Skip to main content
. 2018 Dec 27;22(6):1048–1055. doi: 10.1017/S1368980018003129

Table 2.

Factor loading matrix for major dietary patterns identified among participants aged 40–79 years (n 1326) from Jilin Province, China, enrolled in the International Chronic Disease Cohort, 2010–2011

Food Wine pattern Vegetables pattern Condiment pattern Modern pattern Snack pattern
White wine 0·957 0·045 −0·031 0·003 0·099
Beer 0·957 0·056 −0·049 0·010 0·101
Seasoning 0·522 0·236 0·120 0·069 −0·134
Cooked vegetables 0·154 0·746 −0·024 0·188 0·093
Raw vegetables 0·130 0·735 0·007 0·040 0·110
Pickles 0·099 0·706 −0·111 −0·061 0·065
Rice −0·115 0·365 0·213 0·056 −0·141
Salt −0·152 −0·034 0·866 0·068 0·015
Oil 0·035 0·086 0·836 0·069 −0·064
Sugar 0·179 −0·061 0·607 0·056 0·168
Lean meats 0·120 −0·067 0·025 0·768 −0·021
Drinks −0·022 −0·005 0·059 0·566 0·113
Pasta 0·010 0·181 0·009 0·489 0·221
Eggs 0·003 0·360 −0·011 0·403 0·103
Fish −0·022 0·033 0·073 0·387 0·014
Soya products 0·194 0·348 −0·294 0·362 −0·048
Milk 0·095 −0·012 −0·045 0·141 0·683
Biscuits −0·089 −0·002 0·062 0·053 0·682
Fruits 0·081 0·329 0·109 0·130 0·538

In considering the number of factors to retain, we evaluated eigenvalues (>1), the scree plot and the interpretability of the factors to determine which set of factors could most meaningfully describe distinct food patterns. Items were retained in a factor if they had an absolute correlation of ≥0·30 with that factor (indicated in bold font).