mTORC1 promotes 

protein synthesis and inhibits autophagy by phosphorylating several targets, including S6K, 

4E-BP1, Ulk1, and TFEB/3. Leucine likely activates mTORC1 via other mechanisms as 

well, including via loaded leucyl tRNA synthetase (50–52). For a full discussion of mTOR 

signaling, we refer the reader to a number of excellent reviews (53–56).

Glutamate Dehydrogenase

Leucine also directly regulates protein-mediated insulin secretion in pancreatic islet beta 

cells. Leucine and α-KIC are strong insulin secretagogues in low-glucose states. The 

secretogenic activity is direct and not dependent on leucine oxidation because 

nonhydrolyzable analogs of leucine are equally secretogenic (57, 58). Instead, leucine 

promotes insulin release via activation of gluta-mate dehydrogenase (GDH), which catalyzes 

the oxidative deamination of glutamate to αKG (59). Under high-glucose states, GDH is 

inactive and suppressed by high GTP levels. When glucose drops below 5 mM, adenosine 5 

-diphosphate (ADP) levels rise and can activate GDH, thereby providing reducing 
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equivalents and promoting αKG entry into the TCA cycle. Both of these promote adenosine 

5 -triphosphate (ATP) production, subsequent inhibition of KATP channels, depolarization 

of plasma membrane, and vesicular release of insulin (59–61). Leucine allosterically 

activates GDH under these conditions by increasing its affinity for ADP, thus further 

increasing the ATP energy charge, and consequently, insulin secretion. How leucine 

allosterically activates GDH is not known. Leucine can be a low-affinity substrate for GDH, 

so the catalytic may also be a site of allosteric activation (GDH functions as a 

homohexamer). Patients with mutations in GDH that cause hyperactivation in response to 

leucine (via loss of inhibition by GTP) lead to protein meal–induced hypoglycemia and 

hyperinsulinemia-hyperammonia syndrome (62). αKIC is also a strong insulin secretagogue, 

in part via its transamination, which yields both leucine to activate GDH and αKG to enter 

the TCA cycle (63). In addition, αKIC may directly inhibit KATP channels (64).

Valine Catabolites

Metazoans likely evolved to use leucine as a sensor for activation of mTOR signaling and 

insulin secretion because leucine is the most abundant essential amino acid; it thus serves 

well as an indicator of access to protein-derived amino acids. Nevertheless, other BCAA 

metabolites can also serve as signaling molecules. Two salient examples are 3-HIB and beta-

amino-isobutyric acid (BAIBA), both related to valine catabolism (Figure 2c). As noted 

above, 3-HIB is the only intermediate metabolite of BCAAs that is separated from its 

covalent attachment to CoA; consequently, it is the only such metabolite that can easily 

leave the mitochondrial matrix. 3-HIB is thus in a position to report on rates of 

mitochondrial BCAA catabolic flux. 3-HIB is secreted by muscle and likely other tissues 

and is present in plasma in 30–50-μM concentrations (65). In muscle, secreted 3-HIB acts, in 

a paracrine fashion, on surrounding microvascular endothelial cells, where it promotes the 

transport of fatty acids out of the circulation, across the endothelial capillary wall, and to the 

myofibers. The pathway thus provides an important cross-regulatory link between BCAA 

and fatty acid consumptions, which represent two dominant fuel sources. Much remains to 

be learned about this pathway, including the receptor (if any) for 3-HIB and the mechanisms 

of transendothelial fatty acid transport.

BAIBA (technically also a BCAA) is not a direct intermediate of valine catabolism, but 

rather a potential side product, derived from methylmalonic semialdehyde, itself in rapid 

equilibrium with 3-HIB. Importantly, BAIBA can also be derived from thymine breakdown, 

and it is not always clear which source of BAIBA, thymine, or valine predominates under 

various studied conditions. Secretion of BAIBA, probably from muscle, has both paracrine 

and endocrine effects on muscle adipocytes and distal fat tissues, respectively (66). In these 

cells, BAIBA induces expression of the uncoupling protein UCP1, likely in part via 

activation of the nuclear receptor PPARα. BAIBA has also been reported to promote 

osteocyte survival, prevent bone loss (67), suppress renal fibroblast proliferation, prevent 

endoplasmic reticulum stress in hepatocytes (68), and suppress inflammation in adipocytes 

(69). Similar to 3-HIB, how BAIBA signals to its target cells remains ill defined, although in 

the case of osteocytes, the Mas-related G protein–coupled receptor type D appears to be 

directly targeted by BAIBA, preventing apoptosis in osteocytes (67). Both the 3-HIB and 

BAIBA pathways thus uncover novel extracellular metabolites with paracrine or endocrine 
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signaling functions. They also underscore the important concept that the three BCAAs 

should not always be freely interchanged, conceptually or experimentally. Only valine 

oxidation can yield 3-HIB and BAIBA, whereas only leucine powerfully activates mTOR 

and GDH, for example.

