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Abstract

Introduction—The measurement of specific volatile organic compounds in breath has been 

proposed as a potential diagnostic for a variety of diseases. The most well-studied bacterial lung 

infection in the breath field is that caused by Pseudomonas aeruginosa.

Objectives—To determine a discriminatory core of molecules in the “breath-print” of mice 

during a lung infection with four strains of P. aeruginosa (PAO1, PA14, PAK, PA7). Furthermore, 

we attempted to extrapolate a strain-specific “breath-print” signature to investigate the possibility 

of recapitulating the genetic phylogenetic groups (Stewart et al. Pathog Dis 71(1), 20–25, 2014. 

https://doi.org/10.1111/2049–632X.12107).
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Methods—Breath was collected into a Tedlar bag and shortly after drawn into a thermal 

desorption tube. The latter was then analyzed into a comprehensive multidimensional gas 

chromatography coupled with a time-of-flight mass spectrometer. Random forest algorithm was 

used for selecting the most discriminatory features and creating a prediction model.

Results—Three hundred and one molecules were significantly different between animals 

infected with P. aeruginosa, and those given a sham infection (PBS) or inoculated with UV-killed 

P. aeruginosa. Of those, nine metabolites could be used to discriminate between the three groups 

with an accuracy of 81%. Hierarchical clustering showed that the signature from breath was due to 

a specific response to live bacteria instead of a generic infection response. Furthermore, we 

identified ten additional volatile metabolites that could differentiate mice infected with different 

strains of P. aeruginosa. A phylogram generated from the ten metabolites showed that PAO1 and 

PA7 were the most distinct group, while PAK and PA14 were interspersed between the former two 

groups.

Conclusions—To the best of our knowledge, this is the first study to report on a ‘core’ murine 

breath print, as well as, strain level differences between the compounds in breath. We provide 

identifications (by running commercially available analytical standards) to five breath compounds 

that are predictive of P. aeruginosa infection.

Keywords

Breath; Volatile organic compounds (VOCs); Pseudomonas aeruginosa; Comprehensive gas 
chromatography-time-of-flight mass spectrometer (GC×GC ToF MS)

1 Introduction

The measurement of specific volatile organic compounds (VOCs) in breath has been 

proposed as a potential diagnostic approach for a variety of diseases. Already, the Food and 

Drug Administration (FDA) has approved several breath tests for use in the clinic. For 

example, breath is used as a diagnostic for Helicobacter pylori-induced gastritis (Gisbert and 

Pajares 2004), response to asthma therapy (Kharitonov et al. 1994; Silkoff et al. 2004), and 

more recently for third-grade heart transplant rejection (Phillips et al. 2004). The latter of 

these tests utilizes a suite of volatile metabolites (or VOCs) in breath, identified via gas 

chromatography-mass spectrometry (GC-MS). Among the different products generated as 

part of normal cellular processes (i.e., DNA, RNA, proteins, metabolites), metabolites are 

reflective of biochemical activity, and can be more appropriately correlated to the phenotype, 

and subsequently to the actual clinical status (Patti et al. 2012). For this reason, the use of 

VOCs for the diagnosis of both acute and chronic respiratory infections is an area of intense 

research. These studies are extensively reviewed in (Sethi et al. 2013).

An important question in the field of breath diagnostics is whether bacterial infections by 

different strains of a single organism will have a universal breath print. Acute and chronic 

lung infections caused by Pseudomonas aeruginosa are the most well-studied bacterial lung 

infections in the field of breath research (Lyczak et al. 2000). For example, work from our 

group as well as others has expanded the volatile metabolome of P. aeruginosa compounds 

using in vitro (Bean et al. 2016), in vivo (breath) (Robroeks et al. 2010), and ex vivo (BAL 
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fluid, sputum) samples (Nasir et al. 2018; Shestivska et al. 2012). In vitro studies of various 

clinical strains of P. aeruginosa suggest the presence of a core volatile metabolome (Bean et 

al. 2016; Frimmersdorf et al. 2010) that can be useful for pathogen identification. However, 

no studies to date have shown the presence of such a signature in breath.

