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Abstract

Signaling through the dual leucine zipper-bearing kinase (DLK) is required for injured neurons to 

initiate new axonal growth; however, activation of this kinase also leads to neuronal degeneration 

and death in multiple models of injury and neurodegenerative diseases. This has spurred current 

consideration of DLK as a candidate therapeutic target, and raises a vital question: in what context 

is DLK a friend or foe to neurons? Here, we review our current understanding of DLK’s function 

and mechanisms in regulating both regenerative and degenerative responses to axonal damage and 

stress in the nervous system.

Introduction

An overarching question is whether mechanisms that are required for the wiring of neuronal 

circuits during development can be re-utilized to stimulate repair after damage or to restore 

function after loss in disease. In contrast to development, the capacity to repair mature 

neuronal circuits following damage, and, in many circumstances, the inability to repair, is 

linked to the activation of damage response pathways in the nervous system. Injury response 

signaling mediated by the dual leucine zipper-bearing kinase (DLK) is critical for neurons to 

initiate new axonal growth in the peripheral nervous system (PNS). However, this same 

kinase enhances neuronal death and degeneration in a growing number of models for 

neuronal injury, stress and neurodegenerative diseases. These dichotomous responses, along 

with other recent observations discussed in this review, can be reconciled into a unified view 

in which DLK regulates and coordinates stress response signaling in neurons [1].

In particular, DLK signaling appears specifically tuned to stressors that impair or damage 

axons (Figures 1, 2 and Table 1). These stressors include mechanical transection (Figure 1), 

which leads to activation of DLK signaling in all neurons and model organisms examined 

thus far [2–7]. They also include more chronic forms of stress associated with genetic 

mutations and drugs that hinder the microtubule cytoskeleton and axonal transport within 

neurons (Table 1 and Figure 2). Since axons often extend over great distances, reaching 

lengths of over 1000 times the diameter of the neuron’s cell body [8], the integrity of the 

axon and the ability to transport organelles and proteins within it is a point of vulnerability 
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for neurons. Such impairments within an axon can effectively silence a neuron from 

communicating with its post-synaptic targets, so it is logical that neurons should have 

mechanisms to monitor the state of their axon. In this review we will discuss how DLK’s 

signaling mechanisms and functions appear to be intimately linked to the process of axonal 

transport.

As a mitogen-activated protein kinase kinase kinase (MAP3K), DLK functions as an 

upstream regulator of MAP Kinase signaling by activating the MAP2Ks MKK7 and MKK4, 

and the stress activated kinases JNK and p38 [9,10] (Figure 1). In mammals, DLK 

(MAP3K12) has a sister kinase, MAP3K13 (LZK), which has some partially overlapping 

biochemical activities and roles [9,11•]. Worms (Caenorhabditis elegans) and flies 

(Drosophila melanogaster) each have a single orthologue of equivalent homology to both 

DLK and LZK, named DLK-1 and Wallenda. Since these kinases share similar functions 

with DLK in the nervous system, we refer to all of these related kinases as ‘DLK’ in this 

review.

Developmental roles versus stress response

Some roles in nervous system development, including developmental neuronal cell death in 

sensory and motor neurons, neuronal migration, axon formation, and axon outgrowth have 

been documented for DLK and LZK [12–16], particularly when disrupted in combination 

with other components of JNK signaling [16] (Table 1). More dramatic defects in 

developmental wiring of the nervous system have been linked to lost regulation of DLK: 

DLK protein is held in check by a highly conserved ubiquitin ligase, Pam/Highwire/Rpm-1 

(PHR) [17–20]. This restraint appears to be important for some axon guidance decisions 

[17,21], axon termination at correct locations [22,23], assembly of presynaptic machinery 

[19,20,24••], and elaboration of dendrite branches [25]. Hence restraint verses activity of 

DLK appears to be important at specific time points in nervous system development.