ORGANISMAL PHYSIOLOGY

As noted, BCAAs are essential amino acids and cannot be synthesized by animals. 

Therefore, under homeostatic conditions, animals must maintain a precise balance between 

intake and loss of BCAAs. The diet is likely the only significant source of BCAAs; synthesis 

of BCAAs by gut microbiota has also been proposed, but it likely contributes a minor 

component. In terms of losses, oxidative catabolism of BCAAs dominates, as no appreciable 

amounts of BCAAs are lost in the urine. Circulating levels of BCAAs (approximately 200 

μM of valine, 100 μM of leucine, and 60 μM of isoleucine) are maintained in the fasted state 

and return to these levels within hours after feeding; thus, the balance of BCAA intake/loss 

is under homeostatic control (70–72). Broadly, whole-animal BCAA physiology can be 

divided into a circulating pool and a tissue pool (Figure 3). BCAAs derived from the diet or 

released from protein breakdown appear in circulation. BCAAs are then disposed from 

circulation into tissues where they can be oxidized or incorporated into newly synthesized 

protein.

Dietary Intake

Dietary BCAA uptake is generally very efficient. Ingested BCAAs are usually derived from 

protein and are absorbed in the gut predominantly by short peptide carriers rather than by 

single amino acid carriers (73). After a protein-rich meal, circulating BCAA levels rise 

about 2–3 fold and decline back to baseline within 3 h, and the uptake kinetics differ 

depending on the protein source (74,75). The classic recommended protein intake to 

maintain minimal muscle mass is 0.8 g/kg/day, but modern recommendations for a healthy 

diet are higher (76). The range of protein intake in the United States varies widely from 0.9 

g/kg/day in the fifth percentile to 2.2 g/kg/day in the ninety-fifth percentile for young adult 

males (77), perhaps reflecting the variety of popular diets. The average protein intake in 

males of 1.7 g/kg/day translates to approximately 88, 145, and 66 mg/kg/day of valine, 

leucine, and isoleucine. Protein intake varies by age and sex: It is on average higher in males 

than females and declines with age but comprises close to 15% of calories in all groups (77). 

Notably, typical laboratory rodent diets used for research contain 30% protein by calories, 

although the typical Western diet contains about 20%. BCAAs account for only 2–5% of 

dietary energy sources.

Protein Breakdown

Isotope tracing studies in the fasted state have consistently demonstrated that BCAAs and 

other essential amino acids appear in circulation at rates proportional to their concentration 

in protein (78, 79), consistent with protein breakdown being the primary source of BCAA in 

the circulation. Typically, the combined rate of appearance of BCAAs from normal protein 

breakdown is approximately 0.76 g/kg/day in overnight fasted adults, which is more than 

double the average intake of 0.35 g/kg/day, reflecting significant cycling in and out of the 
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protein pool. Most of the BCAAs that appear in circulation are reincorporated into newly 

synthesized protein, typically accounting for 70–90% of disposal in the fasted state (80–82). 

Which tissues serve as the source of BCAAs is difficult to measure directly, and it likely 

differs under different conditions. However, current estimates suggest that skeletal muscle, 

the liver, and the gut account for most protein breakdown, reflecting both the large mass of 

skeletal muscle protein (about 38% of whole-body protein) and the fast turnover in the liver 

and gut (83).

Protein Synthesis

In the absence of significant secretion or absorption of protein, rates of protein synthesis and 

breakdown in each tissue must be equal under homeostatic conditions. Most studies aimed at 

measuring protein synthesis in vivo have focused on skeletal muscle. A summary of these 

collective findings establishes that protein synthesis requires both an anabolic signal and the 

amino acid building blocks to make new protein. Importantly, BCAAs, and specifically 

leucine, contribute to the anabolic signal. Perfusion of isolated skeletal muscle with BCAAs 

stimulates protein synthesis as efficiently as a complete amino acid mixture, and conversely, 

perfusion of muscle with an amino acid mixture lacking BCAAs fails to promote synthesis 

(84). Leucine exerts the most potent growth-promoting effect as evidenced by the fact that 

oral gavage with leucine, but not isoleucine or valine, stimulates protein synthesis in skeletal 

muscle (85). Incubation of skeletal muscle with leucine, but not isoleucine or valine, 

stimulates protein synthesis nearly as well as a complete BCAA mixture (85). Importantly, 

in vivo, other anabolic signals such as insulin must accompany leucine in order to promote 

protein synthesis. For example, oral administration of leucine leads to increased plasma 

insulin and stimulates protein synthesis, but when plasma insulin levels are maintained at 

fasting levels by somatostatin infusion, protein synthesis is inhibited (86). Many of these 

effects are likely mediated by mTOR, whose maximal activation requires both hormonal 

signals (e.g., insulin, or insulin-like growth factor) and amino acid signals (e.g., leucine via 

Sestrin2) (55, 56, 87). Interestingly, the relative importance of insulin versus amino acid is 

likely different in the splanchnic bed or viscera, where insulin has little effect while amino 

acids powerfully inhibit breakdown and activate synthesis (88). More detail can be found in 

the extensive literature on protein synthesis (83, 89, 90). The potent anabolic effects of 

BCAAs have led to growing interest in their use as a supplement to exercise (Figure 4), 

typically in the form of a whey protein shake consumed immediately after exercise. 