The mouse model of P. aeruginosa lung infection has been employed previously in the field 

of breath analysis (Bean et al. 2015; Zhu et al. 2013). These studies utilized secondary 

electrospray ionization-mass spectrometry (SESI-MS) to demonstrate that distinctive 

volatile patterns can be used to differentiate between mice infected with different bacterial 

species. However, the identification of the specific discriminatory VOCs was not possible 

using this technique (Bean et al. 2015; Zhu et al. 2013). Identifications of the VOCs is 

important for understanding the metabolic pathways involved during response to infection 

and to guide antibiotic development. To be able to provide this information, we used 

comprehensive two-dimensional gas chromatography (GC × GC) coupled with time-of-

flight mass spectrometry (ToF MS), one of the most powerful tools available for the analysis 

of volatile metabolites (Tranchida et al. 2015).

The aim of this study was to identify a discriminatory core breath-print derived from P. 
aeruginosa infection by different strains (i.e., PAO1, PA14, PAK, and PA7) and to evaluate 

the volatile metabolic relationship between these strains. To investigate the possible origins 

of the volatile compounds detected, the immune response of the host was activated by 

inoculating the mice with UV-killed P. aeruginosa, thereby excluding metabolites produced 

by live P. aeruginosa from the exhaled breath profile.

2 Materials and methods

2.1 Bacterial strains and inoculant preparation

Four P. aeruginosa strains were used in the study: PAO1 (Jacobs et al. 2003), PA14 (Rahme 

et al. 1995), PAK (Minamishima et al. 1968), and PA7 (Roy et al. 2010). All strains were 

cultured aerobically (24 h; 37 °C under agitation) in 20 mL of LB-Lennox (BD Diagnostics, 

Franklin Lakes, NJ, USA). Prior to inoculation in the murine lung, the cultures were washed 

three times and re-suspended in phosphate-buffered saline (PBS, pH 7.4) to the desired final 

concentration. The actual bacterial burden was verified by culturing the inoculant at 37 °C 

overnight on LB agar plates, after appropriate dilution, to calculate the bacterial cell density 

(CFU/mL). Additional mice were exposed to 50 mL of PBS by oropharyngeal aspiration as 

a negative control (Sham group). An aliquot of the PA14 and PAK inoculant was deactivated 

by exposing the inoculant to UV radiation for 20 min at 10 cm from the UV source, an 

empirically-determined radiative dose regime (UV-killed group).

2.2 Murine airway exposure and breath collection

All mice were housed for two weeks before starting the experiment in the Association for 

Assessment and Accreditation of Laboratory Animal Care (AAALAC)-accredited animal 

facility at the University of Vermont (Burlington, VT, USA). The protocol for animal 

infection, respiratory physiology measurements, and breath collection was approved by the 
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Institutional Animal Care and Use Committee (IACUC) at the University of Vermont, in 

accordance with AAALAC guidelines.

Female C57BL/6J mice (10–12 weeks, weight range 18–22 g) were purchased from The 

Jackson Laboratories (Bar Harbor, ME, USA). The animals were housed in the AAALAC 

approved vivarium in plastic cages with cedar bedding with maximum 5 mice per cage with 

a dark/light cycle of 12 h. The bedding was changed once weekly. Mice were provided with 

standard mouse chow, LabDiets RMH 3000, and tap water from bottles ad lib. Mice were 

inoculated with 50 μL of a PBS solution containing live or UV-killed P. aeruginosa at ~ 107 

CFU via oropharyngeal aspiration, as previously reported (Bean et al. 2015). The sham 

group was inoculated with 50 μL of sterile PBS but otherwise treated identically to the 

infected mice. The original study design called for eight animals per group, plus three 

animals to optimize the breath collection protocol (PA14), but the final numbers were 

affected by the loss of three animals during collection. Thus a total of 48 mice were used: 

seven in the PBS group, eight in the UV-killed group (4 PA14 and 4 PAK), and 33 in the 

Live PA group (8 PAO1, 11 PA14, 6 PA7, 8 PAK).