In contrast to development, in which only mild axon outgrowth defects have been noted for 

loss of dlk function in sensory and motor axons [12–15,26], DLK becomes activated in all 

types of neurons and axonal damage paradigms examined thus far in multiple model 

organisms [2–7], and is required for both regenerative and degenerative responses to axonal 

damage (Table 1). Many of the developmental defects associated with unrestrained DLK 

regulation may actually mimic responses made by neurons to axonal injury. For instance, 

recent studies using the Drosophila larval neuromuscular junction (NMJ) suggest that 

activation of DLK signaling promotes synaptic decline [24••,27•], which also occurs at 

disconnected synapses following injury [28]. Another well known response to axonal injury 

is a reduction in the injured neuron’s dendritic tree and in the synaptic inputs received by the 

injured neuron [29,30]. Whether DLK promotes post-developmental changes in dendrite 

architecture remains to be examined, however recent findings that DLK mediates a reduction 

in synaptic spines in a mouse model of Alzheimer’s Disease [31••] suggests this possibility.

Considering DLK’s major role in damage responses, and that its most striking requirement 

during development is for programmed neuron cell death [14], one may speculate that 

DLK’s function and restraint is relevant for developmental transitions in which neurons 
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inherently experience conditions of cellular stress. For instance, limited levels of 

neurotrophic factors, or major rearrangements in neuronal cytoskeleton required for 

neuronal migration, may be considered ‘stressful’ for neurons. Also, Li et al. found that 

DLK signaling restrains the expression levels of presynaptic proteins to match the timing of 

synaptic maturation and growth [24••]. Premature expression of these abundant structural 

components of the synapse fully ready to transport and implement these molecules may also 

result in cellular stress.

DLK regulates retrograde responses to axonal damage and trophic factor 

withdrawal

A large body of work supports a unified view that DLK regulates an axon-to-nucleus 

signaling cascade that monitors the state of the axon and becomes activated in response to 

axonal damage. Endogenous DLK associates with vesicles [3], and live imaging studies of 

GFP-DLK transgenes suggest these vesicles are transported both anterogradely and 

retrogradely in axons [3,32]. DLK function is required cell autonomously for nuclear 

responses induced by axonal injury, including the activation of specific transcription factors 

[2,4,5,7,11•,14,33••]. These include phosphorylated STAT3, which is thought to be 

retrogradely transported in peripheral nerves from axons to the nucleus [5], and also 

transcriptional reporters for JNK signaling [3]. Mutations that disrupt retrograde axonal 

transport, including mutations in dynein and dynactin [3] and a known cargo for retrograde 

transport, JNK interacting protein JIP3, inhibit cell body responses downstream of DLK 

[14,34]. Importantly, DLK’s actions and signaling mechanisms appear specifically tuned to 

axonal damage and not dendrite damage: in contrast to axonal regeneration, DLK is not 

required for the regrowth of dendrites following injury [35,36•]. In addition, certain cell 

body responses to axonal injury induced by DLK are not induced by dendritic injury [37–

39].

DLK was first discovered to play an essential role in the ability of axons to initiate new 

axonal growth following injury in the PNS [2,3,5,6,40]. However, following CNS injury in 

the optic nerve, DLK signaling initiates a cell death program [4,7]. Death downstream of 

DLK can be induced by other signals, including trophic factor withdrawal [14], which is 

known to rely upon retrograde transport and whose response can be probed specifically in 

axons using compartmentalized cultures [42,43]. Strikingly, DLK is essential for this classic 

form of developmental apoptosis in embryonic dorsal root ganglion (eDRG) neurons [14]. 

Moreover, DLK signaling can originate from the axonal compartment following NGF 

withdrawal: biochemical indications of DLK and JNK activation can be detected in extracts 

isolated from axons [44•], and inhibition of DLK and/or JNK solely in the axonal 

compartment can inhibit the appearance of downstream signaling markers in the cell body 

[14,44•]. These studies demonstrate compellingly DLK’s ability to initiate 

compartmentalized signaling within axons.

Links between DLK signaling, cytoskeleton and axonal transport

Intracellular transport within axons becomes acutely blocked at sites of axonal damage, and 

it can also become impaired or diminished in the presence of cellular stressors (Figure 2), 
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such as chemotherapeutic agents that disrupt the cytoskeleton [45] or accumulations of 

misfolded proteins in neurodegenerative disease models [46]. There is a striking correlation 

between conditions that impair axonal transport and conditions that activate DLK signaling: 

DLK signaling becomes activated in invertebrate and vertebrate PNS neurons that are treated 

with cytoskeletal destabilizing agents [47,48•,49,50], or with genetic mutations in the 

cytoskeletal components spectroplakin, TCP1, Tau, or spectrin [6,47,51•]. Activation also 

occurs in mutations that impair the kinesin Unc-104 (homologous to Kif1A), which is a 

major carrier of synaptic vesicle precursors in axons [24••]. Mutations that inhibit DLK 

signaling rescue the synaptic defects associated with mutations in the kinesin unc-104 
[24••]. Other genetic interaction studies in invertebrate peripheral neurons suggest that DLK 

mediates changes in neuronal morphology caused by mutations that impair cytoskeletal 

structure [47,52–55]. Hence DLK signaling appears responsible for both neuronal plasticity 

and for major pathologies associated with defects in cytoskeleton and axonal transport.