Resistance exercise is a powerful anabolic signal, which synergizes with protein or BCAA 

intake; combining exercise and protein intake thus leads to maximum protein synthesis (91). 

The literature on this topic is vast, and we refer the reader to detailed discussions (92, 93).

BCAA Oxidation

BCAAs that are not reincorporated in the protein pool are instead oxidized to maintain 

homeostasis. Oxidation must occur at appreciable amounts, because at a steady state of 

protein maintenance where there is no net gain or loss of BCAAs, disposal must match 

intake.

Because BCKAs can activate their own oxidation, oxidation increases after feeding (74, 75). 

Conversely, briefly restricting food reduces BCAA oxidation causing plasma BCAA levels 
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to rise (interestingly, more so than other amino acids). If fasting continues into starvation, 

however, BCAA oxidation once again increases, likely in large part to provide 

gluconeogenic precursors to the liver (94). In severe starvation, BCAA oxidation rates fall 

again, presumably to conserve essential amino acids. Various factors in addition to BCAA 

availability modulate BCAA oxidation rates. For example, insulin increases whole-body 

BCAA oxidation when amino acid concentration is maintained (95). Inflammatory cytokines 

can double whole-body BCAA oxidation in rats (96). Moreover, thyroid hormone increases 

BCAA oxidation before it changes energy expenditure, glucose metabolism, or fat 

metabolism (97, 98), although interestingly, it appears to inhibit oxidation in the liver (99).

Exercise also strongly affects BCAA oxidation. The flux of BCAA oxidation increases 

during a bout of acute endurance exercise in proportion to (submaximal) intensity (81, 100–

103). It is unclear if the relative preference for BCAA oxidation versus other substrates is 

also increased. This increase in BCAA oxidation is not accompanied by increases in 

oxidation of other essential amino acids. Females oxidize less leucine than males during 

exercise (101, 104), and this is at least in part mediated by estrogen (105). In animals, 

endurance training clearly drives an adaptation for increased BCAA oxidation in skeletal 

muscle (106), probably through induction of the transcriptional activator PGC-1α (106–

110). However, results from human studies testing the hypothesis that endurance training 

actually increases BCAA oxidation during exercise are controversial (104).

In all of these cases, the molecular mechanisms driving changes in BCAA oxidation—and in 

which tissues oxidation is being modulated—are unclear. In fact, there is no good consensus 

on the relative distribution of BCAA oxidation between different tissues. The oxidation of 

BCAAs occurs after transamination to BCKAs, and these two processes can occur in 

different tissues. In fact, some have argued that liver lacks BCAT activity and that BCAAs 

are largely transaminated in the muscle and then shuttled to the liver for oxidation (111), 

although it should be noted that nonhepatocyte cells in the liver do express BCAT enzymes 

(112). Regardless, the relative distribution of BCKA oxidation between different tissues has 

been challenging to address. Enzymes of BCAA catabolism are expressed throughout the 

body, in contrast to those of all other essential amino acids, which are largely confined to the 

liver (111). To estimate BCAA oxidation flux in various tissues, many groups have used ex 

vivo assays of BCAT and BCKDH activities in extracts or slices from different tissues (7). In 

general, such studies indicate that BCAT enzyme activity is highest in heart, kidney, 

stomach, and pancreas, and is lowest in liver; BCKDH enzyme activity is highest in liver, 

less in heart and kidney, and lowest in muscle, adipose tissue, and brain. For BCKDH, these 

measured activities typically reflect the phosphorylation status of BCKDH and, interestingly, 

correlate poorly with mRNA or protein expression of BCKDH enzymes.

However, these studies with cell extracts or purified enzymes fail to account for the 

numerous in vivo regulatory factors (e.g., availability of BCAAs, product inhibition, redox 

state, subcellular compartmentalization). Direct measurements of BCAA oxidation can be 

made in vivo using isotopic tracer contributions to each tissue, but such studies are not 

practical in humans. In mouse studies, such steady-state heavy isotope infusion studies in 

vivo have recently demonstrated that specific rates of BCAA oxidation in fact actively occur 

in all tissues examined (110). Interestingly, in the pancreas, BCAAs appear to be a dominant 
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source of oxidative fuel, accounting for >20% of carbons incorporated into the TCA cycle. 