Twenty-four hours after either P. aeruginosa or PBS inoculation, mice were anesthetized 

with intraperitoneal sodium pentobarbital (90 mg/kg) and their tracheas cannulated with an 

18 gauge cannula. The tracheal cannula was connected to a flexiVent small animal ventilator 

(flexiVent, SCIREQ, Montreal, QC, Canada), and ventilated at 200 breaths/minute at a 

positive end-expiratory pressure (PEEP) of 3 cmH2O. Depth of anesthesia was monitored by 

regular toe pinch and if necessary additional aesthesia was provided. The exhaled breath was 

collected in a 1L Tedlar bag (SKC, Eighty Four, PA, USA) housed within a plexiglass box 

where the pressure was maintained at 3 cmH2O to guarantee that a constant PEEP was 

maintained throughout the procedure. Breath from the ventilator was collected at 200 

breaths/min for 30–40 min (Stewart et al. 2014). At the end of the breath collection, mice 

were euthanized with an intraperitoneal overdose of sodium pentobarbital (150 mg/kg) 

followed by blood and lung harvest (see below). The VOCs in breath were concentrated by 

drawing the entire contents of the Tedlar bag (1 L) onto custom-made 60 mm long fritted 

glass thermal desorption packed with 5 mm of Carbopack-Y 60/80 mesh, 5 mm of 

Carbopack-X 60/80 mesh, and 5 mm of Carboxen-1000 60/80 mesh (Supelco, Bellefonte, 

PA, USA) via a vacuum pump, at an average flow rate of 170 mL/min. The loading onto 

thermal desorption tubes was completed within 5 min of breath collection. Tubes were 

capped and stored at 4 °C and analyzed using the GC×GC-TOFMS system within 2 weeks 

of collection. The full protocol for breath collection can be found in previous publications 

(Franchina et al. 2018; Zhu et al. 2013a, 2014). Room air samples (n = 28) were collected by 

attaching the Tedlar bag to the ventilator in the absence of a mouse.

2.3 Collection and analysis of bronchoalveolar lavage fluid, lung tissue, and blood

The bronchoalveolar lavage (BAL) fluid was collected by instilling 1 mL of PBS (at room 

temperature) via tracheal cannula just after cessation of breath collection. The BAL fluid 

was split in two aliquots. One aliquot was centrifuged and the pellet containing the cellular 

material was stained using a HEMA 3 kit (Fisher Scientific); first fixed in a methanol 

solution for 2 min, then stained with Eosin Y for 2 min, and finally stained in Azure A and 
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methylene blue for 30 s. The cells were differentiated by counting 300 cells/slide, 

identifying eosinophils, neutrophils, macrophages, and lymphocytes (measurements 

performed in triplicate). The second aliquot was cultured neat (no dilutions) on 

Pseudomonas Isolation Agar (PIA) and LB agar plates as an additional confirmatory test for 

the presence of bacterial cells in the lungs at the moment of breath collection, and the 

presence of visible colonies was assessed after incubation at 37 °C. After collection of BAL 

fluid, a blood sample was drawn via heart puncture into 1.3 mL microtubes with EDTA and 

then cultured neat on PIA and LB as described for BAL. Then the lungs were harvested and 

homogenized. The excised lungs were trimmed free from adjacent tissue and the lung lobes 

(approximately 0.3 g) placed in sterile gentleMACS M tubes (Miltenyi Biotec, Auburn, CA, 

USA) with 3 mL of PBS. The lungs were homogenized by running the RNA_01 program (a 

default method) on a gentleMACS dissociator. Lung bacterial cell counts were obtained by 

plating an aliquot of the lung homogenate on PIA and LB agar plates and incubating them at 

37 °C.

2.4 Analytical instrumentation and statistical analysis

Thermal desorption tubes were analyzed using a Pegasus 4D (LECO Corporation, St. 