Many previous studies have suggested that JNK signaling may directly regulate kinesin and 

dynein motors and their cargos [56,57]. However, Li et al. found that DLK signaling tunes 

the expression levels of presynaptic proteins, which are major cargoes for transport in axons 

by the Unc-104 kinesin [24••]. The restraint of presynaptic protein levels by DLK signaling 

when axonal transport is impaired may function as a negative feedback loop to reduce stress 

by decreasing the amount of cargo for transport, thereby minimizing build-up. These 

findings suggest that DLK can function as both a sensor and effector to regulate intracellular 

transport within axons.

DLK signaling contributes to neurodegenerative disease

The degenerative responses induced by DLK are gaining increased attention for their roles in 

a growing number of neurodegenerative diseases. These include glaucoma, where functional 

genomic screens have identified DLK and LZK as key mediators of retinal ganglion cell 

(RGC) death [7,11•]. In addition, recent studies have suggested that DLK knockout or 

inhibition can delay pathology in multiple models of Amyotrophic Lateral Sclerosis (ALS) 

and Alzheimer’s disease (AD) [31••,58]. DLK inhibition is also protective in other models 

of neuronal death, including models of subarachnoid hemorrhage [59], 6-OHDA-induced 

dopaminergic cell death [60] and excitotoxicity [61], further increasing interest in DLK as a 

potential therapeutic target.

These findings imply that DLK signaling can be activated in contexts beyond simple axonal 

injury. It is also now apparent that the fundamental role of DLK signaling is not simply to 

increase axonal regeneration, despite its importance in regeneration paradigms. The 

dichotomous roles in regeneration and degeneration may be unified into an underlying 

biological function to stimulate pathways that allow the nervous system to react to axonal 

damage and cellular stress. Similar to other stress pathways (including ER stress and DNA 

damage) transient activation of stress pathways enables recovery, however chronic activation 

leads to cell death [62,63].
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DLK signaling influences axonal integrity

An overarching theme for DLK signaling roles relates to the integrity of axons and 

trafficking within axons. It is striking that the multiple scenarios of DLK signaling 

summarized in Figures 1 and 2 also share a common resulting phenotype of axonal 

degeneration. Disruption of DLK together with other components of MAPK signaling leads 

to strong inhibition of axonal degeneration following axotomy [64,65], trophic factor 

withdrawal [14,41,66•] and chemotherapy-induced axon degeneration [64,67]. We therefore 

consider here our current understanding of the mechanistic relationships between DLK 

signaling and axonal degeneration.

Since DLK signaling may be initiated locally in axons and can regulate global 

(transcriptional/translational) responses in neurons, its influence upon axonal integrity and 

degeneration is likely multi-pronged, involving both local mechanisms in axons and global 

mechanisms downstream of retrograde signaling [68]. The ‘global’ responses downstream of 

retrograde signaling are simplest to consider first. Following trophic factor withdrawal in 

mouse DRGs, DLK and downstream MAPK signaling induce the expression of pro-

apoptotic proteins Bax, Puma and caspases, some of which stimulate axonal degeneration 

following their induction in the cell body [66•]. A strikingly opposite protective response has 

been observed in fly motoneurons, where activation of DLK, either by ectopic expression or 

axonal injury, leads to a global response that increases the resiliency of both axons and 

dendrites to degenerate in subsequent injuries [38,69]. These responses may serve a 

biological purpose for neurons that have been injured to have increased resiliency to 

subsequent damage. In contrast, the pro-degenerative actions downstream of trophic factor 

deprivation may allow for pruning of axonal branches.