Overall, skeletal muscle oxidizes more BCAAs than any other tissue. Strikingly, oxidative 

flux correlates poorly with extent of phosphorylation of BCKDH, again reflecting the likely 

numerous other factors that dictate BCAA catabolic flux in vivo.

Finally, it should be noted that an implicit assumption in most whole-body studies to date 

has been that BCAAs and BCKAs are transported easily and quickly in and out of cells. This 

area of BCAA physiology, however, remains poorly understood. There are many amino acid 

transporters that are often capable of transporting a suite of amino acids, with significant 

redundancy (reviewed in 113). The most prominent transporter of BCAAs into cells is the 

large neutral amino acid (LNAA) transporter, a heterodimer composed of LAT1 and its 

molecular chaperone CD98 (SLC7A5 and SLC3A2, respectively) (114–116). Genetic and 

pharmacologic inhibition studies indicate that, at least for some cell types in cell culture, 

LNAA mediates most BCAA uptake (117). To what extent these transporters are rate 

limiting under physiological conditions is not clear. The LNAA also transports aromatic 

amino acids (AAAs), and the frequent correlation between plasma levels of BCAAs and 

AAAs (e.g., in prediabetes) has been ascribed to competition for these transporters (118). 

The transporter is highly expressed in the blood-brain barrier, where it has been estimated to 

be 96% saturated with LNAAs, mostly leucine and phenylalanine (119). Based on this 

observation, treatment with BCAAs has been proposed to competitively prevent uptake of 

AAAs into the brain in, for example, hepatic encephalopathy, with variable results (120). If 

so, then LNAA transport does likely contribute a rate-limiting step in systemic BCAA 

homeostasis, although the LNAA transporter may have lower affinity for BCAAs in tissues 

other than the brain. BCKAs may be transported by nonspecific monocarboxylate 

transporters (121).

BCAAs are also important for interorgan nitrogen exchange, most often studied between 

muscle and liver (122). BCAT enzymes operate near equilibrium in most tissues, and rates of 

transamination generally far outstrip rates of BCKA oxidation, thus allowing BCAA amino 

groups to contribute significantly to the transamination pool. Alanine is a major circulating 

metabolite (with higher turnover than glutamine, glycerol, or pyruvate) (79), which is in 

large part secreted by skeletal muscle; it is also an important source for gluconeogenesis in 

the liver (123). Muscle secretion of alanine requires amination of pyruvate, and strikingly, 

leucine alone accounts for 20% of this nitrogen (124). Valine and isoleucine likely contribute 

proportionally. BCAAs thus participate as nitrogen donors both to move nitrogen to the liver 

for urea synthesis and to facilitate moving carbons to the liver for gluconeogenesis. Of note, 

net transfer of nitrogen from BCAAs requires the concomitant removal of BCKAs to prevent 

the reverse reaction, which is achieved via either BCKA secretion or oxidation (125). BCAA 

nitrogen can also be transferred to glutamine, a substrate for gluconeogenesis in the kidney 

(126) and in the brain; to the synthesis of both excitatory glutamate and inhibitory GABA 

neurotransmitters; and to the neuroprotective astrocyte/neuron glutamine/glutamate shuttle 

(127).

In summary, whole-body BCAA metabolism reflects a balance between protein ingestion, 

cycling of protein synthesis and breakdown, and BCAA oxidation. Large gaps still exist in 

our understanding of how these processes are regulated and how they differ between tissues.
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BRANCHED CHAIN AMINO ACIDS IN DISEASE

Inborn Errors of BCAA Metabolism

Inborn errors of BCAA metabolism have demonstrated the importance of evolutionarily 

honed BCAA homeostatic mechanisms to prevent excess of BCAAs or their derivatives. 

Maple syrup urine disease (MSUD), first described in the 1950s (128–130), is an autosomal 

recessive disease caused by mutations in the first two subunits of BCKDH (the BCKDHA/

BCKDHB heterotetramer or DBT) and occurs in approximately 1:200,000 births. Mutations 

in the third subunit of BCKDH, DLT, lead to more severe and distinct disease because DLT 

is shared with PDH and αGDH. Plasma BCAAs, α-ketoacids, and hydroxy-BCAAs are 

high, and elevations in lalloisoleucine are pathognomonic (131). Accumulation of a rare 

catabolic product, sotolone, gives the urine its characteristic odor (132, 133). The disease 

presentations are variable, in part depending on which subunit of BCKDH is affected (134). 