Joseph, MI, USA) GC×GC-ToFMS instrument with an Agilent 7890 GC equipped with a 

Thermal Desorption Unit (TDU), Cooled Inlet System (CIS), and a Multi-Purpose Sampler 

(MPS) auto-sampler (Gerstel, Linthicum Heights, MD, USA). Details of the sample 

desorption, chromatography, and mass spectrometry experimental conditions, as well as the 

alignment procedure and pre-cleaning steps, are summarized in Supplementary Material 

(Table S1).

All statistical analyses were performed using R (version 3.3.0). Data were log-transformed 

and normalized using Probabilistic Quotient Normalization (PQN) (Zhu et al. 2013b). The 

‘limma’ package was used to assess and address batch effect in our dataset caused by the 

temporal spacing between different experiments. Additional information is reported in the 

Supplementary Material.

To test for statistical significance, the Kruskal–Wallis test (Kruskal and Wallis 1952) with 

Benjamini-Hochberg (BH) correction (Benjamini and Hochberg 1995) was used, and a 

significance level of p < 0.05 was selected. The Random Forest (RF) machine learning 

algorithm was used to train a model and select putative discriminatory VOCs to distinguish 

between breath samples belonging to different inoculation groups (Breiman 2001) (details 

on algorithm reported in Supplementary Material). A 10-fold cross validation scheme was 

used to calculate accuracy and identify discriminatory compounds. RF uses an internal 

validation scheme (2/3rd training and 1/3rd testing) to compute accuracy (out-of-bag error) 

and compound importance. The latter is determined by permuting the values of each feature 

in the test samples and predicting the class labels of these samples. The association with the 

class labels is lost by randomly permuting the values of the feature. The difference in 

prediction accuracy before and after permuting the values of features averaged over all trees, 

is a measure of feature importance.

Hierarchical clustering analysis was used to assess the expression profile of discriminatory 

VOCs. The multivariate expression profile of strain specific VOCs selected by RF analysis 
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was visualized as an unrooted phylogenetic tree (distance metric = Euclidean distance). The 

flowchart of data processing highlighting the number of volatile metabolites retained after 

each step is described in Fig. 1.

3 Results

3.1 Murine infection confirmation

The microorganism content of the inoculants was verified by bacterial counts, and all ranged 

between 2 and 3 × 107 CFU/mL. The establishment of lung infection was verified by 

bacterial counts (CFU/lung) in lung homogenates and by evaluation of leukocyte 

differentiation in BAL fluid. Bacterial counts from homogenized lungs of mice infected with 

live P. aeruginosa (this group is designated as “Live-group” regardless of the specific strain) 

at the time of breath sampling (24 h after inoculation) ranged between 1 × 103 and 1 × 107 

CFU/lung (Supplementary Fig. 1a). The absence of viable bacteria in the mice inoculated 

with PBS (group designation: “PBS”), or UV-killed PAK or PA14 (group designation: “UV-

killed”) was also confirmed. The range of neutrophil percentage from BAL fluid of mice 

infected with P. aeruginosa was between 49.7% and 99.0%, confirming acute infection 

(Supplementary Fig. 1b). We did not observe a significant difference in the percentage of 

neutrophils recovered from BAL fluid between mice infected with live P. aeruginosa and 

those infected with UV-killed PAK (Supplementary Fig. 1b). There was, however, a 

significant difference (p < 0.001) between neutrophils recovered in BAL fluid of mice 

infected with UV-killed PA14 and all other groups (excluding PBS). This may be reflective 

of a wide spectrum with respect to immune response robustness within this group of mice 24 

h post-inoculation. No neutrophils were recovered from mice inoculated with PBS.

3.2 P. aeruginosa-specific volatile molecules in murine breath

The data matrix obtained from the analysis of the exhaled breath was cleaned (eliminating 

known contaminants and artifacts) and batch-corrected as described in the Supplementary 

Material and depicted in Supplementary Figures S2a and S2b. The number of peaks was 

then further reduced by the removal of features that were not statistically different between 

exhaled breath and room air samples (p ≥ 0.05), resulting in a total of 527 peaks. 