Together with downstream MAPK signaling effectors, DLK signaling also acts locally in 

distal axons to influence axonal degeneration. This may be most clearly considered for 

Wallerian degeneration of distal axons that become separated from cell bodies following 

acute axonal injury (pictured in Figure 1). Wallerian degeneration involves cell autonomous 

‘self-destruction’ events that occur locally in axons independent of classical cell death 

machinery [70,71]. Acute inhibition of JNK in axotomized axons is sufficient to delay 

axonal degeneration [64], suggesting a local role for DLK/JNK signaling in promoting axon 

destruction.

What is this local role in axons? A key driver of Wallerian degeneration is the TIR-domain 

protein Sarm1, which functions as a NADase enzyme, degrading the essential metabolite 

NAD+ [72,73]. Sarm1 function is antagonized by the NAD+ biosynthetic enzyme NMNAT2 

[74,75•], which, due to its short half-life in axons, must be continuously transported in axons 

from the cell body [76]. Yang et al. observed that genetic inhibition of MAPK signaling 

could blunt degeneration induced by ectopic activation of Sarm1 in DRG explants, and 

proposed a role for MAPK in promoting degeneration downstream of Sarm1 [65]. However 

Walker et al. more firmly identified an upstream role with the finding that MAPK signaling 

enhances the stability/turnover of NMNAT2 in both mouse DRG and fly motoneurons [75•]. 

Connections between DLK and NMNAT2 are also noted via their shared regulation by the 

PHR ubiquitin ligase [18–20,69], which is discussed further below in section 8. We 
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acknowledge inherent challenges to distinguishing local from global effects of DLK 

signaling, which likely intersect to influence axonal integrity.

Stress responses regulated by DLK

Given the many cellular responses to DLK activation discussed above, surprisingly little is 

currently documented about the cellular pathways controlled by DLK. The known pathways 

thus far all share features of roles in stress response. Studies in worms have suggested that 

DLK signaling leads to increased mitochondrial transport and density in axons after injury 

[77], and that DLK signaling stimulates the expression of poly(ADP-ribose) glycohydrolases 

(PARGs) [78], which are linked to a growing number of genotoxic and metabolic stress 

signaling pathways[79].A recent study using mouse models of axonal stress in both the PNS 

and CNS found that DLK is a critical regulator of the Integrated Stress Response (ISR) 

pathway [33••]. ISR appears to influence translational responses in cells: while global 

translation is inhibited, genes with upstream Open Reading Frames such as ATF4 can be 

selectively induced. These findings are interesting in light of other data linking ISR to 

neuronal loss in models of neurodegenerative diseases[80,81],as well as studies linking DLK 

to translational mechanisms of regulation [2,82].

In addition to cell-autonomous stress responses, DLK signaling may also promote responses 

by non-neuronal cell types. A recent study in flies suggested that signaling downstream of 

DLK (via p38) may increase neuroinflammation in a TDP-43 overexpression model of 

neurodegenerative disease [83], while conditional knockout of DLK in a ALS mouse model 

reduced the appearance of activated microglia [31••]. A recent study found that DLK 

controls the expression of neuroinflammatory chemokines and is required for microgliosis 

and neuropathic pain [106•] Future studies are needed to determine whether these pathways 

are controlled by DLK in different cell types and model organisms and to understand their 

mechanisms in axonal stress responses.

Mechanisms for restraint and activation of DLK signaling

Essential for the current model that DLK gates responses to axonal stress is that its 

mechanism is tightly tuned to axonal damage and restrained in healthy/undamaged neurons. 

One important mechanism of control is at the level of protein stability and turnover. Genetic 

perturbations in multiple components of ubiquitin ligase complexes and deubiquitinating 

enzymes result in elevated DLK levels and chronically activated DLK signaling 

[19,20,84,85]. Moreover, overexpression of DLK in neurons, and even ectopic expression of 

DLK in non-neuronal cell types, is sufficient to activate downstream signaling [10,20,41]. 