Untreated, MSUD leads to encephalopathy, cerebral edema, and death. The mechanism of 

encephalopathy remains unclear, but it likely involves disturbed neurotransmission. BCAAs, 

especially leucine, donate via BCAT transamination one-third or more of the amino groups 

in brain glutamate, the major excitatory neuro-transmitter, and are critical to maintain 

nitrogen homeostasis in the astrocyte/neuron glutamate/glutamine cycle (127, 135, 136); 

elevations in α-KIC may thus contribute to glutamate depletion. In addition, as noted above, 

BCAAs (especially leucine) compete with AAAs for transport across the blood-brain barrier, 

thus potentially limiting important neurotransmitter precursors. Numerous other mechanisms 

have been proposed (137). Upon diagnosis, patients are treated by aggressive protein 

withdrawal, and then amino acid–defined diets are slowly reintroduced to maintain BCAA 

levels as close to normal as possible (138). Liver transplantation is curative, which 

demonstrates that providing ~10% of total body BCKDH activity is sufficient to restore 

BCAA homeostasis (139). Conversely, MSUD patients can serve as liver donors (140), 

indicating that BCKDH activity outside the liver is also sufficient to maintain BCAA 

homeostasis. Gene therapy to deliver functional BCKDH or edit the endogenous mutations 

may provide viable alternatives to liver transplant.

More recent work shows that mutations in BCKDK, leading to excess, rather than restricted 

BCAA oxidation may lead to autism spectrum disorder with epilepsy (141, 142). In 

addition, homozygous mutations in SLC7A5, a component of the LNAA transporter (see 

above), have been found in patients with autistic traits. Deletion of Slc7A5 in endothelial 

cells of mice leads to low brain BCAAs and severe neurological symptoms, and 

intracerebroventricular administration of BCAAs partially reverses these abnormalities 

(143). Thus, excess or insufficient BCAAs/BCKAs in the brain contributes to neurologic 

diseases, underscoring the importance of BCAA homeostasis for normal brain function, 

although in both cases the mechanisms remain unclear.

Diabetes

Unlike the clear neurotoxic effects of large excesses in BCAAs that are seen in MSUD 

patients, the possible pathogenic consequences of milder elevations in BCAAs are only 

slowly coming to light. Elevations of BCAA levels in blood of patients with obesity and 

insulin resistance were first noted in the 1960s (144, 145). Recent work has revitalized these 
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observations and supports the notion that elevations in BCAAs in fact contribute causally to 

insulin resistance, as supported by the following observations: (a) Unbiased metabolomic 

studies with plasma from normal subjects with normal insulin sensitivity identified 

elevations in plasma BCAAs as the strongest predictor for developing diabetes in the 

subsequent decade or more, indicating that changes in BCAA metabolism precede 

detectable insulin resistance (146–149); (b) Mendelian genetics studies revealed that 

polymorphisms near the PPM2 gene (encoding for the BCKDH phosphatase) that affect 

BCAA levels also increase the risk of insulin resistance (150); and (c) BCAAs infused into 

the circulation of healthy adults are sufficient to impair glucose disposal (151). Moreover, 

adding BCAAs to a high-fat diet worsens the development of glucose intolerance in rodents 

(147), whereas limiting BCAAs improves glucose tolerance and insulin sensitivity (152). 

Together, these data support the notion that BCAAs contribute to insulin resistance, likely 

via a mechanism dependent on excess lipid availability. Conversely, insulin resistance itself 

likely can cause elevations in BCAAs, establishing a feed-forward loop (153, 154).

Identifying the mechanisms that lead to BCAA elevations may present novel targets for 

interventions early in the progression to insulin resistance. Multiple mechanisms are likely at 

play, involving multiple organs (Figure 5). To date, nearly all mechanistic studies are largely 

based on rodent studies. In adipose tissue of insulin resistant people and animals, gene 

expression of nearly every enzyme required for BCAA oxidation is suppressed (155–160). 

Cell culture studies suggest that hypoxia, endoplasmic reticulum stress, and inflammation 

contribute to this suppression (161, 162), and thiazolidinediones rescue expression in vivo 

(158, 163). In the liver, BCKDH phosphorylation is increased, which is likely driven by high 

BCKDK expression (159, 164–166). Suppression of BCAA oxidation in liver and adipose 

tissue promotes elevations in plasma BCAAs, likely shunting BCAA oxidation to permissive 

organs (118). Consistent with these observations, recent studies in whole animals with 

steady-state heavy isotope infusions revealed in db/db mice blunted BCAA oxidation in fat 

and liver, with consequent significant shunting of oxidation to skeletal muscle (110). Recent 

work also showed that fructose ingestion induces the hepatic transcription factor ChREBP-β, 

which in turn activates BCKDK transcription, thus linking fructose and BCAA metabolism. 

This suggests a mechanism by which the modern dietary choices of high fructose and 

protein consumption synergistically conspire to elevate plasma BCAAs (166). Reversing the 

effects of BCKDK by liver-targeted overexpression of the PPCM phosphatase PPM1K, or 

by systemic pharmacological inhibition of BCKDK, improved glucose tolerance in Zucker 

fatty rats (166), strongly supporting the causal role of reduced liver BCAA oxidation in the 

development of insulin resistance.