Hierarchical clustering and a heatmap of these 527 peaks did not show an obvious visual 

discrimination of the Live-group (PA14, PA7, PAK, and PAO1) from the PBS and UV-killed 

groups (Supplementary Figure S3). Hence, the data matrix was reduced to 301 features via 

the removal of breath features that were not significantly different (using the Kruskal–Wallis 

test) between Live-group, PBS, and UV-killed. Heatmap and hierarchical clustering analysis 

using these volatile molecules demonstrated clearer structure with respect to separation 

between groups (Fig. 2a).

To identify a predictive suite of volatiles, a machine learning algorithm was applied to build 

a three-class model that could differentiate between the Live-group, PBS, and UV-killed. 

The Random Forest algorithm was used because of its ability to deal with highly collinear 

data and its robustness to the influence of different types of outliers (Smolinska et al. 2014). 

A panel of nine volatile metabolites were selected (Table 1) which were able to classify mice 

breath samples based on their group identity with a cross-validated accuracy of 81%. 
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Heatmap and hierarchical cluster analysis of the nine discriminatory volatile molecules 

shows three main clusters, corresponding to the three classes tested, namely Live-group, 

PBS, and UV-killed (Fig. 2b), with five animals from the Live-group being misclassified. We 

hypothesize that this misclassification may be due to the substantial variability of the murine 

immune response to P. aeruginosa infection, as demonstrated by (Bean et al. 2015).

The expression profile of the nine selected features for each group (Live-group, PBS, and 

UV-killed) was examined (Fig. 3) using boxplots. Five features were significantly different 

between the Live-group and PBS, but only one (alkylated hydrocarbon 1) was more 

abundant in the former group. Eight features were significantly different between the Live-

group and the UV-killed, with three features (alkylated hydrocarbon 1, isoborneol, and 

unknown 1) significantly more abundant in the Live-group than in the UV-killed group, 

which may be related to the contribution of live bacterial metabolism to the VOC profile in 

breath. Five features were highly abundant in the UV-killed group compared to the Live-

group, namely alkylated hydrocarbons 3 and 4, alkylated alcohol, p-cymene, and 2-

hexanone. Four features: alkylated hydrocarbon 1, isoborneol, alkylated hydrocarbon 2, and 

unknown 1 were significantly more abundant in the PBS group compared to the UV-killed 

and Live-group. One feature (alkylated hydrocarbon 3) was significantly less abundant in 

PBS compared to UV-killed and Live-group. Four features, namely alkylated hydrocarbons 1 

and 4, alkylated alcohol, and unknown 1, were not significantly different between PBS and 

the Live-group.

3.3 Strain-level identification in mice with P. aeruginosa lung infection

To assess whether volatile molecules in exhaled breath during infection can be used to 

identify specific bacterial strains, we first performed a multiclass statistical test and removed 

the features that were not statistically different between two or more strains (p ≥ 0.05). The 

data matrix was thus reduced to 155 features (Fig. 1). Two main clusters were visualized 

using hierarchical clustering analysis (Supplementary Figure S4). The breath samples of 

mice inoculated with PAO1 and PA7 clustered well and separately from each other, while 

PA14 and PAK were interspersed almost equally between the two clusters (Supplementary 

Figure S3). Following the same procedure used for creating the previous model, features 

were reduced to the most discriminatory set using Random Forest to predict strain-level 

differences. A panel of ten volatile molecules (reported in Table 1) was selected and used to 

build a phylogenetic tree to visualize the groupings of the breath metabolomes (Fig. 4), 

confirming that PA7 and PAO1 formed two distinct clusters, while PAK and PA14 were 

interspersed across these clusters. The expression profile of the ten selected features is 

reported in Fig. 5. PAO1 and PA7 presented the most distinct profiles compared to the other 

strains, and generally PAO1 had the highest expression levels of the ten volatile molecules, 

while PA7 had the lowest.