This is thought to be mediated by its capacity to dimerize via leucine zipper domains and 

phosphorylate itself [9]. Once activated, downstream signaling via JNK stimulates DLK 

phosphorylation at additional sites and a decrease in DLK’s turnover rate [41]. This feed-

forward relationship may enable neurons to kick-start DLK signaling in response to a local 

damage event in axons. How does DLK become activated? A growing number of conditions, 

kinases and some phosphatases have been implicated in its regulation [23,41,84,86•,87–95], 

and activated DLK is heavily phosphorylated across multiple sites [41,86•]. However, the 

molecular mechanisms that link various stressors in axons (in Figures 1 and 2) to DLK 
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activation are still poorly understood. Recent work has indicated that Protein Kinase A 

(PKA) is an important mediator of DLK’s activation following axonal injury [86•], while 

Ste20 Kinases MAP4K4, MINK1 and TNIK promote DLK’s activation in axons following 

trophic factor withdrawal [44•]. Whether these different stressors use overlapping or distinct 

mechanisms is not yet known. C. elegans DLK-1 contains a domain shared with 

MAP3K13/LZK that gates signaling activation in response to elevated calcium [96]. 

However application of microtubule destabilizing agents to axons leads to activation of DLK 

signaling independently of calcium [48•]. Hence it is likely that multiple distinct 

mechanisms regulate DLK activation in neurons.

DLK’s retrograde signaling functions require that DLK is physically present to become 

activated in axons. A conserved site for palmitoylation allows DLK to associate with 

vesicles that are transported in axons, and palmitoylation is essential for DLK’s signaling 

ability [97]. Since defects in axonal transport and the cytoskeleton lead to DLK activation, is 

DLK transport directly linked to its activation mechanism? It is intriguing that a major 

negative regulator of DLK, the PHR ubiquitin ligase, localizes to presynaptic terminals [98–

100], hence may promote destruction of DLK at synapses (Figure 3). It is also intriguing that 

PHR regulates axonal degeneration via an additional target, the protective enzyme NMNAT2 

[18,101] and Figure 2). PHR’s regulation of DLK is best documented in the context of 

synapse development, where PHR’s regulation of DLK becomes apparent with a timing that 

coincides with termination of axonal outgrowth and the initiation of synaptogenesis 

[20,102]. Since axonal damage inherently disrupts synaptic connections in axons, whether 

PHR influences DLK’s activation mechanisms following axonal damage remains an 

interesting future question.

Conclusion

We propose that a higher order function for DLK signaling may be to promote a damage-

response state in neurons that enables plasticity in neuronal circuits. In this state, the 

ultimate response may be strongly influenced by the circumstance of the damage. In some 

contexts, such as PNS injury, neurons may be supported for growth and inhibited for death. 

However in other contexts, in order to incur the least damage or the best adaptation within a 

neuronal circuit, it may be more advantageous for the damaged neuron to degenerate and be 

removed. As an evolutionarily conserved sensor of axonal stress and injury, DLK’s 

regulation and modes of action are tightly coordinated with the integrity of the axonal 

cytoskeleton and transport machinery. As a critical mediator of injury responses and 

neurodegeneration pathways, future work is needed to understand the cellular responses that 

DLK regulates and the mechanisms that control its activation in the nervous system.
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Figure 1. 
DLK regulates multiple responses to axonal damage. DLK signaling becomes activated 

following axonal injury and regulates multiple cellular responses (in orange): neuronal death 

[4,7], axonal regeneration [2,3,5,6] and/or protection from degeneration [69], depending 

upon the context (Table 1). Whether DLK promotes loss of dendrites and synaptic inputs is 

hypothesized based on discussed data [25,29,30,29–31••], but remains to be determined. The 

distal part of the axon, which becomes removed from the cell body undergoes Wallerian 

degeneration. This is also influenced by DLK signaling [64,69,103]. In addition, DLK and 

downstream signaling components crosstalk with other factors that influence axonal 

degeneration, the NMNAT enzyme and Sarm1 NADylase [18,65,75•,101].
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Figure 2. 
Examples of axonal stress that lead to activation of DLK. Defects in axonal transport [24••], 

disruption of cytoskeleton within axons [47–49], and inhibition of trophic factor signaling 

[14,41,44•] all result in the activation of DLK signaling. Downstream responses (in orange) 

include reduced expression levels of presynaptic proteins [24••] and yet unknown signals 

that impair postsynaptic receptor function and synaptic homeostasis mechanisms [27•]. Over 

time these responses are expected to promote synaptic decline and loss.
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Figure 3. 
Regulation of DLK. DLK associates with vesicles that are transported in axons (indicated in 

green) [3,32]. DLK protein is regulated by ubiquitin ligases, including the highly conserved 

synaptic protein PHR (Pam/Highwire/Rpm-1), which regulates DLK during synaptic 

development [19,20].
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