How elevations in BCAAs cause insulin resistance remains unclear. In fact, it remains 

uncertain if elevations in BCAAs per se promote insulin resistance; alternative explanations 

include the consequences of decreased oxidation in some tissues (e.g., adipose) or shunted 

increased oxidation in others (e.g., muscle). Few mechanisms have been proposed to connect 

impaired BCAA oxidation in the liver with direct effects within the liver. Interestingly, 

BCKDK in the liver appears to also phosphorylate and inhibit ATP citrate lyase, a rate-

limiting step for de novo lipogenesis, possibly providing an alternative explanation for 

insulin resistance in the face of elevated BCKDK (166). The near complete loss of BCAA 

oxidation in adipose tissue may also have important cell-autonomous consequences. In 
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cultured adipocytes, leucine and isoleucine contribute 30% of lipogenic acetyl-CoA, and 

BCAA oxidation is required for differentiation (35). These observations predict that loss of 

BCAA oxidation could impair lipid storage in adipocytes, thus contributing to ectopic lipid 

deposition and insulin resistance. Adipocytes also use BCAAs to synthesize odd-chain fatty 

acids (35, 41), but the role for these unique lipids is unknown.

Skeletal muscle is the predominant site of glucose disposal after a carbohydrate load (167), 

and thus it represents a critical site of insulin resistance. Several mechanisms have been 

proposed to connect elevated BCAAs or increased BCAA oxidation to insulin resistance in 

skeletal muscle. mTOR activation by leucine has been investigated, but mTOR does not 

appear to be responsible for the effects of BCAAs on insulin resistance, because treating rats 

with rapamycin does not abrogate the effects of BCAAs (147). In fact, in general, diets 

supplemented with leucine only, rather than all three BCAAs, tend to improve insulin 

resistance rather than worsen it (168). Competition of elevated BCAA oxidation with 

oxidation of other substrates, notably glucose, has also been proposed, but this mechanism is 

unlikely because the relative contribution of BCAAs to total muscle fuel oxidation is small 

(110). In one proposed mechanism that connects BCAAs and ec-topic lipid accumulation, 

high BCAA oxidation in skeletal muscle depletes the intracellular pool of glycine, thereby 

impairing lipid export of acyl-glycine adducts, resulting in accumulation of acyl-CoA 

species (165). Glycine levels frequently correlate inversely with BCAAs (145–147), and a 

low-BCAA diet raised glycine back to normal levels (165). Finally, elevated oxidation of va-

line likely increases production of 3-HIB, increasing fatty acid uptake via paracrine 

promotion of transendothelial fatty acid transport (65). Plasma concentrations of 3-HIB are 

associated with the future development of diabetes, even after adjusting for body mass index 

and plasma BCAAs (169). Despite this multitude of potential mechanisms, no studies have 

definitively demonstrated that any of these changes in BCAA oxidation in specific tissues 

are sufficient to cause insulin resistance.

Cancer

Because BCAAs are essential amino acids, a growing tumor must obtain them from either 

the circulation or surrounding tissue. Alterations in circulating BCAA levels in patients 

diagnosed with cancer have long been noted (170–173). Recent retrospective metabolomic 

studies demonstrated that elevated plasma BCAA levels are associated with a greater than 

twofold increased risk in pancreatic cancer and precede clinical presentation by many years. 

The observation was recapitulated in mice genetically engineered to develop pancreatic 

ductal adenocarcinoma and is likely caused by subclinical systemic protein breakdown 

during early tumorigenesis, which is presumed to service the BCAA needs of the growing 

tumor (171). Interestingly, the same appears not to be true of other tumors, even when driven 

by the same mutations in KRAS and p53 (174). Whether these alterations in systemic BCAA 

metabolism contribute to tumor growth or metastasis remains unclear. Regardless, 

opportunities for biomarker development are an area of intense investigation (175, 176).

A recent surge of studies on tumor BCAA metabolism has focused largely on BCAT1, the 

expression of which is altered in numerous cancers, and in many cases correlates with poor 

outcome (177–179). Notably, in glioblastomas containing wild-type isocitrate 
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dehydrogenase (IDH), half express high levels of BCAT1, whereas IDHmut tumors suppress 

BCAT1 expression (180). The latter suppression may be mediated by the oncometabolite 2-

hydroxyglutarate (2-HG) that is generated by mutant IDH. 2-HG potently inhibits 

dioxygenases, including histone demethylases (181), leading to widespread suppressive 

hypermethylation of promoters, including that of BCAT1 (180). Conversely, several 

mechanisms to explain elevated BCAT1 expression in various cancers have been proposed, 

including increased binding of BCAT1 mRNA transcript to RNA-binding protein MSI2 

(182) chromatin hyperacetylation of the BCAT1 gene by the MLL1 fusion protein (183), and 

transcriptional activation by the myc oncogene (184, 185). It remains unclear precisely how 

BCAT1 expression promotes tumor growth, but it likely differs between tumors. In IDHwt 

acute myeloid leukemia, BCAT1 expression correlates with shorter survival and has been 

proposed to mimic IDHmut acute myeloid leukemia by virtue of depleting αKG, leading to 

inactivation of αKG-dependent dioxygenases, which is analogous to inhibition of the same 

dioxygenases by 2-HG in IDHmut cells. Suppression of dioxygenases ultimately promotes 

growth via HIF-1α stabilization and by altering the epigenomic landscape (186). 