3.4 Identification of the most discriminatory compounds

Combining the features selected from the two models discussed above, a list of 19 

metabolites was generated (Table 1). The identity of five compounds (p-cymene, 2-

hexanone, isoborneol, cyclopent-4-ene-1,3-dione, and cyclohexanol) were confirmed by 

running commercially-available analytical standards. Three compounds were putatively 
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identified based only on their mass spectral similarity (commercial standards were not 

available). For these three, the MS library search identified a single candidate with a 

similarity match score substantially higher than the subsequent match score. However, when 

this was not the case, only a compound class was reported. Six compounds were defined as 

“alkylated hydrocarbons” (since the exact identification of compounds in this class is nearly 

impossible based only on mass spectral similarity, due to their intense fragmentation into the 

MS ion source), two as fatty acid methyl esters (FAMEs), and one as an aldehyde. Only one 

compound remained completely unknown (similarity match < 600), though it was 

reproducibly present. Cyclohexanol has been previously reported to be produced by 

Pseudomonas strains (Giorgio et al. 2015), and 2-hexanone was previously reported in the 

headspace of sputum from patients infected with P. aeruginosa (Goeminne et al. 2012).

4 Discussion

To the best of our knowledge, this is the first study to report on a “core” volatile metabolome 

(nine compounds) for P. aeruginosa detection in an in vivo murine model. Evidence of an in 

vitro core metabolome for P. aeruginosa, irrespective of bacterial genetic background, 

carbon source, or growth phase was demonstrated by Frimmersdorf et al. (Frimmersdorf et 

al. 2010). Bean et al., showed that this observation could be translated broadly to the VOC 

metabolome by analyzing the headspace of 24 isolates of P. aeruginosa grown in culture and 

putatively identifying 51 VOCs consistently produced by all strains (Bean et al. 2016). We 

have demonstrated that using nine core compounds from breath, we were able to identify P. 

aeruginosa-infected mice with an accuracy of 81%. Animals that were misclassified had 

similar CFU/lung and cell differentiation data as the rest of the samples in that group. The 

high variability of the host-response to P. aeruginosa infection may contribute to breath 

variability and has been described previously (Bean et al. 2015). We note the clear 

discrimination of the UV-killed group from both PBS and the Live-group, which suggests 

that the breath signature is not likely to be related to a generic response to lung irritation, but 

may instead be associated with the specific presence of P. aeruginosa. We acknowledge that 

this study design does not include the measurement of breath from mice infected with other 

bacterial species, an important future direction of this work.

Although a conclusive discussion cannot be performed, we can speculate on the possible 

host-origin of a subset of compounds, such as alkylated hydrocarbon 3, alkylated 

hydrocarbon 4, alkylated alcohol, p-cymene, and 2-hexanone, which were significantly more 

abundant in the breath of mice inoculated with the UV-killed bacterium. On the other hand, 

alkylated hydrocarbon 1, isoborneol, and unknown 1 are produced predominantly by the 

Live-group infections, and can therefore be hypothesized to be produced by P. aeruginosa (or 

the interaction between P. aeruginosa and the murine host).

We also identified a P. aeruginosa strain-related signature from the breath of infected 

animals. Genomic studies have characterized the relationship of core strains of P. aeruginosa 
(Stewart et al. 2014), revealing three distinct phylogenetic groups to which the strains here 

belonged: Group 1 (to which PAO1 and PAK belonged), Group 2 (to which PA14 belonged) 

and Group 3 (to which PA7 belonged). Breath metabolite signatures are much more 

complicated since breath is composed of volatile molecules generated not only by the 
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bacterium, but also by the host, and the specific host-pathogen interaction. We used the 

multivariate volatile molecule profile of the ten discriminatory compounds to investigate 

whether a ‘suite’ of VOCs was more representative of the inter-strain variation rather than a 

single compound, as previously tested by Shestivska et al. (Shestivska et al. 2012). The 

phylogenic relations that we were able to visualize in Fig. 4, although not fully 

recapitulating the same genomic relationship, allows a certain degree of strain-specificity.

Among the most discriminatory metabolites, hydrocarbons were the most enriched 

compound class (32% of discriminatory compounds), in agreement with the finding that 

correlates their presence to the oxidative stress occurring during inflammation (Haick et al. 

2014). Only two compounds that we identified were previously reported in relation to 

Pseudomonas, namely cyclohexanol and 2-hexanone (Giorgio et al. 2015; Goeminne et al. 

2012). The latter was significantly more abundant in the breath of UV-killed and PBS 

infected mice compared to the Live-group, suggesting that the molecule may be metabolized 

by the pathogen. In addition, KEGG database identified two microbial pathways associated 

with cyclohexanol; degradation of aromatic compounds and microbial metabolism in diverse 

environments.

5 Conclusion

To the best of our knowledge, this is the first study to report on a core breath metabolome for 

murine P. aeruginosa infection. Although additional studies will be necessary to define a P. 
aeruginosa-specific breath signature, our work has shown that a suite of nine volatile 

molecules in breath can be used to discriminate between mice inoculated with Live bacteria, 

UV-killed bacteria, and PBS. In addition, for the first time, we defined a P. aeruginosa strain-

specific breath signature using ten additional volatile metabolites. Our results demonstrate 

that the volatile metabolomes of PAO1-and PA7-infected mice were most distinct relative to 

one another, whereas mice infected with PAK and PA14 were interspersed between the 

former strains. This is the first time that breath volatile compounds discriminatory for P. 
aeruginosa infection in mice were reliably identified. Altogether, we confirmed the identity 

of five breath compounds (by running commercially available analytical standards) that are 

predictive of P. aeruginosa infection. In addition, three compounds were putatively identified 

based only on their mass spectra similarity (commercial standards were not available).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Data reduction methodology for volatile molecules reported in the study. Numbers in boxes 

represent the number of VOCs remaining at each step of data processing
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Fig. 2. 
Heatmap and hierarchical clustering analysis of breath profiles: a using 301 volatile 

molecules that were significantly different between Live-group, PBS, and UV-killed groups 

(p< 0.05, Kruskal–Wallis with Benjamini–Hochberg correction), and b using nine 

discriminatory volatile molecules. The identity of underlined volatile metabolites was 

confirmed using analytical standards
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Fig. 3. 
Boxplot of nine volatile metabolites used to discriminate Live-group versus PBS versus UV-

killed. * p < 0.05; ** p < 0.01. The lower, middle and upper lines of the box correspond to 

the first, second and third quartiles (the 25th, 50th, and 75th percentiles, respectively). The 

upper whisker extends from the upper line to the largest value no further than 1.5 × IQR 

from the line (where IQR is the inter-quartile range). The lower whisker extends from the 

bottom line to the smallest value at most 1.5 × IQR of the range. Data beyond the end of the 

whiskers are called “outlying” points and are plotted individually
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Fig. 4. 
An unrooted phylogenetic tree using ten discriminatory volatile molecules from the breath of 

mice infected with PA7, PAO1, PA14, and PAK. The length of the scale bar represents the 

Euclidean distance calculated based on the multivariate volatile molecule profile using ten 

compounds
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Fig. 5. 
Boxplot of ten volatile metabolites used to differentiate PA14 versus PA7 versus PAK versus 

PAO1 breath samples (* p< 0.05; ** p< 0.01). The lower, middle and upper lines of the box 

correspond to the first, second and third quartiles (the 25th, 50th, and 75th percentiles). The 

upper whisker extends from the upper line to the largest value no further than 1.5 × IQR 

from the line (where IQR is the inter-quartile range). The lower whisker extends from the 

bottom line to the smallest value at most 1.5 × IQR of the range. Data beyond the end of the 

whiskers are called “outlying” points and are plotted individually
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