Conversely, 2-HG produced in IDHmut glioma cells inhibits BCAT1, thus limiting the supply 

of glutamate and opening a vulnerability to treatment with inhibitors of glutaminase, the 

other main source of glutamate (187). In chronic myeloid leukemia, BCAT1 is proposed to 

promote blast crisis by aminating BCKAs to produce BCAAs, leading to progrowth mTOR 

activation; however, it is unclear how BCAT1 enzymatic activity should be limited to only 

one direction (182). BCAT1 overexpression also promotes mTORC1 activity in breast 

cancer through unclear mechanisms (188). In summary, data strongly point to an important 

role for BCAT1 in multiple cancer types, likely via multiple different mechanisms unique to 

each cancer.

Heart Failure

BCAA metabolism has also garnered much attention in the context of cardiovascular disease 

and heart failure. Elevations in plasma BCAAs and their metabolites are independently 

associated with cardiovascular disease risk (189–191), a topic reviewed elsewhere (192). 

Additionally, circulating and cardiac BCAAs and BCKAs rise in response to ischemic and 

hemodynamic murine models of heart failure (193–195). In these studies, the increase in 

cardiac and plasma BCAAs coincides with diminished expression of multiple components of 

the BCAA catabolic pathway. However, the heart consumes far fewer BCAAs than other 

organs (196–198), making it unlikely that diminished cardiac BCAA catabolism alone 

accounts for increased plasma BCAAs. Suppression of whole-body BCAA catabolism via 

deletion of PP2Cm elevates circulating and cardiac BCAA levels and worsens cardiac 

response to aortic constriction and ischemia/reperfusion injury (193, 194). Additionally, 

dietary BCAA supplementation worsens contractility and increases infarct size following 

myocardial infarction (195). Conversely, pharmacological promotion of systemic BCAA 

catabolism lowers circulating and cardiac BCAA levels and improves cardiac function in 

both hemodynamic and ischemic challenges (193–195). These data strongly support the 

notion that alterations of BCAA metabolism contribute to heart failure in numerous 

contexts.
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The mechanisms by which BCAAs affect cardiac function, however, remain poorly 

understood. As in the case of insulin resistance, multiple mechanisms likely contribute. 

Diminished cardiac BCAA catabolism per se is not likely to compromise ATP production in 

heart failure because BCAA oxidation contributes to a negligible amount (<5%) of ATP 

production even in the healthy heart (110, 199; reviewed in 200, 201). It is thus more likely 

that altered concentrations of BCAAs or BCKAs in the heart affect function. High levels of 

intracellular cardiac leucine may activate mTOR, thus promoting cardiac insulin resistance 

and hypertrophy. Indeed, mTOR inhibition mitigates cardiac dysfunction in multiple heart 

failure models (195, 202, 203; reviewed in 204). Conversely, even transient exposure of 

isolated rodent hearts to high concentrations of BCAAs impairs contractility. This may occur 

in part via inhibition of mitochondrial ATP production, as high levels of BCAAs inhibit both 

pyruvate and αKG dehydrogenases (193, 205). Overall, however, how alterations of 

systemic BCAA metabolism alter heart failure remains unclear.

CONCLUSION

BCAAs have been the subject of often intense study since their discovery in the mid-

nineteenth century. More than 50,000 studies are reported in PubMed. Space constraints 

invariably precluded us from covering all that is to be said about these fascinating molecules. 

We have succinctly reviewed here the basic biochemistry and physiology of mammalian 

BCAA metabolism, much of which was elucidated in the latter part of the twentieth century. 

This is followed by examples of more recent investigations pointing to a potentially 

important role for BCAAs in the development of numerous prevalent diseases that 

increasingly afflict the modern world. Armed with improved understanding of BCAA 

physiology and pathophysiology, we anticipate that interventions appropriately targeting 

BCAA metabolism will help improve treatment of these modern ailments.
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Figure 1. 
BCAA synthesis and catabolism. Synthesis (a) occurs in plants, bacteria, and fungi. 

Oxidation (b) occurs in plants, bacteria, fungi, and animals. All three BCAAs share the 

BCAT and BCKDH steps, after which catabolism of each BCAA is unique. The BCKDH 

complex is composed of a core of 24 E2 subunits, which are docked by E1 heterotetamers 

and E3 dimers. BCKDK inhibits E1 via phosphorylation, which is reversed by PP2Cm. 

Abbreviations: ACAD8, acyl-CoA dehydrogenase family member 8; ACADSB, short/

branched chain acyl-CoA dehydrogenase; ACAT1, acetyl-CoA acetyltransferase 1; AHAS, 

acetohydroxyacid synthase; α-KIC, α-ketoisocaproic acid; α-KIV, α-ketoisovaleric acid; α-
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KMV, α-ketomethylvaleric acid; ALDH6A1, aldehyde dehydrogenase 6 family member A1; 

AUH, AU RNA-binding protein/enoyl-coenzyme A hydratase; BAIBA, beta-amino-

isobutyric acid; BCAA, branched chain amino acid; BCAT, branched chain amino 

transferase; BCFA, branched chain fatty acid; BCKDH, branched chain amino acid 

dehydrogenase; BCKDK, BCKDH kinase; CoA, coenzyme A; DHAD, dihydroxyacid 

dehydratase; HADHA, hydroxyacyl-CoA dehydrogenase subunit alpha; HIBADH, 3-

hydroxyisobutyrate dehydrogenase; HIBCH, 3-hydroxyisobutyryl-CoA hydrolase; HMGCL, 

3-hydroxymethyl-3-methylglutaryl-CoA lyase; HSD17B0, 2-methyl-3-hydroxybutyryl-CoA 

dehydrogenase; IPMDH, isopropylmalate dehydrogenase; IPMI, isopropylmalate isomerase; 

IPMS, isopropylmalate synthase; IVD, isovaleryl-CoA dehydrogenase; MCCC, 

methylcrotonoyl-CoA carboxylase; MUT, methylmalonyl-CoA mutase; OCFA, odd-chain 

fatty acid; OXCT1, 3-oxoacid CoA transferase; P, phosphorylation; PCCB, propionyl-CoA 

carboxylase subunit beta.
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Figure 2. 
(a) Leucine and α-KIC promote insulin release from pancreatic B cells via activation of 

glutamate dehydrogenase. (b) Leucine promotes mTORC1 activity by relieving Sestrin2-

mediated inhibition and promoting LeuRS-mediated pathway activation. (c) Skeletal muscle 

secretes valine catabolites BAIBA and 3-HIB. BAIBA promotes hepatic B oxidation, 

adipocyte thermogenesis, and osteocyte survival; 3-HIB induces fatty acid transport across 

the endothelium and into skeletal muscle. Abbreviations: 3-HIB, 3-hydroxyisobutyrate; 

ADP, adenosine 5 -diphosphate; αKG, α-ketoglutarate; ATP, adenosine 5 -triphosphate; 

BAIBA, beta-amino-isobutyric acid; FFA, free fatty acid; GATOR1, GAP activity toward the 

Rag GTPases 1; GATOR2, GAP activity toward the Rag GTPases 2; GDH, glutamate 

dehydrogenase; GTP, guanosine triphosphate; Leu, leucine; LeuRS, leucyl tRNA synthetase; 

mTORC1, mechanistic target of rapamycin complex 1; NADH, nicotinamide adenine 

dinucleotide; TCA, tricarboxylic acid; ROS, reactive oxygen species; Val, valine; v-ATPase, 

vacuolar H+-adenosine triphosphatase ATPase.

Neinast et al. Page 27

Annu Rev Physiol. Author manuscript; available in PMC 2020 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Two-compartment model of whole-organism branched chain amino acid (BCAA) 

physiology. BCAAs appear in circulation when released from protein, from either the diet or 

tissues. BCAAs can leave the circulation to be deposited into new protein. All BCAAs are 

ultimately cleared from the system when oxidized in tissues. Many factors promote or 

inhibit each of these processes (grey arrows). The tissue-specific regulation of protein 

turnover and oxidation is poorly understood.
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Figure 4. 
The graph illustrates increasing public interest in branched chain amino acids (BCAAs) 

since 2004. The relative frequency of Google searches for the indicated keyword is shown, 

revealing the rising cyclical interest in “BCAA” in close correlation with the term “workout” 

and rising each year in January, coincident with the term “New Year resolution.”
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Figure 5. 
Proposed model of casual relationship between altered tissue branched chain amino acid 

(BCAA) oxidation and elevated circulating BCAA levels in insulin resistance. In healthy 

conditions (a), BCAA oxidation is balanced among different organs. Genetic and 

environmental factors suppress BCAA oxidation in the liver and adipose tissues (b), causing 

increased circulating BCAA levels and overflow of BCAAs into skeletal muscle, which 

results in lipotoxicity and insulin resistance. Adapted with permission from Reference 110.
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